
The Hob System for Verifying Software DesignPropertiesby
P atric k LamSubmitted to the Department of Eletrial Engineering and ComputerSienein partial ful�llment of the requirements for the degree ofDotor of Philosophyat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYFebruary 2007

© Massahusetts Institute of Tehnology 2007. All rights reserved.
Author .Department of Eletrial Engineering and Computer SieneFebruary 1, 2007Certi�ed by. .Martin RinardProfessorThesis SupervisorAepted by .Arthur C. SmithChairman, Department Committee on Graduate Students

2

The Hob System for Verifying Software Design PropertiesbyPatrik LamSubmitted to the Department of Eletrial Engineering and Computer Sieneon February 1, 2007, in partial ful�llment of therequirements for the degree ofDotor of PhilosophyAbstratThis dissertation introdues novel tehniques for verifying that programs onform totheir designs. My Hob system, as desribed in this dissertation, allows developers tostatially ensure that implementations preserve ertain spei�ed properties. Hob ver-i�es heap-based properties that an express important aspets of a program's design.The key insight behind my approah is that Hob an establish detailed software designproperties�properties that lie beyond the reah of extant stati analysis tehniquesdue to salability or preision issues�by foussing the veri�ation task. In partiu-lar, the Hob approah applies salable stati analysis tehniques to the majority ofthe modules of a program and very preise, unsalable, stati analysis or automatedtheorem proving tehniques to ertain spei� modules of that program: those thatrequire the preision that suh analyses an deliver. The use of assume/guaranteereasoning allows the analysis engine to harness the strengths of both salable andpreise stati analysis tehniques to analyze large programs (whih would otherwiserequire salable, impreise analyses) with su�ient preision to establish detaileddata struture onsisteny properties, e.g. heap shape properties. A set-based spe-i�ation language enables the di�erent analysis tehniques to ooperate in verifyingthe spei�ed design properties. My preliminary results show that it is possible tosuessfully verify detailed design-level properties of benhmark appliations: I haveused the Hob system to verify user-relevant properties of a water moleule simulator,a web server, and a minesweeper game. These properties onstrain the behaviourof the program by stating that seleted sets of objets are always equal or disjointthroughout the program's exeution.Thesis Supervisor: Martin RinardTitle: Professor

3

4

Dediated to the memory of Raja Vallée-Rai (1975-2004).

5

6

AknowledgmentsFirst, I must aknowledge my advisor Martin Rinard for guiding me through thisdegree. His intuitions (usually spot-on) have ertainly helped me design and exeutethe researh in this thesis. Martin has always been aessible and helpful to me. Iwould also like to thank Butler Lampson for his ability to spot inonsistenies andnon sequiturs in this doument whih eluded my notie.Collaborating with Viktor Kunak has ertainly been di�ult at times. I'd like tothank him, though; together, we managed to get some researh results that, I believe,exeeded what we ould have ahieved separately.Viktor is responsible for the idea of inorporation in the �ags plugin. The Bohneplugin was primarily developed by Thomas Wies in ollaboration with Viktor. Thetheorem proving plugin was developed and used by Karen Zee and Viktor.An important omponent of a graduate degree�perhaps the most important partof the learning experiene�is that of belonging to a researh group. Radu Rug-ina, Maria-Cristina Marinesu, Darko Marinov, C. Sott Ananian, Brian Demsky,Alexandru S lianu, Karen Zee, Viktor Kunak, and new students Mihael Carbinand Zoran Dzuni have ontributed immensely to my experiene at MIT. I'd also liketo expliitly thank Brian for not getting us into an avalanhe.Mary MDavitt, administrative assistant extraordinare, has provided invaluablesupport to our group, and has furthermore helped proofread seleted passages of thisthesis. I appreiate all of her help.Jonathan Babb mentioned Viktor, Karen and me for being his last o�ematesin his aknowledgements. I'd like to thank him for being my �rst o�emate here atMIT and setting the tone for the next six years of graduate shool.Seven years ago, I thanked Marie-Pasale Desjardins [57℄. I am fortunate in that Ian one again thank her for her love, her support, and her aeptane of my quirks,whih she has, by now, had ample time to disover.This researh was partially supported by Canada's Natural Siene and Engineer-ing Researh Counil as well as le Fonds québéois de la reherhe sur la nature etles tehnologies.

7

8

Contents
1 Introdution 171.1 Salability and Diversity . 181.2 Approah Based on Abstrat Set Spei�ations 201.2.1 Two novel spei�ation-level onstruts 211.3 Verifying Program Properties . 211.4 Rationale . 221.5 Results . 231.6 Limitations . 241.7 Contributions . 261.8 Struture . 272 Hob Implementation Language 292.1 Example: Doubly-Linked List Implementation 292.1.1 Expliit module de�nitions . 292.1.2 Stati module instantiation 292.1.3 Type and variable delarations 302.1.4 Proedures . 312.1.5 Exeuting Hob programs . 332.2 Implementation Language Grammar 332.3 Operational Semantis . 332.4 Disussion . 382.4.1 Impliations of enapsulating �elds 382.4.2 Impliations of stati instantiation 393 Hob Spei�ation Language 413.1 Example: Doubly-Linked List Spei�ation 423.1.1 Spei�ation module de�nitions and instantiations 423.1.2 Spei�ation variable de�nitions 423.1.3 Proedure de�nitions . 433.2 Example: Global Properties (Sopes) 443.2.1 A global invariant . 443.2.2 Speifying global invariants 463.2.3 Verifying global invariants . 483.2.4 Spei�ation aggregation . 483.3 Example: Global Properties (Defaults) 499

3.4 Spei�ation Language Grammar . 493.4.1 Core spei�ation language . 503.4.2 Sopes . 513.4.3 Defaults . 563.5 Disussion . 583.5.1 Sopes and spei�ation aggregation 593.5.2 Advantages and disadvantages of defaults 603.5.3 Impliations of using a set spei�ation language 603.5.4 Comparison: Stati analysis and testing 634 Hob Abstration Languages 654.1 Analysis Approah . 664.1.1 Speifying Hob abstration funtions 684.1.2 Common abstration module grammar 684.2 Flags Abstration Module Language 704.2.1 Example: Flag abstration module 724.2.2 Loop invariant inferene . 734.2.3 Using the �ag analysis plugin 794.3 Bohne Abstration Module Language 804.3.1 Example: Bohne abstration module 814.3.2 Using the Bohne analysis plugin 834.4 Theorem Proving Abstration Module Language 854.4.1 Example: Theorem proving abstration module 864.4.2 Using the theorem proving analysis plugin 874.4.3 Expressive power of the theorem proving plugin 874.5 How Abstration Modules Enable Cheking of Global Properties . . . 895 Ensuring Consisteny Properties 935.1 Analysis Plugin Responsibilities . 935.2 Developing New Analysis Plugins . 965.3 Hob Analysis Driver . 976 Flags Analysis Plugin 1036.1 Flags Analysis Example . 1036.2 Flags Analysis Algorithm . 1066.3 Inorporation . 1086.4 Transition Relations . 1096.5 Verifying Impliation of Data�ow Fats 1126.6 Loop Invariant Inferene . 1126.7 Boolean Algebra Formula Transformations 1126.8 Evaluating Formula Optimization Impat 11510

7 Experiene 1177.1 Data Struture Implementations . 1177.1.1 Tree data struture . 1177.1.2 Stak data struture . 1217.2 Water . 1217.3 HTTP Server . 1247.4 Minesweeper . 1277.5 Impliations of Modular Analysis . 1327.6 Summary and Re�etions . 1328 Related Work 1378.1 Spei�ation Languages . 1378.1.1 Expressing design information 1428.2 Analysis Tehnologies and Veri�ation Systems 1438.3 Combining Stati Analyses . 1499 Conlusion 1519.1 Future Work . 1529.2 Impliations . 154

11

12

List of Figures2-1 Doubly-linked list implementation, part 1 342-2 Doubly-linked list implementation, part 2 352-3 Formats example . 362-4 Grammar for Hob implementation language 362-5 Operational semantis for implementation language 373-1 Doubly-linked list spei�ation . 453-2 Sope invariant example . 473-3 Illustration of sopes example . 473-4 Defaults example . 503-5 Syntax of the Module Spei�ation Language 513-6 Syntax of Sope Delarations . 533-7 Sope Entry and Exit Points . 533-8 Pointut Language for Defaults . 574-1 Abstration Language Grammar . 694-2 Example List Abstration Module . 714-3 Example Flag Abstration Module 734-4 Proedure ontaining a loop . 754-5 Proedures alled within the loop . 754-6 Grammar for Flag Abstration Modules 794-7 Bohne abstration body for doubly-linked list 834-8 Grammar for Bohne Abstration Modules 854-9 Example Theorem Proving Abstration Setion 864-10 Grammar for Theorem Proving Abstration Modules 884-11 Model sope from Minesweeper example 904-12 Module visibility by various analysis plugins 915-1 Overview �owhart for generi analysis plugin 945-2 Detailed �owhart for generi analysis plugin 955-3 Driver state after parsing minesweeper �les 985-4 Driver state after proessing minesweeper stati module instantiations 995-5 Driver state after adding minesweeper sope dependenies 995-6 Driver state after adding minesweeper inter-module dependenies . . 1005-7 Commands generated by Hob analysis driver 10113

6-1 Minesweeper Board spei�ations, implementations, and abstrations 1046-2 Flowhart for �ags analysis plugin . 1076-3 Pseudo-ode for Loop Invariant Inferene Algorithm 1137-1 Implementation of TreeSet insert proedure 1207-2 Module dependeny diagram for water benhmark 1227-3 Module dependeny diagram for web server 1257-4 Module dependeny diagram for Minesweeper implementation 1287-5 Doubly-Linked List Client . 130

14

List of Tables6.1 Formula sizes before and after transformation 116

15

16

Chapter 1IntrodutionDesign information an greatly ontribute to understanding the struture of a softwareartifat and the underlying assumptions behind that artifat. During the initial de-velopment phase of a software system, design information enables developers to om-muniate produtively while ollaboratively implementing software systems, guidesthem through the implementation proess, and helps them pinpoint the auses ofsoftware defets. In subsequent phases of software development and maintenane,design information an help developers to avoid introduing perniious errors basedon misunderstandings of a system's design and understand how to most e�etivelyadd new features to software. Today, however, design information is typially odi�edat an early stage of a program's development and rarely kept up-to-date: beause notool an urrently automatially verify design properties, it is di�ult to keep designinformation urrent as designs and implementations evolve. It is therefore di�ultfor developers to take advantage of the bene�ts o�ered by up-to-date, valid designinformation as systems progress through their entire lifeyles.This dissertation presents a suite of tehniques that allow developers to speifyimportant design properties of software systems and to automatially verify thattheir implementations satisfy the spei�ed design properties. These tehniques fouson properties that pertain to data strutures. Sine a data struture's state anoften be produtively summarized, in abstrat terms, by the set of heap objets thatthe data struture ontains, this dissertation fousses on data struture propertiesthat an be expressed in terms of the boolean algebra of sets. (In this dissertation,the term �abstrat set� denotes a named set of heap-alloated objets, abstratingaway from the question of how the set is de�ned.) Abstrat sets therefore enabledevelopers to desribe the state of a software system in abstrat terms�developersmay instead reason about the ontents of di�erent data strutures without requiringthem to reason about the implementation details behind eah data struture.Relationships between abstrat sets onstitute a key type of design information,and being aware of suh relationships an help developers better understand the stru-ture of their systems. This dissertation therefore proposes a set spei�ation language,ontaining the boolean algebra of sets, for expressing relationships between sets. Suha spei�ation language enables developers to state equality, ontainment, or disjoint-ness relationships between sets and objets, and to verify that these properties hold17

in the implementations of their systems. Beause design properties often relate theontents of di�erent sets (and therefore data strutures), the tehniques presented inthis dissertation therefore enable developers to state and verify design-level propertiesabout a software system's design and verify that they hold aross all exeutions of asoftware system. Suh design-level properties may be most appropriately expressedas invariants, whih hold throughout a program's exeution, or as preonditions andpostonditions, whih hold at spei� points in the exeution.Reasoning in terms of abstrat set spei�ations is only meaningful if data stru-tures properly implement their set abstrations. Implementations of data struturestend to be intriate and the neessary low-level onrete onsisteny properties aretypially di�ult to verify. While stati analysis tehniques whih an verify ertainlasses of data struture implementations do exist, two hallenges urrently limit theappliability of existing data struture analysis tehniques. The �rst hallenge is di-versity: there exists a wide range of data strutures, and yet eah existing analysistehnique only applies to a subset of these data strutures. The seond hallenge issalability: beause data struture onsisteny properties are so omplex, analysistehniques must build detailed summaries of the implementation's state. Suh sum-maries are omputationally expensive to reason about, so existing analysis tehniquesdo not sale to even moderately-sized programs.A key insight of this dissertation is that it is possible to use a modular analysis ap-proah to overome both the diversity and salability problems: by applying existingsophistiated stati analyses in onert and using them to deide whether proeduressatisfy their set spei�ations, it beomes possible to handle many di�erent lassesof data struture implementations; and by only applying expensive analyses to thoseportions of a program that require them, the overall analysis an terminate in areasonable amount of time.In summary, my researh enables developers to verify both low-level onrete datastruture onsisteny properties, whih ensure that data strutures satisfy neessaryinternal invariants, and abstrat high-level properties, whih relate the ontents ofmultiple data strutures. These properties therefore help developers maintain veri-�ed, up-to-date design information. I expet that suh design information will im-prove developer produtivity by giving developers reliable information about theirprograms, espeially when multiple developers partiipate in the development of asoftware system and have roles that hange over time.1.1 Salability and DiversityResearhers have developed a range of stati program analyses for verifying pro-grams that manipulate data strutures, and in partiular for verifying that programspreserve important data struture onsisteny properties in all possible exeutions.Shape analyses, for instane, verify that programs orretly manipulate linked heapdata strutures. Stati analysis tehniques work by onstruting models of the pro-gram's state and ations that overapproximate its semantis. Eah analysis tehniqueuses a set of models that is spei� to the targetted set of programs and properties.18

Analyzing di�erent data strutures therefore requires di�erent abstrat models: an-alyzing linked lists is very di�erent from analyzing arrays, whih is in turn quitedi�erent from analyzing data strutures enoded using bit manipulations. It is hardto imagine any single analysis abstration whih an e�etively handle all data stru-tures of interest. Therefore, any tehnique whih veri�es onsisteny properties thatut aross multiple data strutures must somehow ombine analysis results from dif-ferent stati analyses, eah of whih uses its private model of the program.An additional hallenge to verifying data struture onsisteny properties is theissue of salability. The design of any stati analysis tehnique involves a funda-mental tradeo� between preision and salability: to verify more detailed programproperties, a stati analysis must build more detailed models of the program's stateand more aurate abstrations of how the program manipulates its state. It is, ofourse, expensive to onstrut and maintain detailed models and abstrations. Theomputational ost of state-of-the-art shape analyses, suitable for verifying key datastruture onsisteny properties, is typially super-exponential in the size of the pro-gram fragment being veri�ed, and the literature therefore does not ontain suessfulreports of appliations of shape analysis to more than hundreds of lines of ode at atime.Modular veri�ation, in the form of assume/guarantee reasoning1, is a well-knowntehnique in the program veri�ation ommunity. However, modular veri�ation hasalways been di�ult to apply in pratie. Firstly, it has been di�ult to hoose anotation for expressing program properties whih is suitable for modular veri�ation.This notation must be su�iently expressive to enable developers to express inter-esting properties, yet it must be onise enough so that the spei�ations remaintratable. Seondly, even with a suitable notation, it has been di�ult to �nd appro-priate tehniques for automatially verifying that implementations atually onformto their stated properties. The key insights in this dissertation are that the use ofa ommon set spei�ation language and the pluggable analysis approah enable theprodutive use of modular reasoning for the veri�ation of data struture onsistenyproperties. The set spei�ation language enables the enapsulation of data struturesbehind su�iently rih abstration barriers suh that one an analysis proves that animplementation onforms to its set interfae, other analyses an produtively use thisanalysis result to guarantee data struture onsisteny properties. Furthermore, thespei�ation language ontains notions that enable developers to ontrol the growthof spei�ations throughout the program. My results show that the approah pre-sented in this dissertation an soundly and pratially apply arbitrarily preise�andhene arbitrarily unsalable�analyses to only those portions of an implementationthat need that preision.1Beause this dissertation fousses on sequential programs, assume/guarantee reasoning is equiv-alent to reasoning based on preonditions and postonditions. The general formulation of as-sume/guarantee reasoning is more general than preonditions and postonditions in that it relatesthe ations of the system and its environment. In onurrent programs, the system and its environ-ment may at onurrently. 19

1.2 Approah Based on Abstrat Set Spei�ationsThe Hob system presented in this dissertation analyzes programs onsisting of a olle-tion of program modules. Eah module ontains spei�ations and implementations.Set-based spei�ations are a key part of the Hob methodology; they allow developersto state properties of the heap by stating properties of sets of heap objets. Beausethe ontents of data strutures an often be haraterized using sets, Hob's set-basedspei�ation language enables developers to express important global data strutureonsisteny properties relating the ontents of di�erent data strutures without need-ing to understand the internal design of eah data struture. The developer mayinstead assume that eah data struture enodes a set. This enables the developerto reason about the state of a program by reasoning about its sets. Furthermore,set-based spei�ations serve as an analyzable abstration of the program state: theuse of set-based spei�ations as a ommon spei�ation notation allows eah of thestati analyses that omprise the Hob system to trak the abstrat state of the heaprelatively e�iently.Suh an approah to the veri�ation of global properties, of ourse, relies on datastrutures orretly implementing their set abstrations. The Hob system allows datastruture implementors to speify internal data struture properties�relationshipsbetween the abstrat state, expressed in terms of sets, and the onrete state, ex-pressed in terms of properties of heap objets. Abstration funtions and invariantsrelate the abstrat and onrete states. The Hob system enables developers to usedi�erent stati analysis tehniques to verify eah module by supporting analysis plu-gins. Eah analysis plugin proesses a partiular family of abstration funtions anddeides whether or not implementations onform to their spei�ations, using theprovided abstration funtions.Beause di�erent data strutures may be analyzed using di�erent analysis teh-niques, and beause Hob's ommon set spei�ation language enables developers touniformly express properties about di�erent data strutures, the Hob system enablesdevelopers to verify implementations using a variety of analysis tehniques. For in-stane, developers an state and verify the property that two data strutures shareno elements, even if these data strutures are implemented using ompletely di�erentdata strutures. Data struture onsisteny properties an, in general, desribe howprogram modules may interat.One Hob has veri�ed that all modules satisfy their ontrats, then the program'sdata struture onsisteny properties are guaranteed to hold. Note that Hob's anal-ysis task is strutured in terms of assume/guarantee reasoning : developers expressprogram data struture onsisteny properties in terms of the assumptions that pro-edures may expet to hold upon entry, as well as the onditions that proeduresguarantee upon suessful ompletion. Assume/guarantee reasoning in Hob works attwo levels: �rst, modules assume that their lient modules properly implement theirinterfaes, and seond, modules may rely on their preonditions holding upon entry.The Hob system disharges the relevant guarantees when it enounters them duringthe analysis task. 20

1.2.1 Two novel spei�ation-level onstrutsIn the Hob system, modular veri�ation depends on the availability of program spe-i�ations. The size and omplexity of program annotations is a ritial parameterdetermining the feasibility of assume/guarantee reasoning, in terms of both annota-tion and analysis e�ort. Having observed that ertain lauses tended to ut arossspei�ation statements in di�erent parts of the program, and that these lausestended to aumulate towards the top of the program's all graph, I invented andimplemented two spei�ation-level onstruts that proved useful in reduing the sizeand the omplexity of annotations. These onstruts made it easier both to writeannotations and to reason about them; they enable a seond kind of salability in theHob system. Hob therefore ontains salability onstruts for both the analysis taskand the spei�ation task.Sopes are a onstrut for grouping together modules. Sopes ontain sope in-variants, whih are logial formulas orrelating the state of the ontained modules. Asope invariant might state, for instane, that a program has two sets that are alwaysdisjoint. These formulas may be temporarily violated inside the assoiated sope,but are veri�ed at sope boundaries, and therefore hold universally throughout theprogram's exeution. In partiular, sope invariants must hold in the program's ini-tial state. Sope invariants simplify both program annotation and program analysis:they simplify the annotation task by allowing the developer to omit lauses from theannotation; furthermore, they simplify the analysis task by relieving the analysis ofthe responsibility for proving the invariant, exept at ertain ruial program points.A simple worst-ase estimate for a modestly-sized program with a all depth of 6shows that the use of sopes an redue aggregate spei�ation size from 384 lausesto 64 lauses and maximum spei�ation size from 64 to 1.I also observed that some lauses hold almost everywhere in the program, butnot everywhere, and are in fat false in the program's initial state; these lauses aretherefore not appropriate for use as sope invariants. Beause these lauses should notneed to be expliitly stated throughout a module's spei�ation, I implemented thedefault onstrut, whih simpli�es annotations by onjoining suh lauses to proedurepreonditions at arbitrary points in the program's spei�ations. I adapted the notionof a pointut from aspet-oriented programming to enable developers to speify wherethese lauses should hold.I expet that these onstruts will help developers to annotate programs. This dis-sertation therefore ontains an evaluation of how sopes and defaults help developersspeify programs.1.3 Verifying Program PropertiesHob's approah deomposes the analysis of a program into the analysis of its om-ponent modules. Some of these modules are reusable generi library modules, whileothers ontain appliation-spei� ode. Library modules may be implemented usinga range of tehniques: some modules might store objets in strutures like arrays and21

linked lists, while others ould go as far as using bit-level manipulation to e�ientlystore and retrieve information. The sophistiation of data struture onsisteny prop-erties plaes them beyond the reah of salable analysis tehniques, while the diversityof these properties makes it hard to imagine that any single analysis ould verify thefull range of data struture onsisteny properties.The problems of salability and diversity inspired Hob's analysis plugin approah.Instead of attempting to use a single analysis to verify all of a program's interfaes,the Hob system is made up of a number of analysis plugins, eah of whih is designedto verify a narrow lass of targeted onsisteny properties. Hob's analysis pluginsurrently inlude a �eld-value based analysis, a shape analysis, and an analysis thatuses interative theorem proving tools. When presented with a module to analyze,the Hob analysis driver uses an analysis for that partiular module, as direted by thedeveloper. No matter whih analysis plugin is used, though, library modules only needto be veri�ed one; as long as the module has been suessfully veri�ed, developersmay subsequently rely on the module's spei�ation as a orret summary of thebehaviour of the module. Note that despite the pervasive use of unsalable analyses,the overall Hob approah an sale, sine it veri�es the program one proedure ata time, using assume/guarantee tehniques, and ommuniates analysis informationbetween proedures using the ommon set spei�ation language.1.4 RationaleA key ontribution of this dissertation is its thesis that set spei�ations allow de-signers and developers to state, ommuniate, and enfore design-level informationabout programs. The Hob approah enables developers to abstrat a program's stateinto a olletion of sets of heap objets and express design information in terms of1) set membership onstraints for objets, and 2) relationships between set ontents.The Hob program veri�ation framework then uses set spei�ations to automatiallyverify design information and ensure that the program satis�es the stated design on-straints. A key part of the set spei�ation language is its support for salability atthe spei�ation level: the notions of sopes and defaults enable developers to writemore onise spei�ations.Set membership onstraints allow developers to speify that objets must havepartiular states before ertain ations may our. Suh onstraints therefore enabledevelopers to enode neessary dependenies between program operations on heapobjets. In partiular, an objet's partiipation in a module's sets gives insight as tohow the objet is partiipating in the omputations being arried out by that module.When di�erent modules work together, objets will often arry orrelated set mem-berships in the various modules. Conversely, when a program onsists of independentand loosely-oupled submodules, objets may arry orthogonal set memberships indi�erent modules.Hob's set spei�ations enable developers to selet an appropriate ollaborationmodel for the modules in a program and to enode that ollaboration model in averi�able form. To this end, the Hob approah also allows developers to express and22

enfore required relationships between sets. Developers may express domain-spei�properties by requiring that sets (or ombinations of sets: unions, intersetions, setdi�erenes) always be either empty or nonempty. Hob therefore enables developers tosuintly desribe antiipated global program states and allowable state transitionsin terms of set-based onstraints.Set spei�ations therefore enable the Hob framework to automatially verify de-sign information. Note that the targetted expressibility of the set spei�ation no-tation allows developers to state relevant properties of the program state, while theanalyzability of the notation enables analysis plugins to verify that implementationsonform to their designs.1.5 ResultsIn an e�ort to evaluate how the Hob approah works in pratie, we have built aprototype implementation of the Hob framework and used this implementation tosuessfully verify a number of benhmark programs. This dissertation desribes myexperiene using the Hob system to implement and speify design information forthree programs: a simulation of water moleules; an implementation of an HTTP 1.1server; and an implementation of the popular Minesweeper game. The water simula-tion ontains 10 modules, 2000 lines of implementation and 500 lines of spei�ations.The HTTP server ontains 14 modules, 1200 lines of implementation, and 300 linesof spei�ations. The minesweeper implementation ontains 6 modules, 787 lines ofimplementation and 328 lines of spei�ations. While these appliations are relativelymodest in size (due in part to the di�ulty of translating appliations into the Hobimplementation language), they demonstrate that it is possible to suessfully ap-ply the Hob methodology for program veri�ation�in my experiene, it was neverneessary to verify more than one proedure at a time.The sets in the HTTP 1.1 server inlude sets of request headers, response headers,and sets that apture design information related to a server-side ahe. The sets inthe Minesweeper game inlude sets of hidden and exposed ells. These sets are imple-mented using linked heap data strutures and veri�ed using shape analysis tehniques.The design of the Hob implementation language permits the shape analysis to inspetjust the library modules that manipulate the linked data strutures rather than theentire program (whih would be infeasible using urrent shape analysis tehnologydue to salability issues).I was surprised to disover that abstrat set spei�ations ould express outward-looking user-relevant program properties. For instane, the web server's set spei�a-tions state that response headers are emptied between requests; that is, no responsewould ontain stale headers from the previous response. Also, in the minesweeperappliation, set spei�ations state that exposed ells are disjoint from mined ellsunless the game is over. To my knowledge, Hob is the �rst system that enablesdevelopers to state and verify program properties that are relevant to end users.23

1.6 LimitationsThe researh desribed in this dissertation and embodied in the Hob analysis tool hassome limitations whih arise from design deisions made early on in the projet's life-time. This setion disusses limitations in the Hob implementation and spei�ationlanguages and the annotation burden involved in speifying program behaviour.I designed the Hob implementation language to be syntatially similar to Javaat a statement level. I deided to use a ustom proedural implementation languageas a onvenient way to explore the automati veri�ation of data struture onsis-teny properties while avoiding inessential omplexities of a full-�edged programminglanguage. In partiular, I omitted ommon objet-oriented features suh as inheri-tane, dynami dispath, and objet-based enapsulation. In my experiene, it wasrelatively straightforward (if time-onsuming) to port Java ode to the Hob imple-mentation language. When omparing Java and Hob it is important to keep in mindthat Hob has two onstruts that approximately orrespond to Java's lasses: 1) for-mats are used to represent memory ells, and 2) modules are used to struture aprogram into its main onstituent parts. The stati module instantiation in Hob isless general than the dynami instantiation of lasses with methods in Java, but itenourages developers to express the stati arhiteture of an appliation and aidsveri�ability. Java programs built using stylized stati instantiation idioms would alsobe easier to analyze than arbitrary Java programs.Hob programs are spei�ed using set-based spei�ations. While I believe thatset-based spei�ations are quite appropriate for reasoning about program behaviour,ertain properties are not expressible in the Hob spei�ation language. For instane,developers annot state that a map data struture links partiular key and valueobjets. The use of a more expressive spei�ation language would permit developersto state and verify more detailed program properties. Suh a spei�ation language,however, would enable developers to write more detailed spei�ations whih ouldbe more unwieldy and therefore both harder to understand and more expensive toverify onformane against.While Hob an state and verify relationships between the set of keys and the set ofvalues in its interfae spei�ation language (for instane, no objet should be both akey and a value simultaneously), Hob annot state that a partiular key is related toa partiular value. That is, the Hob spei�ation language annot express relationsbetween heap objets. Its modelling of maps (e.g. hash maps) an therefore onlydisuss the set of objets whih at as keys and the set of objets whih at as values.Nevertheless, our experiene shows that many interesting data struture propertiesan be expressed using just the boolean algebra of sets. Suh desriptions may notbe full spei�ations of the behaviour of operations, but they do indiate importantpartial orretness properties, so I believe they make a useful trade-o� between theexpressive power and tratability of the analysis. I hose to expliitly omit integerand �oating-point arithmeti from the Hob spei�ation language.2 While many2 In [55℄, we desribe how to deide Boolean Algebra with Presburger Arithmeti; the Hobsystem's ore spei�ation language ould be extended to support BAPA.24

data struture onsisteny properties do depend on general integer and �oating-pointarithmeti, I believe that, in most ases, these properties an be handled as loalonsisteny properties, and therefore do not need to be expressed to lients. Notethat the set spei�ation language does not support sets of pairs or sets of sets, onlysets of uninterpreted elements. This is why it an be haraterized using the Booleanalgebra of sets and deided in elementary time [53℄ and in pratie often belongsto the quanti�er-free fragment that an be deided in non-deterministi polynomialtime.It is important to distinguish between Hob's set-based ommon spei�ation lan-guage, whih was designed to be less expressive and more tratable, and the spei-�ation languages inside the abstration modules, whih express data struture rep-resentation invariants and abstration funtions. Spei�ations that our inside ab-stration modules are not bound by the limitations of Hob's set-based spei�ationlanguage; analysis plugins may use arbitrarily powerful spei�ation languages forexpressing a module's internal properties. For example, the monadi seond-orderlogi used in the Bohne plugin an express reahability properties that are not evenexpressible in �rst-order logi. Monadi seond-order logi an therefore ertainlyexpress properties that are not expressible in terms of abstrat set spei�ations.Hob set spei�ations desribe properties of abstrat sets, whih are enapsulatedwithin program modules. Unfortunately, this modularization is not appropriate for allprograms. For instane, sometimes a data struture's enapsulation will be violatedfor performane reasons. Or a program's dominant deomposition may not orrespondto the module boundaries whih would be required for the modular analysis of apartiular data struture. The sopes onstrut addresses this issue to some extent,if the relevant onsisteny properties are set-based properties. However, sopes donot handle loal data struture invariants whih are ollaboratively maintained inmultiple plaes in a program's implementation.Finally, the need for program spei�ations imposes an annotation burden on thedevelopment proess. In our experiene, spei�ations may grow to as muh of 40%of the implementation size3. I feel that the overhead is not overly onerous beause thespei�ations provide additional value to developers. Program spei�ations serve asveri�ed design doumentation; any property stated in a spei�ation an automati-ally be heked throughout a program's lifeyle and, as long as developers ontinueto run the Hob veri�ation tool and ensure that it sueeds, the design informationwill never beome outdated.Despite these limitations, I believe that the approah embodied in the Hob systemis useful for verifying software design properties. The �rst two issues mentioned here,about limitations of the urrent implementation and spei�ation languages, ouldbe overome in future work. The enapsulation problem is real, but only appliesto a limited number of data strutures; even programs with unenapsulatable datastrutures may still ontain other data strutures whose onsisteny an be veri�ed.3To put this statisti in ontext, I sampled a number of C++ appliations, inluding AbiWord,Rosegarden and Inksape, and found that their header �les aounted for 19% to 28% to the appli-ation size, in terms of lines of ode. 25

Note that the partiality of the Hob approah allows it to still be helpful even if itannot solve the whole problem. While the annotation burden has traditionally beena problem with spei�ation-based approahes, I feel that developers will be quitewilling to write spei�ations if they �nd that these spei�ations are useful.1.7 ContributionsThe primary ontributions of this researh are 1) the identi�ation of a spei�a-tion approah based on abstrat sets as a suitable notation for expressing veri�ableprogram design information; and 2) the deployment of a range of existing and novelstati analysis tehniques to enable the salable automati veri�ation of arbitrarilypreise and sophistiated data struture onsisteny properties. This goal has, to thispoint, appeared to be ompletely beyond the reah of automated program analysistehniques�shape analyses, for instane, sale super-exponentially with the size ofthe program being analyzed, and there are no suessful reports of shape analysisbeing used on programs in the 1000-line range. This dissertation makes the followingontributions.� Spei�ation Approah: This dissertation proposes a set-based spei�a-tion approah whih enables developers to express data struture onsistenyproperties and verify that implementations onform to these properties. Thespei�ation language allows developers to state program properties in terms ofsets of heap objets.� Spei�ation Salability: Spei�ations tend to aumulate upwards in aprogram and often beome unmanageable (due to volume) at its top levels; weall this phenomenon spei�ation aggregation. This dissertation introduessopes and defaults, two novel onstruts that mitigate the spei�ation aggre-gation problem and help developers write more onise spei�ations, whih aretherefore less likely to be ontain errors. In the absene of sopes, individualspei�ation lauses may grow exponentially due to spei�ation aggregation.� Multiple Analysis Plugins: The approah desribed in this dissertationmakes it possible to apply multiple arbitrarily preise, arbitrarily narrow, andarbitrarily unsalable analyses in a general, salable way to verify sophistiatedset-based data struture onsisteny properties in sizable programs. To myknowledge, the Hob system is the �rst system to ombine results from di�erentstati analysis tehniques to verify detailed data struture onsisteny proper-ties.� Analysis and Veri�ation System: This dissertation presents our imple-mentation of the Hob program analysis and veri�ation system, whih enablesthe exploration of the ideas desribed above. It desribes the various Hob anal-ysis plugins and explains how developers an use these analyses to verify a rangeof data struture onsisteny properties.26

� Experiene: Finally, this dissertation presents our experiene using the Hobsystem to verify software design properties in several omplete programs rangingup to 2000 lines. Hob has been able to verify detailed onsisteny propertiesof individual data strutures, then use these properties to verify larger softwaredesign properties that involve multiple data strutures analyzed by di�erentanalyses.Note that the �rst two ontributions enable two orthogonal kinds of salability.Hob's spei�ation-based approah enables individual analysis plugins to draw validonlusions about a proedure without having to investigate the proedure's environ-ment. The spei�ation salability onstruts operate at the level of spei�ations.These spei�ations enable the analysis plugins to sueed; the spei�ation salabil-ity onstruts make it easier for developers to provide these spei�ations.1.8 StrutureThe remainder of this dissertation is strutured as follows. Chapters 2 through 4explain the Hob system from a user's perspetive. Chapter 2 desribes the Hobimplementation language. Chapter 3 desribes Hob's ommon set spei�ation lan-guage, shared by all analysis plugins, as well as the sopes and defaults spei�ationonstruts, whih enable developers to express rossutting parts of spei�ations inone plae (rather than sattered aross program spei�ations). Chapter 4 desribeshow developers an link implementations and spei�ations using Hob abstrationsetions. Chapter 5 starts to peek behind the senes and explains the basi obligationof Hob analysis plugins: essentially, they must show that an implementation satis�esits spei�ation, where the meaning of the spei�ation is given by the abstrationfuntion stated in the abstration setion. This hapter also explains how the Hobsystem ensures that all modules in a program are analyzed and how the analysis ofeah module is given the neessary external spei�ations. Chapter 6 desribes howone partiular Hob analysis plugin, the �ags plugin, works. Chapter 7 presents myexperiene using the Hob framework to verify data struture onsisteny propertiesfor a number of benhmark programs, inluding an implementation of the popularminesweeper game, a MIDI player, and an HTTP server. Chapter 8 presents relatedwork, and Chapter 9 onludes.

27

28

Chapter 2Hob Implementation LanguageHob modules have three setions: an implementation setion, a spei�ation se-tion, and an abstration setion. In this hapter we present the Hob implementationlanguage, whih is a simple module-strutured Java-like imperative language withreferenes and dynami objet alloation. The implementation language is one of theunifying omponents of our framework, sine all analysis plugins handle programswritten in the implementation language. Notable features of our language inludethe stati instantiation of modules (whih enables the spei�ation language to workwith a �nite number of sets) and the ability to speify di�erent �elds of objets indi�erent modules (formats), whih ensures that modules' private data remains privateeven di�erent modules share heap objets.2.1 Example: Doubly-Linked List ImplementationFigures 2-1, 2-2, and 2-3 present a pair of module delarations and a pair of moduleinstantiations in our implementation language. The �rst module, DLL, implements aset abstrat data type using a doubly-linked list. The seond module, KeyedObject,adds an integer key �eld to the Node type and implements a omparator, based onkey values, for Node objets. The example also instantiates CellList as a stati opyof DLL and KeyedObject as a stati opy of KeyedCell.2.1.1 Expliit module de�nitionsDevelopers may de�ne Hob modules either expliitly or by stati instantiation. Line 1starts the expliit delaration of the DLL module with the line impl module DLL. Ourexample also ontains (starting on line 85) an expliit delaration of the KeyedObjectmodule. Implementation modules ontain type and variable delarations as well asimperative ode, organized into a set of proedures.2.1.2 Stati module instantiationThe other mehanism for reating a module is to instantiate it, at ompile time, fromanother module. Stati instantiation reates a fresh opy of a pre-existing module;29

the new module shares no state with the old module. Lines 84 and 97 delare statiinstantiations of the DLL and KeyedObject modules. On line 84, the developer statesthat the program ontains a CellList module whih is an idential opy of the DLLmodule, exept that instanes of the Node type are to be replaed by instanes of the
Cell type. The CellList is therefore a doubly-linked list of Cell objets. Similarly,line 97 delares that the program ontains a KeyedCell module.In general, a stati module instantiation, e.g. impl module m = M with t <
T, delares that module m instantiates module M, substituting instanes of modulesor formats T for modules or formats t from the original delaration. Hob proessesstati instantiations by reating a separate internal opy of the instantiated modulewith the delared substitutions; this treatment is essentially maro expansion.2.1.3 Type and variable delarationsOur example delares the Node datatype in two parts using Hob's format onstrut.Formats allow di�erent modules to eah�independently�ontribute �elds to a data-type. The DLL module ontributes (on line 2) the next and prev navigation �eldsto the Node datatype, whih are used to form the tree struture. The KeyedObjectmodule then ontributes the key data �eld. Eah of these modules ats independentlyof other modules in adding �elds. Within the ode of the DLL module, only the nextand prev �elds are in sope. The key �eld is out of sope for ode belonging to the
DLL module and may not be aessed from that module.The format mehanism identi�es a �eld by its name and the name of the on-tributing module. This enables di�erent modules to use the same name for a �eldwithout on�its, whih is espeially useful in the presene of stati instantiation.Eah of the di�erent instantiations of a module will have its own opy of the �eldsthat it is ontributing.Note that the use of formats to enapsulate �elds, not objets, enables our analysisplugins to go beyond the ability of standard enapsulation systems to reason modu-larly about the heap: multiple modules an have pointers to the same objet (unlikein most other enapsulation systems) and yet still know that the �elds that they haveontributed to that objet are unmodi�ed by the other modules in the program. Theruntime system ompiles an objet's omplete type desription by aggregating all ofthe distributed type delarations; this aggregated desription is irrelevant to Hob'sstati analysis and invisible to the developer.Line 3 delares a root module variable for our doubly-linked list, whih enablesthe proedures in the module to aess the heap objets representing the list. TheHob runtime system initializes this variable to null upon program start, and thevariable exists for the lifetime of the program. However, only proedures belongingto the DLL module may aess this variable. The CellList instantiation reates adistint root referene, whih points to a Cell objet after substitution. Contrastglobal variables with loal variables, as delared for instane on line 52; loal variablesare alloated upon entry to their delaring proedure and exist only during thatproedure's lifetime. 30

2.1.4 ProeduresThe DLL module ontains proedures to remove and add an element from the doubly-linked list, a proedure to test an objet's membership, a proedure that returns the�rst element of the list and one that removes the �rst element of the list, a proedurethat tests list emptiness, and �nally a proedure to lear all elements from the list.This subsetion brie�y desribe eah proedure in the DLL module.Embedding information for analysis pluginsThe Hob system analyzes eah proedure in the program using an analysis plugin.Two of the analysis plugins in our system are the �ags plugin, whih we designed asa lightweight analysis for lient ode�ode that aomplishes tasks by invoking pro-edures in other modules�and the Bohne plugin, whih uses �eld onstraint analysisto verify ode that manipulates linked heap data strutures.Stati analysis tehniques an often bene�t from additional developer-providedannotations. The Hob implementation language ontains three ways for developersto embed information for an analysis plugin diretly in the program ode. We supportthe use of loop invariants, assert statements and assume statements. These meh-anisms have no run-time e�et. Instead, when it enounters an invariant, assert or
assume statement, the Hob analysis engine transmits the annotation to an analysisplugin.Beause loops potentially exeute an unbounded number of times and stati anal-yses are expeted to terminate in �nite time, the stati analysis of loops is alwayshallenging. Hob allows developers to provide loop invariants, whih help pluginse�iently reason about the behaviour of loops. Of ourse, many analyses are able toautomatially synthesize loop invariants from the proedure spei�ations and imple-mentations. Note that when loop invariant inferene tehniques do fail, it is generallyan open problem to e�etively ommuniate to the developer the reasons whih ausedthe inferene to fail.An assert statement ontains a fat whih the analysis engine must statiallyverify. This di�ers from the usual meaning of assert, whih asks the runtime envi-ronment to dynamially hek the validity of the assertion. We found that assertionswere a useful form of ommuniation between the developer and the analysis. Inpartiular, assertions allowed the developer to query the analysis plugin and disoverits abilities and limitations.An assume statement is another mehanism for developers to pass information toanalysis plugins. Unlike assert statements, whih ask a plugin to verify that a state-ment is true, assume statements tell an analysis plugin that a given fat holds (withoutveri�ation). Often, developers understand more about how a program works thana partiular analysis plugin an dedue; for instane, the developer may have somespei� domain knowledge about the problem domain. The ability to transmit thisdomain knowledge to an analysis plugin an then be leveraged by the analysis forit to guarantee a desired data struture onsisteny property. Eah analysis pluginmay aept a di�erent syntax for assumes, asserts, and loop invariants. Our example31

presents both the �ags (line 15) and the Bohne syntax (line 71) for these onstruts.
remove proedureThe remove proedure (lines 5-10) uses the prev and next pointers to remove thegiven objet from the linked list. First, remove handles the speial ase of removingthe root of the list by setting root to root.next if the element to be removed isat the root of the list. Next, if the given objet e has a non-null prev �eld, the
remove proedure sets e's predeessor's next �eld to e's suessor, and similarly with
e's suessor. Finally, the remove proedure ensures that the following invariant on
Node objets ontinues to hold: an objet is in the list if and only if its next and prev�elds are both non-null. Chapter 5 desribes this invariant, and other list invariants,in greater depth.
removeFirst proedureThe removeFirst proedure removes the �rst element (whih is pointed to by root)from the linked list and returns it to the aller. The simplest way to remove a givenelement from a list is to use the remove proedure, as we do on line 16. Note the useof the assume statement on line 15.
addLast proedureThe addLast proedure navigates to the end of the linked list and adds the givenobjet p to the end of the list. The addLast proedure �rst handles the speial aseof an empty list on lines 21�24. Next, addLast delares a loal variable r whih ituses to navigate to the end of the list. The analysis of this module uses the Bohneplugin in a mode that requires the developer to provide loop invariants, so lines 29�37ontain a loop invariant whih is transmitted verbatim to the analysis plugin. Notethat the while loop in the clear proedure did not require a loop invariant; the�ags plugin used for that proedure an automatially infer loop invariants. Finally,one the variable r points to the end of the linked list, addLast sets the next �eldof r to the given objet p, the prev �eld of p to r and the next �eld of p to null,preserving the list invariant on null-ness of �elds whih we've previously mentionedin the desription of the remove proedure.
clear proedureThe clear proedure iterates through the elements of the list and removes them oneby one. The removeFirst and clear proedures both make alls to other proeduresin this module. Note that the target of these alls is known at ompile-time, as theHob implementation language does not inlude inheritane or dynami dispath.32

Other proeduresThe contains proedure iterates through the list looking for the given element. Notethat contains uses assert statements. The getFirst proedure simply returns theroot of the linked list, whih is the �rst element of the list. Similarly, the isEmptyproedure tests root against null; equality indiates that the list is urrently empty.2.1.5 Exeuting Hob programsOne a developer has produed a Hob program, he or she may want to exeutethis program. We have implemented two ways for developers to test and exeuteHob programs: an interpreter and a soure-to-soure translator into Java. Both ofthese tools use the Hob infrastruture to reate an abstrat syntax tree from thesoure ode. The interpreter diretly exeutes the abstrat syntax tree, whereas theompiler performs a simple translation of the abstrat syntax tree into Java soureode. The primary tasks of the Hob-to-Java ompiler are to ollet the distributedtype delarations into traditional Java-style lass delarations and to provide Javastubs for Hob library alls.2.2 Implementation Language GrammarFigure 2-4 presents the grammar for our ore implementation language. An imple-mentation module ontains format delarations, module variables, and proedures.A format (format) desribes a module's ontribution to a onrete type. A modulevariable (var) ontains a pointer to a heap objet; module variables serve as persis-tent roots of data strutures. A proedure (pro) ontains a sequene of standardimperative statements.The Hob implementation language's grammar has a built-in extension point: the
A prodution allows developers to speify assertions, whih are to be statially hekedby analysis plugins, assumes, whih are to be assumed by analysis plugins, and loopinvariants. The exeutable ode generator always ignores assertions, but eah analysisplugin must hek that all assertions an be guaranteed to hold at ompile-time.2.3 Operational SemantisFigure 2-5 presents operational semantis for a simpli�ed version of the Hob imple-mentation language. For the purposes of the operational semantis, we assume thatstrutured ode has been onverted to a ontrol-�ow graph by ompilation and thatexpressions have been normalized into three-address ode. These semantis enable usto preisely desribe the task of an analysis plugin. The state of the heap is a pair
〈s, H〉, where s is a all stak of pairs [p, r] and H is the garbage-olleted heap. Theall stak s onsists of program ounters p and ativation reords r. Note that theprogram ounter ontains stati information about the program point: p(p) points33

1 impl module DLL {
2 format Node { next : Node; prev : Node; }
3 var root : Node;
4

5 proc remove(e : Node) {
6 if (e==root) root = root.next;
7 if (e.prev!=null) e.prev.next = e.next;
8 if (e.next!=null) e.next.prev = e.prev;
9 e.next = null; e.prev = null;

10 }
11

12 proc removeFirst() returns n : Node {
13 Node nn = root;
14 // assume statement is given directly to static analysis
15 assume "(nn’ in Content) & card(nn’) = 1";
16 DLL.remove (nn);
17 return nn;
18 }
19

20 proc addLast(p : Node) {
21 if (root==null) {
22 root = p; p.next = null; p.prev = null;
23 return;
24 }
25

26 Node r = root;
27 // first three lines are relevant to loop;
28 // remaining lines are general list invariants that we preserve
29 while "p ~= null & r ~= null & p = ’p & ~(p : ’Content) &
30 next p = null &
31 (rtrancl (lambda v1 v2. next v1 = v2) root r) &
32 (ALL v. ~(next v = p) & ~(next v = root)) &
33 (ALL v. (v : ’Content) <=>
34 rtrancl (lambda v1 v2. next v1 = v2) root v) &
35 (ALL x. x ~= null &
36 ~(rtrancl (lambda v1 v2. next v1 = v2) root x) >
37 ~(EX e. e ~= null & next e = x) & (next x = null))"
38 (r.next != null) {
39 r = r.next;
40 }
41 r.next = p; p.prev = r; p.next = null;
42 } Figure 2-1: Doubly-linked list implementation, part 134

43 proc clear() {
44 bool e = DLL.isEmpty();
45 while (!e) {
46 Node q = DLL.removeFirst();
47 e = DLL.isEmpty();
48 }
49 }
50

51 proc contains(e : Node) returns b : bool {
52 Node n = root;
53 while "e ~= null &
54 (rtrancl (% x y. next x = y) root n) &
55 (ALL x. (x : ’Content) <=>
56 rtrancl (% v1 v2. next v1 = v2) root x) &
57 (ALL x. next x = root > root = null) &
58 ~((rtrancl (% x y. next x = y) root e) &
59 (rtrancl (% x y. next x = y) (next e) n)) &
60 (ALL x. x ~= null &
61 ~(rtrancl (lambda v1 v2. next v1 = v2) root x) >
62 ~(EX e. e ~= null & next e = x) & (next x = null))"
63 (n != null) {
64 if (n == e) {
65 assert "rtrancl (% v1 v2. next v1 = v2) root e";
66 return true;
67 } else {
68 n = n.next;
69 }
70 }
71 assert "~(rtrancl (% v1 v2. next v1 = v2) root e)";
72 return false;
73 }
74

75 proc getFirst() returns e : Node {
76 return root;
77 }
78

79 proc isEmpty() returns rv:bool {
80 return root == null;
81 }
82 }
83

84 impl module CellList = DLL with Node < Cell;Figure 2-2: Doubly-linked list implementation, part 235

85 impl module KeyedObject {
86 format Node { key:int; }
87

88 proc equals(a : Node; b : Node) returns rv:bool {
89 return a.key == b.key;
90 }
91

92 proc lessthan(a : Node; b : Node) returns rv:bool {
93 return a.key < b.key;
94 }
95 }
96

97 impl module KeyedCell = KeyedObject with Node < Cell;Figure 2-3: Formats example
P rog ::= M∗

M ::= impl module m {F ∗V ∗P ∗} | impl module m = M with T <T [,T <T]∗

F ::= format tid {Fd∗}Fd ::= f : T;
V ::= var v : T;
P ::= [private] pn(fn : T[; fn : T]∗)[returns r : T] { Ld∗ St∗ }

Ld ::= T l;
St ::= {St} | El=E; | [m.] pn(E) | return [E] |if (B) then St1 else St2 | while [A] (B) St |assert A | assume A
El ::= l | l.f | v
E ::= El | new t | null | [m.]pn(E[, E]∗)
T ::= int | bool | �oat | string | har | byte | tid
A − analysis plugin-spei� syntax for asserts, assumes and loop invariantsFigure 2-4: Grammar for Hob implementation language

36

Statemen t T ransition Constrain ts

p: x = null ; 〈[p, r] ◦ s, H ⊎ {〈r, x, _ 〉}〉 →
〈[p′, r] ◦ s, H ⊎ {〈r, x, null 〉}〉

p: x = y; 〈[p, r] ◦ s, H ⊎ {〈r, x, _ 〉, 〈r, y, o 〉}〉 → type(p, x) = type(p, y)
〈[p′, r] ◦ s, H ⊎ {〈r, x, o 〉, 〈r, y, o 〉}〉

p: x = new t ; 〈[p, r] ◦ s, H ⊎ {〈r, x, _ 〉}〉 → o fresh

〈[p′, r] ◦ s, H ⊎ {〈r, x, o 〉}〉 type(p, x) = t
p: x = y.f; 〈[p, r] ◦ s, H ⊎ {〈r, x, _ 〉, 〈r, y, id 〉, 〈mo d (p), id , f, o 〉}〉 → t = type(p, y) ∧ hasField(mo d (p), t, f) ∧

〈[p′, r] ◦ s, H ⊎ {〈r, x, o 〉, 〈r, y, id 〉, 〈mo d (p), id , f, o 〉}〉 type(p, x) = fieldType(mo d (p), t, f)
p: x.f = y; 〈[p, r] ◦ s, H ⊎ {〈r, x, id 〉, 〈mo d (p), id , f, _ 〉, 〈r, y, o 〉}〉 → t = type(p, x) ∧ hasField(mo d (p), t, f) ∧

〈[p′, r] ◦ s, H ⊎ {〈r, x, id 〉, 〈mo d (p), id , f, o 〉, 〈r, y, o 〉}〉 fieldType(mo d (p), t, f) = type(p, y)
p: x = v; 〈[p, r] ◦ s, H ⊎ {〈r, x, _ 〉, 〈mo d (p), v, o 〉}〉 → type(p, x) = varType(mo d (p), v)

〈[p′, r] ◦ s, H ⊎ {〈r, x, o 〉, 〈mo d (p), v, o 〉}〉
p: v = x; 〈[p, r] ◦ s, H ⊎ {〈r, x, o 〉, 〈mo d (p), v, _ 〉}〉 → varType(mo d (p), v) = type(p, x)

〈[p′, r] ◦ s, H ⊎ {〈r, x, o 〉, 〈mo d (p), v, o 〉}〉
p: goto p1; 〈[p, r] ◦ s, H〉 → 〈[p1, r, m], H〉

p: if (B) goto p1; 〈[p, r] ◦ s, H〉 → 〈[p1, r, m], H〉 eval (H, B) = true

p: if (B) goto p1; 〈[p, r] ◦ s, H〉 → 〈[p′, r] ◦ s, H〉 eval (H, B) = false

p: x = m2.proc(a); 〈[p, r] ◦ s, H ⊎ {〈r, a, id〉}〉 p′′
en try p oin t for m2.proc

→ 〈[p′′, r′] ◦ [p′, r] ◦ s, r′
fresh

H ⊎ {〈r, a, id〉 ⊎ hPro cSetup (r′, m2.proc, id)} a rgT yp e (m2.proc) = t yp e (r, a)
p: return x; 〈[p, r′] ◦ [p′, r] ◦ s, H ⊎ {〈r′, x, idx〉,

〈r′, retval, X〉}〉
→ 〈[p′, r] ◦ s, H ⊎ {〈r, X, idx〉} \ {〈r′, _ , _ 〉}〉where p′ satis�es mod(()p′) = mod(p) ∧ p(()p′) = su(p(()p)) in the ontrol-�ow graph,and:

type(p, x) = delared format of loal variable x in p's ontext
varType(mod(p), v) = delared format of variable v of module mod(p)

hasField(mod(p), t, f) = true i� format t in module mod(p) delares �eld f

fieldType(mod(p), t, f) = delared format of �eld f in format t of module mod(p)
hProcSetup(r′, m2.proc, id) = {〈r′, retval, x〉, 〈r′, fn, id〉, 〈r′, ℓ1, null〉, . . . , 〈r′, ℓn, null〉}

argType(m2.proc) = delared type of formal of m2.procFigure 2-5: Operational semantis for implementation languageto the ontrol-�ow graph node to be exeuted, while mod(p) indiates the module towhih p(p) belongs.The heap ontains three types of tuples. These tuples trak module variableontents, �eld ontents, and loal variable ontents. We write that H ontains triples
〈m, v, o〉 to indiate that module variable v in module m points to heap objet o.The tuple 〈m, o1, f, o2〉 ∈ H means that the �eld o1.f, enapsulated in module m,points to objet o2. Finally, the triple 〈r, ℓ, o〉 ∈ H means that the ativation reord
r ontains a loal variable ℓ pointing to heap objet o.In the Hob implementation language, module variables are always initialized to adefault value appropriate to their type. Numeri variables are initialized to 0, boolvariables to false, string variables to the empty string, and referene variables to
null. Chapter 4 will desribe how Hob's stati analyses enfore the Hob stationarityondition by using these known initial values for onrete variables to prevent aprogram from arrying out unintended modi�ations to its abstrat state. This setstationarity ondition is entral to Hob's ability to arry out modular veri�ation.37

2.4 DisussionWe hose to design our own implementation language to enable the best possible �tbetween our spei�ations and implementations. Our use of a ustom implementationlanguage enabled us to experiment with language design issues.Our ustom implementation language allowed us to experiment with the formatonstrut for distributed type delarations. We found that formats aided the veri�a-tion of our benhmark programs by enabling the modular analysis of programs evenwhen these programs share objets between di�erent modules.The Hob implementation language requires modules to be statially instantiated.Beause of stati instantiation, Hob programs ontain a �nite number of modules. Thedesign of Hob's spei�ation language then ensures that eah module ontains a �nitenumber of spei�ation-level sets. This implementation language feature simpli�edthe spei�ation language, sine it implies that the spei�ation language only needsto work with a �nite number of sets.The tradeo� involved in using our own implementation language was that we hadto port benhmark programs to our Hob language. We felt that this prie was notoverly onerous, espeially given that we also had to provide program spei�ations.One design deision that was quite useful in the porting proess was the hoie ofa subset of the Java statement syntax for Hob implementation-language statements.This deision also simpli�ed the ompilation of Hob benhmarks to Java soure odefor exeution. While our implementation language is a Java subset at the statementlevel, the Hob approah provides developers with a di�erent high-level struturingmehanism than Java does. In partiular, the Hob implementation language expetsprograms to be strutured as a olletion of modules (and, for spei�ation purposes,sopes, as desribed in Chapter 3.4.2). Although tehniques for writing spei�ationsfor Java programs do exist [18℄, we felt that it was appropriate for the Hob system touse a simpler and more diret spei�ation approah whih avoids the issues involvedin reasoning about spei�ations in the presene of exeptions and inheritane.2.4.1 Impliations of enapsulating �eldsEnapsulation is ritial to any modular veri�ation e�ort, sine it onverts soundreasoning about a part of the program into sound reasoning about the whole programby showing that the rest of the program does not a�et the property of interest. Un-like many standard enapsulation mehanisms [15, 11℄, our format mehanism worksby enapsulating �elds, not objets. Beause only the delaring module may aessthe �elds that it has ontributed to an objet, formats enable analysis plugins toreason about the ontents of a �eld by analyzing only the module that de�nes the�eld. In partiular, analyses need not analyze any other modules that may aessthe same objets, even though the modules may mutate shared objets. Our typesystem guarantees that aesses to shared objets operate on disjoint parts of theseobjets, so that there is no interferene between modules. Formats therefore enablemodules to share objets and yet do not prevent the modular analysis of the modulesthat do share objets. Distributed type delarations were �rst introdued in [14℄,38

and AspetJ's intertype delarations allow developers to write distributed type de-larations today. Distributed type delarations are learly useful in the ontext ofaspet-oriented programming, sine they enable developers to assoiate data withthe program ode, whih an be sattered around arbitrarily for aspet-oriented pro-grams. To our knowledge, formats are a novel appliation of the idea of distributedtype delarations to the modular veri�ation problem.2.4.2 Impliations of stati instantiationTypially, one of the most di�ult issues involved in reasoning about programs isin reasoning about how they aess, and modify, a statially unbounded heap; some�nitization of the program state is required. We felt that the Hob system had tosupport reasoning about unbounded heaps, sine data struture implementations aretypially engineered to work with unbounded numbers of objets. Hob therefore al-lows developers to use an unbounded number of data objets in programs. The statiinstantiation mehanism, however, enourages developers to struture their programsso that a �nite number of named sets su�es to reason about the program, therebysimplifying the task of stating and verifying data struture onsisteny properties.In partiular, the stati instantiation mehanism enables developers to de�ne datastrutures one and to use these data strutures as needed, without foring imple-mentations that require the spei�ation language to handle an unbounded numberof sets.In the Hob system, program modules must be either expliitly delared or stati-ally instantiated. Eah stati instantiation reates exatly one additional programmodule. The total number of program modules in a Hob program is therefore �-nite and known at ompile-time. Furthermore, eah module's spei�ation may onlydelare a �nite number of sets. Hob programs therefore have a �nite number ofspei�ation-level sets, and eah set in the program has a statially determined name,whih is assigned by the developer. The set spei�ation language enables analysisplugins to verify that developer-provided onstraints on named sets ontinue to holdthroughout the program's exeution and that proedures arry out hanges to setmemberships as stated in their spei�ations.While the Hob system bounds the number of sets, it does not bound the numberof objets in eah set. Modules may reate arbitrary data strutures on the heap.But they may only speify design-level properties for a �nite number of sets, wherethese sets are somehow related to the data strutures on the heap.As an example, onsider a program whih proesses a sequene of requests andassoiates a response�in the form of a set of objets�to eah request. This programould be implemented in the Hob implementation language, but the spei�ationwould not be able to diretly represent the set of response sets. One workaround isto fous attention on only one response set at a time.Spei�ation-level sets may have a statially unbounded number of members, andthe Hob framework gives analysis plugins omplete latitude in assigning objets tosets. Our Hob modular veri�ation approah sueeds in part beause analysis plu-gins never need to know about how other analysis plugins assign membership for39

their sets. In the Hob system, eah plugin is only responsible for reading set spe-i�ations for external modules, and does not need to inspet the external modules'implementations.

40

Chapter 3Hob Spei�ation LanguageIn this hapter we explain how developers an speify data struture onsistenyproperties for the Hob system to verify. Hob supports several di�erent types ofspei�ations, desribed below.Proedural (loal) spei�ations. At the most basi level, developers mayprovide interfaes for proedures in terms of preonditions and postonditions.The Hob system allows developers to provide this information in an abstrat setspei�ation language. Developer-provided abstration setions onnet theseabstrat set spei�ations with the onrete implementations we desribed inChapter 2.Spei�ations of global properties. Hob is also able to verify global datastruture onsisteny properties. Global data struture onsisteny propertiesrelate states of di�erent program modules. For instane, modules A and Bmay maintain sets that are always disjoint (exept possibly while A and B areexeuting). Global properties therefore enable developers to state and verifyrelationships between parts of a program analyzed using very di�erent teh-niques. It is theoretially possible to manually embed these properties intoproedure spei�ations. However, suh a manual embedding would impose aheavy burden on the developer and greatly a�et the maintainability of programspei�ations. The Hob system therefore also supports two higher-level meha-nisms that help developers state and verify these global onsisteny properties:sopes and defaults. These mehanisms do not impose any additional require-ments on the spei� analyses used by the Hob system; instead, Hob desugarsthese mehanisms into loal spei�ations.Other types of spei�ations. The Hob system relates the abstrat set spei-�ations with onrete program states using abstration funtions and represen-tation invariants. For instane, a linked list module may export a set Contentrepresenting the objets in the linked list, that is, the objets reahable fromthe root of the linked list through next �elds. These abstration funtions andrepresentation invariants are an additional form of spei�ations whih are visi-41

ble exlusively within their de�ning modules. Chapter 5 desribes these internalinvariants in more detail.This hapter will disuss the spei�ation language for loal and global properties.Both of these properties use formulas in the boolean algebra of sets to desribe desiredproperties of the abstrat program state.3.1 Example: Doubly-Linked List Spei�ationFigure 3-1 ontains a omplete example of a spei�ation for the doubly-linked list
DLL, whih we presented earlier in Figures 2-1, 2-2, and 2-3. Figure 3-1 also presentsa stati instantiation of the DLL list spei�ation module into a spei�ation for the
CellList module.In general, modules ontain delarations for 1) program ode and 2) programdata. Chapter 2 desribed how implementation modules ontain proedure imple-mentations (written in the Hob imperative language) and onrete global variables.Spei�ation setions ontain analogous delarations for proedure spei�ations andabstrat spei�ation variables.3.1.1 Spei�ation module de�nitions and instantiationsSpei�ation setions of Hob modules, like implementation setions, an ontain eitherexpliit module de�nitions or stati module instantiations. Line 1 delares that thespei�ation of module DLL follows, and line 37 delares that module CellList is astati instantiation of the DLL module whih ontains Cell objets rather than Nodeobjets.3.1.2 Spei�ation variable de�nitionsHob spei�ation setions desribe the abstrat state of the module using spei�ationvariables. These spei�ation variables an be either sets or boolean variables. Hob'sset-typed spei�ation variables do not exist at runtime. Instead, they are used exlu-sively in module spei�ations to abstratly desribe the ontents of data strutures(as sets of objets) and hide implementation-level issues of data representation. Line3 delares the Content spei�ation variable, whih ontains a set of Node objets.(Line 2 informs the spei�ation parser that the Node type will be used in this mod-ule's spei�ations; implementations of DLL will use the format onstrut to de�nethe Node type.) Other modules may referene this Content set as DLL.Content, andthe stati instantiation on line 37 reates set named CellList.Content. For mostmodules, abstrat boolean variables are linked to onrete boolean variables via theidentity map.The spei�ation setion does not inlude any information on the onrete meaningof the abstrat sets that it uses. It is the sole responsibility of the abstration setionto provide a de�nition for a module's abstrat sets (by relating onrete program42

states to abstrat sets). Our Content set, for instane, is de�ned in its abstrationsetion to be the set of objets reahable from the root module variable through next�elds. Sine this de�nition is ompletely irrelevant to any lients of the DLL module,the Hob system hides a module's set de�nitions outside that module.3.1.3 Proedure de�nitionsThe DLL spei�ation module primarily ontains proedure spei�ations for the
remove, removeFirst, addLast, clear, contains, getFirst, and isEmpty pro-edures. Analysis plugins are responsible for verifying that eah proedure's imple-mentation onform to its spei�ation. Proedure spei�ations ontain a requireslause onstraining the states in whih it is legal to all a proedure, a modifieslause giving the sets whih are potentially modi�ed in the proedure and its transi-tive allees1, and an ensures lause guaranteeing ertain onstraints on the programstate upon return from the proedure. We desribe eah proedure spei�ation inturn.
remove proedureThe remove proedure removes a given objet from the set maintained by this module.It requires that the objet already belong to the set and guarantees that the objetis no longer in the set upon return. More preisely, any suessful all to remove willrequire that, prior to the all, e must be non-null and must belong to the Contentset. The proedure spei�ation also states that remove modi�es the Content set andthat the set Content’, whih denotes Content upon return from remove, ontainsthe objets in Content minus the e parameter.Our spei�ation language treats proedure parameters as sets. If a parameterontains null, then we represent it with the empty set, and if it points to a heapobjet, then we represent it by a set with ardinality 1. Therefore, the onstraint
card(e)=1 in the requires lause ensures that e is non-null.
removeFirst proedureFrom the set spei�ation point of view, the removeFirst proedure piks an arbi-trary element from the nonempty Content set, removes it, and returns it to the aller.More preisely, the preondition card(Content) >= 1 states that Content must benonempty; the postondition card(n’)=1 ensures that the return value is not null;and Content’ = Content n’ states that the Content set upon return is the sameas the Content set upon entry minus the removed objet n, and that the objet nbelonged to Content prior to the all to removeFirst. Note that the set spei�ationfor the removeFirst proedure does not speify that the return value n was the �rstelement of the list. Our set spei�ation abstrats away from suh details.1While the Hob analysis tool requires proedures to delare sets modi�ed in transitive allees in
modifies lauses, a simple preproessor an ollet sets modi�ed in transitive allees and add themto modifies lauses. 43

addLast proedureThis proedure adds the parameter p to the Content set. The spei�ation states thatprior to a legal all to add, the parameter n must be non-null (card(n)=1), and that
n must not belong to Content. The spei�ation also delares that this proeduremodi�es only the Content set. Finally, the spei�ation delares that, upon returnfrom add, the set Content’, whih denotes the state of Content after returning from
add, ontains the objets initially in Content plus the given objet n. One again,note that the order of elements of the linked list is abstrated at the level of the setspei�ation.
clear proedureThe clear proedure modi�es the Content set by removing all elements from thisset. In partiular, the postondition states that Content is empty upon return:
card(Content’) = 0.Other proeduresThe contains proedure presents the use of boolean return values in spei�ations.Given a non-null e parameter, contains returns true if and only if e is in the Contentset. Note that this proedure does not modify any abstrat state. The getFirstproedure returns an element belonging to the Content set. The isEmpty proedureis useful for guarding alls to proedures that require Content to be nonempty.3.2 Example: Global Properties (Sopes)Setion 3.1 explained how the Hob system allows developers to state spei�ations forprogram modules. These spei�ations enable developers to state requires, modi�esand ensures lauses for a single proedure at a time.3.2.1 A global invariantSome program properties involve sets belonging to multiple modules. Consider threemodules, Worker, Inbox and Outbox. The Worker module maintains a set of jobs
Worker.Jobs, while the Inbox module maintains a set of input jobs Inbox.Input andthe Outbox module maintains a set of output jobs Outbox.Output. These modulesneed to work together to preserve the following invariant I:

I: Worker.Jobs = Inbox.Input + Outbox.OutputThe Worker module guarantees that the invariant is preserved by properly oordi-nating updates to the Jobs set with alls to the Inbox and Outbox modules. The�rst responsibility of the analysis, in terms of verifying the invariant, is therefore toverify that the proedures in the Worker module preserve the invariant (and that theinvariant holds in the program's initial state). Note that Worker may temporarily44

1 spec module DLL {
2 format Node;
3 specvar Content : Node set;
4

5 proc remove(e : Node)
6 requires card(e)=1 & (e in Content)
7 modifies Content
8 ensures (Content’ = Content e);
9

10 proc removeFirst() returns n:Node
11 requires card(Content)>=1
12 modifies Content
13 ensures card(n’)=1 & (Content’ = Content n’) & (n’ in Content);
14

15 proc addLast(p : Node)
16 requires card(p)=1 & not (p in Content)
17 modifies Content
18 ensures Content’ = Content + p;
19

20 proc clear()
21 modifies Content
22 ensures card(Content’) = 0;
23

24 proc contains(e : Node) returns b:bool
25 requires card(e) = 1
26 ensures (b’ <=> (e’ in Content));
27

28 proc getFirst() returns e:Node
29 requires card(Content)>=1
30 ensures card(e’)=1 & (e’ in Content);
31

32 proc isEmpty() returns rv:bool
33 ensures rv’ <=> (card(Content) = 0);
34 }
35

36 spec module CellList = DLL with Node < Cell;Figure 3-1: Doubly-linked list spei�ation
45

violate the invariant; our analysis simply needs to verify that the invariant is restoredupon exit from Worker.Beause the design of the Worker, Inbox and Outbox modules relies on the Workermodule to properly oordinate aesses to the Inbox and Outbox modules, any di-ret alls to Inbox and Outbox may ause the invariant to be permanently violated.Beause only the modules Worker, Inbox and Outbox may diretly modify the setsinvolved in I, external modules an violate the invariant only by alling Worker,
Inbox or Outbox. The seond responsibility of the analysis is therefore to prohibitdiret alls to Inbox and Outbox; all alls to Inbox and Outbox must go through
Worker.In summary, to prove that invariant I holds, the Hob system needs to verify thatthe invariant holds initially, that the Worker module preserves the invariant, andthat alls to Inbox and Outbox all originate from the Worker module. Together,these onditions enable an indution on program traes whih permits the analysisto safely onlude that I holds upon eah entry to proedures in the Worker module.
3.2.2 Speifying global invariantsMore generally, the Hob system needs the following (developer-supplied) informationto attempt to verify any invariant I: a set of modules where I may temporarilybe violated; the set of exported modules whih are responsible for ensuring thatthe invariant holds upon exit; and (of ourse) the invariant I itself. The developerexpresses this information by speifying a sope.Figure 3-2 presents the de�nition of our example sope. Line 1 states that thesope is named W. Line 2 of the sope de�nition states that Worker, Inbox and
Outbox are the modules of sope W; the invariant may be temporarily violated insidethese modules. Line 3 delares that the sope W exports the Worker module. Thisdelaration instruts the Hob system to assume that the sope invariant holds uponentry to Worker and to show that the invariant is always ensured upon exit from
Worker. Only modules that belong to the sope may invoke proedures in the non-exported Inbox and Outbox modules of the sope. Line 4 states the invariant itselfusing the invariant keyword.Figure 3-3 illustrates the sope W and a module whih alls W. In our example, theinvariant I may be temporarily violated in the Inbox, Outbox and Worker modules.In other words, the sope W enapsulates these modules; we say that these modulesbelong to the sope. The Worker module ensures that the invariant holds upon exitfrom its proedures, so the sope W exports Worker. The sope invariant states thatthe set of jobs Worker.Jobs is equal to the union of the sets Inbox.Input and
Outbox.Output. Note that Figure 3-3 also presents an extra module, Server, whihinvokes a proedure inside sope W from outside the sope. The Server module mayonly all the exported Worker module and not the Inbox or Outbox modules.46

1 scope W {
2 modules Worker, Inbox, Outbox;
3 exports Worker;
4 invariant Worker.Jobs = Inbox.Input + Outbox.Output;
5 } Figure 3-2: Sope invariant example

Figure 3-3: Illustration of sopes example
47

3.2.3 Verifying global invariantsWe next disuss how the Hob system establishes whether or not a sope invariantholds. The Hob system heks that I holds in the initial state of the program.When verifying the sope's exported proedures, the Hob system appends the sopeinvariant to the preonditions and postonditions of those proedures. By onjoiningthe invariant to postonditions of exported proedures, Hob ensures that exportedmodules meet their responsibility of ensuring that sope invariants hold when exitinga sope. When a aller outside the sope invokes an exported proedure, the aller isresponsible for ensuring that the exported proedure's preondition holds. However,the Hob system does not require that external allers show that the invariant holds.Beause Hob heks sope invariants upon exit from a sope and beause Hob heksthat I holds in the program's initial state, programs may safely assume that theinvariant holds whenever entering the sope.Note that sope invariants are not atually appended to preonditions and post-onditions; in partiular, the Hob system an hide sope invariants from alling pro-edures. Neither the analysis system nor the developer need to expliitly write out asope invariant outside the sope.3.2.4 Spei�ation aggregationConsider a program whih maintains an invariant I. Without the sope invariantmehanism, the developer would have to expliitly inlude the invariant I through-out the preonditions and postonditions of the entire program (exept for when itis temporarily violated). We all this the spei�ation aggregation problem. Spe-i�ation aggregation auses a program's top-level modules to aumulate invariantsfrom all of its worker modules. We expet that the number of invariants would growroughly linearly with the size of the program, so the total annotation burden wouldgrow quadratially aross the program.In this ase, the sopes mehanism solves the spei�ation aggregation problem byautomatially onjoining the invariant I to the appropriate set of exported modules.Beause the Hob system automatially onjoins I at the appropriate points in theprogram, the developer only needs to state I one, in the sope delaration, ratherthan throughout the text of the program. This replaes the quadrati number of an-notations woven throughout the program text (namely, the number of invariants timesthe number of proedures) by a linear number of annotations (sine eah invariant isonly stated one, the overall annotation burden due to invariants is linear).The defaults mehanism enables developers to give names to properties; defaultsould be used to simulate part of the funtionality of the sopes mehanism andwould somewhat mitigate the spei�ation aggregation problem. However, sopes,when appliable, have two advantages over defaults: 1) sope invariants do not needto be expliitly added to preonditions and postonditions outside the sope (whihredues the burden on analysis plugins); and 2) sopes at as a program struturingmehanism, in that they enable developers to forbid alls to the interior of a sope.The Hob system properly handles reentrant alls in the presene of sopes. A48

reentrant all ours when a module inside a sope alls outside the sope, and theallee subsequently alls bak into the sope. Hob requires that sope invariants holdat reentrant all sites, and assumes that they hold upon return.3.3 Example: Global Properties (Defaults)Sope invariants are program properties that hold in most program states. In ourweb server benhmark, the Config module manipulates on�guration data for thewebserver and maintains a boolean spei�ation variable ready, whih is true assoon as the module has been initialized and throughout most of the program's exe-ution. Unfortunately, sine the variable ready is false until the Config module hasbeen initialized, ready does not hold in the program's initial state. Sope invari-ants, however, must be true initially, so ready is not a suitable sope invariant. Wetherefore invented the default mehanism for properties that hold in many di�erentprogram states and yet are not suitable for use as sope invariants. Defaults andsopes work well together to enable developers to onisely and aurately speifyprogram properties.Developers speify defaults by giving three piees of information to the Hob sys-tem: a set of proedures to whih the default is appliable; a name for the default;and the lause to be applied. Hob uses the notion of a pointut to speify the regionwhere the default is to apply; a pointut simply names (syntatially) the proe-dures or modules to whih the default should apply. Proedures may use a default'sname for �ne-tuning of its appliability: if a proedure does not need a partiulardefault, then the proedure an suspend the default. If a default is appliable to aproedure, then Hob onjoins the default's lause to the proedure's preondition orpostondition, as spei�ed in the pointut.Figure 3-4 presents a pair of defaults drawn from our web server example. The
StringTokenizer module (not shown) maintains a spei�ation variable S. The de-fault I (for `initialized') states that the ready boolean variable is true at all preon-ditions exept for those in init proedures (pointut lause not proc *.init())and exept before the proedure add in module HostList (pointut lause not proc
HostList.add(). The default S states that the StringTokenizer.S set is emptyat all preonditions of proedures in the Config module. Note also that the initproedure expliitly suspends the I default. In this partiular ase, the suspend andthe default pointut have the same e�et, and the developer may freely hoose onemehanism or the other (or both).3.4 Spei�ation Language GrammarThis setion presents the Hob spei�ation language grammar and the sopes anddefaults extensions to the Hob spei�ation language. The ore spei�ation languageuses formulas of the boolean algebra of sets (with ardinality onstraints) for requiresand ensures lauses for proedures, whih are organized into modules. Hob represents49

1 spec module Config {
2 specvar ready:bool;
3

4 default I : pre(not proc *.init() && not proc HostList.add()) = ready;
5 default S = card(StringTokenizer.S) = 0;
6 proc init(argv:string[]) suspends I requires not ready
7 modifies StringTokenizer.S, Mimetypes.init, ready
8 ensures ready’;
9 proc getPort() returns p:int ensures true;

10 } Figure 3-4: Defaults examplethe abstrat state of a module's enapsulated data strutures using spei�ation-levelsets.3.4.1 Core spei�ation languageIn this setion we desribe Hob's set-based spei�ation language. Beause all analy-ses ensure that implementations onform to spei�ations expressed in this spei�a-tion language, Hob's spei�ation language enables di�erent analyses to ommuniatein terms of a ommon set of program properties. Our ore spei�ation language al-lows developers to express spei�ations at the level of proedures.Figure 3-5 presents the omplete syntax for the ore module spei�ation lan-guage. A spei�ation module onsists of type and set delarations, proedures, andmodule spei�ation-level invariants. Type delarations (format t) delare the typeswhih will be used in set delarations and proedure parameters. The set delara-tions (specvar S) name the sets over whih the boolean lauses in the spei�ationswill range. Boolean variable delarations (specvar nb) similarly name the booleanvariables whih will be used in spei�ations. A spei�ation for proedure pn be-gins with an optional suspends lause (for defaults, disussed later), a requires lauseexpressed in boolean algebra with ardinality onstraints, ontinues with a modi�eslauses, and onludes with an ensures lause. Module invariants in spei�ation se-tions are a speial ase of sope invariants (as desribed in Setion 3.4.2) whih applyto the delaring module. Module invariants di�er from abstration setion invariants(Chapter 5) in that they are expressed in the ommon set spei�ation language,rather than in an analysis plugin-spei� notation.The expressive power of boolean lauses B is the �rst-order theory of booleanalgebras, where variables range over sets delared in some module in the program.The �rst-order theory of boolean algebras is deidable [88, 53℄, and we use this fatto ompute whether impliation holds between boolean lauses as well as to performdata�ow analysis in the �ags analysis, as desribed in Chapter 6.Boolean lauses operate on set expressions SE. A set expression may name sets Sand proedure parameters p; in Hob, primed sets S ′ denote the ontents of a set upon50

M ::= spe module m {(format t)∗ (spevar (nb : bool | S : t set))∗ P ∗ I∗}
P ::= pro pn(p1 : t1, . . . , pn : tn) [returns r : t]

[suspends d+] [requiresB] [modi�esS+] ensuresB
I ::= invariant B

B ::= nb | SE 1 = SE2 | SE1 ⊆ SE 2 | ard(SE)=k | disjoint(SE 1, SE 2)
| B ∧ B | B ∨ B | ¬B | ∃S.B | ∀S.B

SE ::= ∅ | p | [m.] S | [m.] S′ | SE1 ∪ SE 2 | SE 1 ∩ SE 2 | SE 1 \ SE 2Figure 3-5: Syntax of the Module Spei�ation Languagereturn from a proedure in the ontext of requires lauses. Developers may ombineset expressions using the set union, intersetion and di�erene operators.Requires/Ensures Clauses. Our spei�ation language allows proedure e�etsto be spei�ed using requires and ensures lauses in boolean algebra lauses B. Whena proedure spei�ation inludes a modi�es lause m, the Hob analysis frameworkadds some extra terms to the ensures lause e to give an e�etive ensures lause
e

e�

, whih is used as the summary of that proedure's e�ets. In partiular, in thepresene of a modi�es lause m, we use this augmented ensures lause to analyze theproedure:
e

e�

:= e ∧
∧

S 6∈m

S= Ŝ ∧
∧

n 6∈m

n ⇔ n̂3.4.2 SopesFigure 3-6 presents the syntax of sope delarations. A sope delaration ontainsthree parts: it delares a set of modules belonging to the sope; a subset of thesemodules�exported modules�whih are visible outside the sope; and (optionally)a sope invariant, whih is a formula preserved by the sope. Outside a sope, thesope's non-exported modules are invisible: modules whih do not belong to a sopemay not invoke proedures in, or refer to sets of, that sope's non-exported modules.Only the exported modules and their sets may be used outside the sope. The sopeinvariant is a formula whih Hob veri�es for the program's initial state and upon exitfrom the sope (assuming that the invariant always holds upon entry to the sope).Handling Reentrant Calls. In general, a all site inside a given sope may (po-tentially transitively) all an exported proedure from the same sope (whih willassume the sope invariant). We all suh a all site a reentrant all site. Whenontrol reahes a reentrant all site, the sope invariant may be temporarily violatedat that point. However, sine the all site is a reentrant site, the �ow of ontrol maythen reah a sope entry point again. At a sope's entry points, the analysis assumesthat the sope's invariants hold.Our system therefore requires sope invariants to hold at all reentrant all sites.Combined with the veri�ation of sope invariants upon exit from a sope, this en-51

sures that sope invariants always hold upon entry to a sope. It is the developer'sresponsibility to identify reentrant all sites. (It would also be possible to auto-matially detet suh all sites). A simple link-time hek performed in the overallprogram veri�ation desribed in Chapter 5.3, the all reentrany hek, ensures thatthe developer has orretly identi�ed all reentrant sites.Publi and Private Sope Invariants. Our system supports two kinds of sopeinvariants. Publi sope invariants are visible throughout the program. In partiular,the veri�ation system may simply (potentially under developer guidane) assume thepubli sope invariant at any point in the program outside the sope2. To ensure thatthis veri�ation strategy is sound, the system requires the publi sope invariant tohold whenever the program may exit the sope (either at the exit point of an exportedproedure or at an external all site).In ontrast, private sope invariants are not visible outside the sope. It would bepossible for the veri�ation system to require private sope invariants to hold at thesame program points as publi sope invariants. But beause private sope invariantsare not visible outside the sope, the veri�ation system applies a less restritivepoliy. Spei�ally, it only requires private sope invariants to hold at exit points ofexported proedures and at reentrant all sites. Note that this poliy allows the sopeinvariant to be (temporarily) violated aross non-reentrant alls outside the sope.The fat that private sope invariants are not visible outside their sope ensures thatthis poliy is sound. Private sope invariants are useful beause they help the Hobsystem redue the size of the overall analysis task. They are espeially useful whenthe sope invariant mentions private sets: invariants on private sets should always behidden.Finally, the veri�ation system assumes that the sets and boolean variables of agiven sope invariant (and more generally, all sets and boolean variables de�ned in themodules in the sope) do not hange aross non-reentrant alls. Hob's set stationarityhek ensures that only the proedures in the sope an a�et the values of the setsand boolean variables of the invariant.Set Stationarity Chek: A sope invariant may use only sets and booleanvariables that are de�ned in the sope's modules.Beause of the set stationarity hek, it is su�ient to verify that the invariant holdsin the initial state and at sope exit points to ensure that the invariant always holdsat sope entry points.Entering and Exiting Sopes. A program an exit a sope in two plaes: at theexit point of an exported proedure, or at a all site that invokes either a proedureoutside the sope or an exported proedure in the same sope. Suh a all site is an2The Hob system urrently onjoins publi sope invariants to all preonditions outside the sope.This is not neessary in general. For instane, a sope invariant mentioning modules A and B shouldnot be onjoined to a preondition on sets in modules C and D.52

S ::= sope C {modules M∗ ;exports M∗ ;
[[publi] invariant B;] ∗

}Figure 3-6: Syntax of Sope Delarations
Exported Module M

Local Module P Local Module Q

Exit
Point

Entry
Point

Entry
Point

Exit
Point

Entry
Point

Exit
Point

Exit
Point

Entry
Point

Scope C

Call Edge Return EdgeFigure 3-7: Sope Entry and Exit Pointsexternal all site. The program an enter a sope in two plaes: at the entry point ofan exported proedure, or at the return point of an external all site.Figure 3-7 presents an example that illustrates the possible ases. The entry pointof eah proedure in the exported module M is an entry point for the sope C. The exitpoints of these proedures are sope exit points. Call sites from proedures inside C (inthe example, from proedures in the non-exported module Q) to proedures outside
C are sope exit points. The orresponding return points after the all sites aresope entry points. Finally, all sites from proedures inside C (in the example, fromproedures in the non-exported module P) to proedures in exported modules in Care also sope exit points. The orresponding return points after the all sites arealso sope entry points.Controlling Aess to Non-exported Modules. The sopes mehanism enablesHob to use properties of a program's struture to eliminate the need to hek theassoiated sope invariants outside a sope. In partiular, the Hob system only needsto ensure that sope invariants hold at ertain key points, namely sope exit points.One key reason that this works is that a sope's exported proedures ontrol theoperation of non-exported modules: no non-exported module may be alled fromoutside the sope. The Hob system ensures that non-exported modules remain privateto the sope by using a sope all hek, as desribed below.53

Sope Call Chek Consider a proedure all from module M to module M ′.Then for eah sope C that the target module M ′ belongs to, either: 1) M mustalso belong to sope C, or 2) M ′ must be exported in sope C.Note that this de�nition onjoins the alling restritions from all relevant sopes: if
M is a non-exported module in some sope C, only modules that are also in C anall M .Sopes and Set Visibility. The sets and boolean variables of non-exported mod-ules are not visible outside the enlosing sopes. In partiular, the preonditions andpostonditions of proedures in exported modules, the modi�es lauses of suh pro-edures, and publi sope invariants must not ontain sets or boolean variables fromnon-exported modules.This design deision means that modi�es lauses have a slightly di�erent meaningin the presene of sopes with non-exported modules. Sets and boolean variablesfrom non-exported modules will be absent from the modi�es lauses of all exportedproedures, even if the proedures may modify some of the sets or boolean variables.To ensure that this absene does not ause soundness violations, the analysis mustassume that the proedure invoked at any reentrant all site may modify all sets andboolean variables from the non-exported modules of the sopes to whih the moduleontaining the all site belongs.General Modi�ation Semantis A set S of module M ′ is out of sope formodule M if there exists a sope C whih does not export M ′, and M does notbelong to C.Consider a all from module M to proedure p of module M ′, and let set T ofmodule M be out of sope for p.1. If the all to p is labelled as a reentrant all (that is, if p inludes a allbak to the aller module M), then the aller must dedue, upon returnfrom p, that T may be arbitrarily modi�ed.2. Otherwise, the non-reentrant all to p preserves the ontents of set T .It is sound to preserve out-of-sope sets T aross non-reentrant alls: beause Tis de�ned in the alling module M , it may only be modi�ed in M . Furthermore,sine the all is non-reentrant, then T must be unmodi�ed upon return from the all.Beause the aller module's set T is out of sope for allee proedure p, the Hobsystem ensures that p does not expliitly mention the aller module's set T in itsspei�ation.Verifying Sope Invariants. Having desribed what sopes do and how theystruture the program, we next desribe how Hob veri�es that sope invariants hold.We have designed the Hob system so that Hob analysis plugins do not need to under-stand sopes or other global properties. This simpli�es the design and implementation54

of analysis plugins, whih are solely responsible for verifying loal data struture on-sisteny properties. Brie�y, Hob translates global sope invariants into requires andensures lauses suitable for veri�ation by analysis plugins.� Reentrant Call Sites. Sine potentially-reentrant sites are sope exit andentry points, the Hob framework oneptually adds an assert statement on-taining the invariants of all potentially-reentered sopes before that all siteand an assume statement with the same invariants after the all site.� Private Sope Invariants. Private invariants do not appear in formulas out-side the sope. Private sope invariants are therefore onjoined to requires andensures lauses for publi proedures of exported modules when analyzing thebodies of these proedures. However, private invariants need not be onjoinedto these proedures when heking validity of alls to those proedure. This isequivalent to adding an assume statement at the head of eah exported proe-dure ontaining the sope invariant and an analogous assert statement at thetail of eah exported proedure.� Publi Sope Invariants. Publi invariants are known to hold throughoutthe program's exeution, and an oneptually be onjoined to all preonditionsand postonditions in the program outside the sope, as well as preonditionsand postonditions of exported proedures. One possible optimization wouldonjoin publi invariants to only those outside proedures that refer to sets andboolean variables used in the sope invariant.An Alternate Treatment of Sope Invariants. It is possible to generalize thepreeding treatment of sope invariants. Spei�ally, the system ould require thedeveloper (or an analysis) to identify, at eah external all site, all of the sopeinvariants that any potentially (transitively) invoked proedure may assume. Theveri�ation system would then require these sope invariants to hold at the all site.A simple link-time hek (similar to the link time hek for reentrant all sites) wouldverify the orretness of the sope invariant usage information. This more generaltreatment eliminates the distintion between publi and private sope invariants,gives the developer more ontrol over when sope invariants are required to hold, andsupports a wider range of sope invariant plaement poliies. The potential drawbakis that it might require the developer to interat more losely with the veri�ationsystem.Expressive power of sopes.Hob's sopes mehanism enables developers to speify invariants whih hold arossa set of modules. Sopes are more powerful than defaults: while defaults ould on-join invariants to appropriate program points, defaults do not enable the developerto forbid alls to internal modules. The sopes protetion mehanism therefore in-reases the expressive power of the Hob language by enabling developers to ensurethat, in the maintenane phase of program development, program modi�ations do55

not inadvertently introdue alls to sope-internal modules whih result in invariantviolations.Non-hierarhial program deompositions.Our sopes mehanism furthermore enables a module to partiipate in multiple sopessimultaneously. This multiple partiipation enables modules to be grouped into sopesalong orthogonal axes. By using sope invariants, developers an express propertiesthat are ommon to multiple proedures belonging to multiple modules, providinga deomposition of the program layered on top of the module-based deomposition.The sope-based deomposition permits developers to enapsulate invariants that utaross modules. Sopes also enable developers to separate the underlying analysistask (as arried out, for eah module, by Hob's various analysis plugins) from theset of program units that maintain a ertain global invariant: many di�erent analysisplugins an ooperate to establish a global invariant, as expressed in terms of a sope.Invariants and Regions Where They Hold. Given any region of ode expressedas a set of modules, and any invariant I, a developer an introdue a sope exportingthese modules. This sope will serve to preisely indiate where the invariant Ishould hold, without imposing any unwanted additional onstraints on the programstruture.Enforing Arbitrary Calling Restritions. Consider the set of all modules
M1, . . . , Mk in a program, and suppose that we wish to ensure an arbitrary set ofrestritions on whether module Mi an all module Mj , given by a boolean matrix
aij (with the natural property that aii is true). Then we an always de�ne at most ksopes that preisely enode the all matrix aij . Indeed, it su�es to introdue onesope Ci for module Mi, make Mi be the sole loal module of Ci, and make the set ofmodules {Mj | aji = true}, that are allowed to all Mi, be the set of exported modulesof the sope Ci. The set of sopes C1, . . . , Ck then ensures the desired all matrix aij .In pratie, programs exhibit non-trivial (even if not hierarhial) struture, whihimplies that many fewer than k sopes su�e to de�ne the desired alling restritions.Exposing Various Interfaes to a Module. Finally, note that sopes an enodethe situation where a module M exposes di�erent subsets of its funtionality to di�er-ent modules, providing more or less restritive interfaes to di�erent lients [39℄. Tomodel this situation, write M by exposing a wide (�exible) interfae, and de�ne theproxy modules M1, . . . , Mp, eah of whih alls M but propagates only a subset of thefuntionality of M . Then reate a sope with M as a loal module and M1, . . . , Mpas exported modules.3.4.3 DefaultsThe default onstrut enables developers to state that a spei� property holds at aset of proedure preonditions and postonditions unless expliitly suspended. Devel-56

P ::= P1−P2 | P1&P2 | P1|P2 | not P
| pre S | post S | prepost S

S ::= S1 − S2 | S1&S2 | S1|S2 | not S
| pro pn(tn1, . . . , tnn) returns tnr
| exported (module ms) | exported (sope ss)
| loal (module ms) | loal (sope ss)
| all (module ms) | all (sope ss)
| allpn, tn, ms, ss ::= identi�er | identi�er*Figure 3-8: Pointut Language for Defaultsopers may speify the appliability of a default syntatially, by naming the modulesand proedures to whih the default should apply. Default delarations have the form,

default N(A1, ..., Ak) : C = P (3.1)where N is the name of the default, the Ai are a set of optional parameter names, Cis an optional pointut spei�ation (speifying where the property should be added),and P is a property expressed in the Hob set spei�ation language. One ommon useof defaults is to apture initialization onstraints, whih always hold one a programhas ompleted its initialization phase.Our urrent system implements defaults by onjoining P to proedure preondi-tions and postonditions that 1) math the pointut spei�ation C and parameternames Ai (disussed below) and 2) do not expliitly suspend the default N with aspei�ation lause �suspend N�.Pointut Spei�ation Language. The two piees of information de�ning a de-fault are: (1) what is the property; and (2) where should it hold? Sine Hob hasa ommon set spei�ation language to speify program properties, it makes a lotof sense for developers to use this set spei�ation language to speify properties indefaults as well. Figure 3-8 presents the syntax for Hob's pointut language, whihenables developers to speify where a property should hold. The developer an usethe pointut language to identify a set of proedures S to whih the default applies,then speify that the default applies to the preonditions (pre S), postonditions(post S), or both preonditions and postonditions (prepost S) of all proedures in
S. The developer may selet proedures by name, by membership in modules, or bymembership in sopes. An omitted pointut for a default spei�ed inside a moduleindiates that the default should apply to all preonditions and all postonditions ofall proedures of that module; for a default spei�ed outside any module, an omittedpointut means that the default should apply to all preonditions and postonditionsin the program.Defaults and Modules. Defaults are often oupled to a spei� module�for ex-ample, a data struture initialization default is typially oupled to the module that57

enapsulates the data struture. In suh ases the developer should de�ne the defaultwithin the orresponding module so that the instantiation of the module orretlyinludes the instantiation of the default (and the onstraint that it enfores). Devel-opers may also delare defaults on their own outside of any module�suh delarationsare typially appropriate when the default property involves multiple modules.Default Parameter Names. If the default inludes parameter names, these pa-rameter names further onstrain the set of proedures to whih the default applies�ifthe default has a list of parameter names A1, . . . , Ak then it applies only to proe-dures that have at least k parameters with formal parameter names A1, . . . , Ak. Theparameter names may appear in any order in the proedure's parameter list. Forexample, in the Water benhmark (Setion 7.2), the default
default padRead(p) : pre(all(module Reduce)) = card(p)=1 &

(p in Reduce.Read)applies only to preonditions of proedures in the Reduce module that have (at least)a parameter named p. When onjoined with the preondition of suh a proedure,the default onstrains p to have ardinality 1 (i.e. it must not be null) and to be amember of the Reduce.Read set.Defaults as Formula Transformers. Coneptually, defaults are formula trans-formers. The defaults we have disussed so far transform preonditions and poston-ditions by onjoining the default property P to these formulas. The default oneptan generalize to inlude arbitrary formula transformers that may transform formulasin more sophistiated ways. We have implemented one instantiation of suh generalformula transformers in the Hob system. However, one issue is that multiple trans-formers may apply to a single preondition or postondition. If the transformers donot ommute, di�erent appliation orders may produe di�erent �nal formulas (andour urrent implementation does not guarantee a deterministi result in suh a ase).One way to eliminate any suh nondeterminism is to group formula transformers intolasses (so that all transformers in the same lass ommute), then prioritize the lassesto �x an appliation order for transformers that may not ommute.3.5 DisussionIn this setion, we disuss various onsequenes of our partiular hoie of spei�ationlanguage and its features. We �rst disuss the spei�ation aggregation problem thatmotivated our sopes mehanism. Next, we disuss the expressive power of the sopesmehanism, as well as the advantages and disadvantages of the defaults mehanism.We then move on to the general problem of hoosing a spei�ation language andjustify our hoie of a set spei�ation language. Finally, we ompare our experienewith the Hob stati analysis approah with the testing approah for the purpose ofvalidating program properties. 58

3.5.1 Sopes and spei�ation aggregationAssume/guarantee reasoning, as used in the Hob system, omes at a ost: it requiresspei�ations at boundaries of ode fragments suh as proedures. Consider a proe-dure p. Any aller of p must be able to guarantee that p's preonditions r1∧r2∧· · ·∧rnhold prior to its invoation. These preonditions an hold either beause they aretrue in the program's initial state, or beause they are guaranteed by the postondi-tion of a proedure whih has been exeuted in the past; the preonditions, of ourse,must have not been subsequently violated. In priniple, the developer must thereforethread onditions r1 to rn through all proedure preonditions and postonditions,up and down the all hain, from where they are established to where they are used.Additionally, any transitive allee q invoked from p adds its own spei�ation burdento the preonditions of p, suh that p might in fat speify preonditions r1 through
rn and rn+1 through rk.Note that these preonditions may, in partiular, propagate up the all hain toa proedure's allers. Of ourse, some allee preonditions must be established ataller sites; however, many allee preonditions are purely internal and should not bevisible to the aller. Requiring allers to expliitly guarantee internal preonditionswould often result in modularity violations: allers should not need to know aboutirrelevant details of a allee's internal state. Foring the developer to onstrain theallee's state at all allers makes reuse more di�ult, sine the aller must be awareof required (yet irrelevant) preonditions.In general, developers must therefore either deal with a set of proedure poston-ditions, eah of whih potentially inreases at least as fast as the size of the program;or hoose some subset of these postonditions to manually propagate throughout theprogram spei�ations. If the subset is de�ient, then (due to the limitations of as-sume/guarantee reasoning) Hob may delare that it is unsafe to all some neededproedure, or Hob may fail to prove some desired postondition for the program asa whole. This phenomenon�the spei�ation aggregation problem�fores the devel-oper to inlude undesired, but mandatory, spei�ation lauses representing futureallee invariants. Suh lauses ut aross system spei�ations, yet are irrelevantto most program points: they should only appear at those program points whihspei�ally need suh lauses.Our sopes mehanism was motivated by the spei�ation aggregation problem.Sopes mitigate the ost of assume/guarantee reasoning: when providing spei�a-tions for a ode fragment, the developer should only need to speify properties ofthat fragment. The developer should not need to speify any globally true propertieswhih are irrelevant to that fragment: if the fragment annot possibly a�et the va-lidity of the property, then the property will inevitably be preserved by the fragment.Sopes allow developers to speify regions in whih globally true properties�sopeinvariants�are temporarily violated. Outside a sope, its invariant will generally betrue.Sopes ombat spei�ation aggregation by hiding irrelevant sets and lauses fromallers. Furthermore, they enable the spei�ation and veri�ation of ross-moduleinvariants by allowing developers to identify the subset of a program in whih an59

invariant is expeted to hold. Sopes are key to our system's veri�ation of invariantsontaining sets from di�erent modules: by designating ertain modules as publiaess points, we ensure that sope invariants always hold outside their delaringsope by verifying the sope invariant at eah of a sope's exit points. Sopes alsoshield allers from irrelevant detail: only sets from exported modules may our asfree variables in spei�ations for modules in di�erent sopes. This onstraint servesto bound the detail required in proedure spei�ations: the spei�ation of proedure
p belonging to sope C need only ontain the e�ets of proedures on sets in C andexported sets outside C. In other words, proedure spei�ations omit all e�ets onsets that are private to a sope (a set is private to a sope if it is delared in amodule that is not exported from that sope). Moreover, note that this irrelevantdetail auses real problems for modularity. In the absene of this mehanism, a alleroutside a sope would need to indiate (at the very least) that the allee's internalsets are non-deterministially modi�ed, whih is unreasonable beause the outsidealler has no way of knowing about the allee's private modules.3.5.2 Advantages and disadvantages of defaultsDefaults are useful for several reasons: they redue the size of program spei�ations,eliminate the spei�ation aggregation that would otherwise our when default on-ditions would propagate up the proedure all hierarhy from proedures that requirethe default (in situations where sopes are not appliable), and eliminate spei�a-tion errors that would otherwise our when developers inadvertently omit defaultproperties. Developers often appear to unonsiously assume that a default holds(whih is understandable as many defaults do, in fat, hold almost everywhere in aorret program) and therefore tend to write spei�ations that omit required defaultproperties. Defaults an transform these inomplete, unsound, but intuitively orretspei�ations into omplete, sound spei�ations. A disadvantage of using defaultsis that when they do not hold and, for instane, ause a formula to beome unsatis-�able, developers may �nd it di�ult to debug the spei�ation, sine the o�endinglause was added by the default mehanism and is not immediately visible. Bettertool support would mitigate this problem.3.5.3 Impliations of using a set spei�ation languageWe next disuss the advantages and disadvantages of using a set spei�ation lan-guage to provide module interfaes. We �rst disuss the power of a set spei�ationlanguage and ompare it to other possible spei�ation languages. We then ompareset spei�ations with less powerful alternatives, inluding type and typestate sys-tems. We next justify our hoie of a set spei�ation language. The hoie of aset spei�ation language did have some drawbaks, and we outline some of them.Finally, we desribe some advantages and limitations of using more powerful spei�-ation languages. 60

Expressive power of set spei�ationsSet interfaes lie somewhere in the middle of the spetrum of possible module inter-fae languages. Less expressive interfae languages inlude standard type systems,whih �x the type of an objet at instantiation time, and typestate systems [91, 90℄,whih augment the �xed type of an objet with a varying state omponent dependingon the operations that have been performed on the objet. More expressive inter-fae languages ould allow developers to speify relations between objets, as in theJahob projet. The interfae language an be as detailed as the implementationlanguage, and indeed, JML [12℄ permits developers to use full Java expressions intheir spei�ations. Finally, one ould permit the use of higher-order logi (as in, forinstane, [42, 78℄) in proedure interfaes. Eah of the interfae languages in this para-graph is stritly more powerful than the ones listed before it. The tradeo� is that amore powerful interfae language is also more di�ult to reason about; some interfaelanguages will be undeidable. Furthermore, well-designed interfae languages shouldenable developers to leanly abstrat away from the underlying implementation andstate just the important properties of the system.Less expressive spei�ation languagesOur modular analysis approah needs more information than standard type systemsmake available, sine these type systems do not permit developers to speify anybut the most basi data struture properties. In partiular, standard type systemsare inapable of expressing the fat that objets move in and out of a program'sdata strutures as the program exeutes. Typestate systems [91, 90, 24℄ do allowdevelopers to express membership of objets in data strutures and permit statianalyses to hek usage protools, but they do not allow developers to disuss theontents of data strutures in their interfaes. In other words, using a typestatesystem, it is only possible to disuss a program's abstrat state one objet at a time.For instane, developers an only verify that a given objet does not simultaneouslyhave typestates X and Y ; typestate systems are not expressive enough for developersto state that no objet has typestate X and typestate Y .We next disuss the spei�ation aggregation problem in the ontext of standardtype systems and typestate systems. In standard type systems, the type of an objet,as well as the set of type de�nitions, is �xed one and for all. Beause type onstraintsannot be violated in the ourse of a omputation, spei�ations do not need to bereiterated up and down the all hain from where a property is established to whereit is used.However, in type systems whih inlude subtyping, an objet may be ast to asupertype and later bak down to its atual type (the downast problem). Standardtype systems use run-time heks to ensure safety in the presene of downasts. Theserun-time heks are muh more tratable in the ontext of type systems than in theontext of our set spei�ation language, beause a standard type system (whih usesrun-time heks) needs a muh weaker safety property than does our set spei�ationlanguage: the fat that type de�nitions do not hange implies that the program only61

needs to verify the identity of the type, and not its de�nition. Reovery from typeerrors, however, is still hallenging, sine there might be no appropriate ation whena preondition is violated. Parametri polymorphism enables developers to statiallyavoid the downast problem, sine the language will then keep the omplete typeinformation around; however, this leads to a restrited form of spei�ation aggre-gation problem, beause the type information must be woven through the program'sexeution. Beause type information is more limited than our set spei�ations, themagnitude of the spei�ation aggregation problem is smaller for standard type sys-tems.In typestate systems, objets an hange typestate during the ourse of a pro-gram's omputation. As with standard type systems, the program an easily verifyat run-time that an objet has the appropriate typestate. However, the fat that theprogram may arry out a typestate hange using an alias of an objet ompliatesstati heking, and designers of typestate systems resort to various mehanisms toensure safety, inluding linear type systems for objets whih may hange types [24℄.In any ase, the magnitude of the spei�ation aggregation problem for typestatesystems is similar to that for type systems.Justi�ation for a set spei�ation languageSet spei�ations are partiularly natural for developers to use beause they enabledevelopers to state objet membership properties and relationships between datastrutures [59℄. After all, many data strutures are simply implementations of setswhih optimize ertain set operations. We feel that set spei�ations an expressmany key data struture properties and, in partiular, onsisteny properties whihrelate the ontents of di�erent data strutures. Suh onsisteny properties are oftenruial design properties for a system whih ought to hold throughout its lifeyle; setspei�ations provide a onise and easy-to-understand way for developers to expressand verify these properties. Our experiene using set spei�ations has been positive.Limitations of a set spei�ation languageNote that our set spei�ation language does not support the standard set theoretionstrution of the integers, beause our sets only ontain uninterpreted elements. Ata more pratial level, we annot express relations between objets in our system. Forinstane, our modelling of maps (e.g. hashmaps) an only disuss the set of objetswhih at as keys and the set of objets whih at as values. While Hob an stateand verify relationships between the set of keys and the set of values (for instane,no objet should be both a key and a value simultaneously), Hob annot state thata partiular key is related to a partiular value. Hob also annot express propertiesof objets belonging to sets of sets. The set spei�ation language does have theadvantage of being deidable; the MONA tool [51℄ an deide formulas written in ourset spei�ation language.Another limitation of Hob's spei�ation language stems from the fat that ourspei�ation language supports only a bounded number of sets. While this language62

design dramatially simpli�ed the spei�ation language and the resulting spei�a-tions, suh a language design makes it di�ult to speify properties of dynamiallyinstantiable data strutures like Java's LinkedList utility lass. One potential solu-tion is to use a more powerful spei�ation language; relations enable the veri�ationof instantiable data strutures. Note that it is possible to work around the limita-tions of the spei�ation language to some extent: developers ould use an unboundednumber of data strutures in the implementation while only speifying properties of abounded number of these data strutures. Furthermore, it would be possible to �swapin� data strutures and speify properties of only these �ative� data strutures. Byarefully onstruting the implementation, it would be possible to verify invariantsthat atually onstrain an unbounded number of data strutures.More powerful spei�ation languagesA spei�ation language based on relations goes beyond our set spei�ation language.In the above example, it would permit partiular keys to be related to partiular val-ues. Binary relations are su�ient to enode sets and general n-ary relations. Beausea relation-based spei�ation language is more powerful, in general an interative the-orem prover might be required to reason preisely about interfaes expressed usingrelations. Going even further, a spei�ation language whih enables developers tostate the full range of program properties, like JML [12℄, makes it tempting to expressdetailed implementation-level properties whih ought to remain hidden to a module'slients. Suh interfaes also are potentially as di�ult to hek onformane againstas the original implementation, whih would obviate the advantage of using a spei-�ation language to aid modular analysis.3.5.4 Comparison: Stati analysis and testingIn our experiene, testing is a valuable omplement to the stati analysis providedby the Hob tool; sine it is easy to test a program omponent, we found a numberof straightforward errors using testing. Testing disovers many errors in implemen-tations, and a well-tested implementation may well behave properly on the vast ma-jority of (ommon) program inputs. However, Hob's stati analyses guarantee thatdata struture onsisteny properties hold on all exeutions of a program, whih isin general impossible to ahieve using testing. One ommon weakness of testing, forexample, is in deteting the faulty treatment of errors and exeptions.Furthermore, the abstratness of Hob's spei�ation language enourages devel-opers to think at a higher level of abstration and enables them to express deeperproperties of programs. Suh properties an easily be obsured in a program's imple-mentation. At the implementation level, design information is hidden behind a massof details, whih are neessary for implementing the design, but not useful for under-standing the underlying design. We believe that the set spei�ation language exposesdesign information more e�etively than imperative implementation languages, sineset spei�ation languages abstrat away from the details of how the program arriesout its tasks and instead say what the program does. This is espeially true as a pro-63

gram moves through its development lifeyle through the maintenane phase: thedesign information may beome outdated, and the original developers may move on toother projets. The Hob system enables developers to use data struture onsistenyproperties as veri�ed doumentation. Our analysis tool veri�es that these propertieshold, not just at any one point in the program's life, but throughout hanges by su-essive developers, who may not understand the program's original design at all. Ourexperiene with Hob suggests that it is apable of reording design deisions taken bythe original developers and ensuring that this design information remains up-to-date.

64

Chapter 4Hob Abstration LanguagesHob spei�ations are written using the Hob spei�ation language, whih enablesdevelopers to express program properties by desribing hanges to abstrat sets ofobjets. Eah abstrat set in a spei�ation denotes a set of onrete heap objets.Hob abstration modules enable developers to state abstration funtions, whih de-�ne the ontents of abstrat sets in terms of onrete heap objets. Abstration fun-tions therefore provide a onnetion between spei�ations (whih use abstrat sets)and implementations (whih manipulate the onrete heap). This onnetion enablesboth developers and the Hob system to reason soundly about an implementation interms of its higher-level set spei�ations.Proedure implementations assume that ertain properties of the onrete statehold upon entry and guarantee that (potentially di�erent) properties hold upon exit.There are two main types of suh properties: invariant properties and preondition-s/postonditions. In the Hob approah, developers speify preonditions and post-onditions using the previously-desribed set spei�ation language. Beause theseproperties are expressed in terms of sets, they onstrain the abstrat program stateat proedure entry and exit points.Many implementations maintain spei� onstraints on the onrete programstate. The Hob system allows developers to speify these onrete representationinvariants in abstration setions. Analyses may then use these representation invari-ants as they verify the proedure implementations. In partiular, they may assumethat the invariants hold at the beginning of eah proedure and must guarantee thatthe invariants hold at the end of eah proedure. (Hob also supports set spei�ation-level invariants in spei�ation setions).Beause developers use a variety of tehniques to implement sets, the Hob ap-proah supports arbitrary stati analysis tehniques for analyzing these tehniques.In the Hob system, we have implemented a number of stati analysis tehniques. Eahanalysis veri�es whether or not a lass of implementations onform to their set-basedspei�ations, using a spei� lass of abstration funtions ustomized for that anal-ysis. We have designed the Hob system so that eah stati analysis only needs toproess abstration funtions orresponding to the lass of implementations that itis analyzing. All of Hob's stati analysis tehniques are implemented in the ontextof analysis plugins, whih establish that proedure implementations onform to their65

spei�ations. Furthermore, we have designed the Hob system to be extensible: re-searhers may add their own analysis plugins to verify new lasses of implementations,and the Hob system enables researhers to use any stati analysis tehniques that areappropriate for a desired lass of implementations.4.1 Analysis ApproahThe Hob system delegates the entral data struture onsisteny property analysistask�a proof that a proedure's implementation onforms to its spei�ation, asinterpreted with the provided abstration funtion�to a set of analysis plugins. TheHob system urrently ontains four analysis plugins: the �ags plugin, the Bohne andPALE shape analysis plugins, and a theorem proving plugin.� The Hob �ags plugin supports set de�nitions stated in terms of objet �eldvalues.� The PALE and Bohne shape analysis plugins use the monadi seond-order logifor their de�nitions. Note that this logi is more powerful than the �rst-orderset spei�ation language. Bohne additionally supports nondeterministi �eldonstraints, whih enable it to verify a broader lass of data strutures than thePALE plugin.� The Hob theorem proving plugin enables developers to generate veri�ationonditions whih must be manually disharged using the Isabelle interativetheorem prover. (Note that Hob an support arbitrarily powerful abstrationfuntions�even ones that are based on undeidable logis�by relying on de-velopers to manually disharge the resulting veri�ation onditions. While suha strategy is always possible, the Hob approah generally fousses on applyingstati analysis tehniques to the program veri�ation problem).One the analysis plugins have veri�ed a program's implementations, the Hob sys-tem must somehow ombine the analysis results from the di�erent analysis plugins.We have designed the Hob set spei�ation language spei�ally to enable di�erentanalyses to ommuniate, and the developer always states proedure preonditionsand postonditions in the ommon set spei�ation language. This hapter desribesHob abstration modules, whih allow analyses to link the set spei�ations and im-plementations. Hob abstration modules ontain abstration funtions and invariants.Note that abstration modules ontain yet another kind of spei�ation information,besides the proedure spei�ations, sopes, and defaults that we have seen in Chap-ter 3.Analysis plugins ommuniate information in terms of the set spei�ation lan-guage. Set de�nitions are always private to a module. There are therefore twoimpliations for analysis interoperability: any analysis plugin only needs to 1) pro-ess spei�ations written in the ommon set spei�ation language and 2) parse itspartiular syntax for abstration funtions. The Hob approah enables the modular66

design and implementation of analysis plugins beause plugins are not responsible forproessing the abstration funtions used by other modules in the program.Coneptually, an analysis plugin veri�es loal data struture onsisteny proper-ties for a module M by �rst translating referenes to sets belonging to module M ina proedure's preondition and postondition into the internal representation used bythe plugin, adding the appropriate invariants, and �nally verifying that the implemen-tation satis�es the (translated) postondition on all exeutions through the proedure,assuming that the (translated) preondition holds. At proedure all statements, theanalysis onverts the internal analysis representation bak into the ommon set spe-i�ation language and veri�es that the preondition of the allee is satis�ed at thatprogram point.Some modules exlusively oordinate the ativities of other modules through pro-edure alls. Suh oordination modules may not de�ne any onrete sets themselves.(Consequently, they may not manipulate any onrete sets either). These moduleswork at a fully abstrat level and rely on other modules to aess the program'sonrete data strutures; it is su�ient to investigate the set spei�ations of thesemodules' allees to understand what these oordination do.However, many modules�partiularly implementations of data strutures�do notdepend on other modules and ontain mainly leaf proedures. Leaf proedures donot make further proedure alls; they perform onrete data struture manipulationsthemselves rather than delegating the work to allees. Analysis plugins that aretargeted towards analyzing partiular lasses of data strutures may therefore delineto handle proedure alls.The Hob system also requires all analysis plugins to verify that named abstratsets are always empty in the initial state of the program. This onstraint makesit possible for Hob to know the initial ontents of all sets in the program withoutinspeting all of the abstration modules.Analysis plugin obligationsIn summary, when analyzing a module M , an analysis plugin must:� verify that the proedures of M satisfy their postonditions (and module in-variants) assuming that their preonditions (and module invariants) hold uponentry;� verify that preonditions for all proedure alls originating inside M are satis�ed(if the analysis plugin handles proedure alls); and� verify that all sets delared in M are empty in the initial program state.Stationarity ondition. We designed the Hob analysis approah to support themodular veri�ation of data struture onsisteny properties. Modular veri�ationrequires that hanges to a program's state be somehow loalized. Hob plugins musttherefore ensure that only the implementation module de�ning a set may diretly67

manipulate that set. One way to do so is by using the format onstrut: the imple-mentation language de�nition guarantees that any �elds that a module ontributesto a format may only be aessed by that module. Therefore, if a module M 's setde�nitions rely only on the �elds that M ontributes to formats, then M 's sets mayonly be modi�ed by module M . In general terms, the Hob system requires plugins toverify that the following stationarity ondition holds:� no set or invariant may be de�ned in suh a way that it would be modi�ableoutside its de�ning module.This ondition ensures that, even upon return from a proedure all to another mod-ule, a module's named sets do not surreptitiously gain or lose members. As a onse-quene of this ondition, modules only mutate sets that they de�ne; all suh mutationsare delared in ensures and modi�es lauses.4.1.1 Speifying Hob abstration funtionsHob abstration funtions exist in the ontext of abstration modules. The primarypurpose of an abstration module is to enable developers to speify abstration fun-tions, whih identify sets of onrete heap objets satisfying some property. Theanatomy of Hob abstration modules is therefore as follows.� Beause the set of properties (for naming sets) available to the developer de-pends on the analysis plugin used, the developer must identify whih analysisplugins to apply.� The developer provides set de�nitions in a notation suitable for that analysisplugin.� The developer identi�es the implementation-level boolean variables that appearin the module's spei�ation setions.� The developer may optionally state invariants on the onrete heap whih theassoiated implementation module must preserve; analysis plugins are requiredto verify that these invariants hold upon exit from eah proedure, and mayassume that these invariants hold upon entry to eah proedure.4.1.2 Common abstration module grammarThe Hob system uses a single grammar for all of its abstration modules. However,beause di�erent analysis plugins de�ne sets and invariants di�erently, eah analysisneeds to be able to support its own syntax for set de�nitions and invariants. Figure 4-1presents the part of the abstration module grammar that is ommon to all analysisplugins. Eah analysis plugin n must de�ne its own sub-grammar for the Dn and Inprodutions. 68

M ::= abst module m {M1 |Mmulti∗ }
M1 ::= use plugin \ n"; B

Mmulti ::= use plugin \ n" for { pros pn∗; B }
B ::= D∗ I∗ P ∗
D ::= id= Dr;

Dr ::= Dr ∪ Dr | Dr ∩ Dr | id | {x : T | \ Dn"}
P ::= predvar p;
I ::= invariant \ In";Figure 4-1: Abstration Language GrammarAn abstration module ontains one or more abstration module bodies. Eahabstration module body selets an analysis plugin and spei�es invariants, set de�ni-tions, and boolean variable delarations. If an abstration module only uses one anal-ysis plugin, then the module itself ontains the abstration module body. Otherwise,the abstration module must be divided into a number of sub-modules. Eah sub-module hooses an analysis plugin and ontains an abstration module body. Whenmultiple analysis plugins are used, eah proedure in a module must be laimed�andtherefore analyzed�by exatly one analysis plugin.The Hob system supports two kinds of set de�nitions: base set de�nitions andderived set de�nitions. Eah analysis plugin n must speify a syntax for base setde�nitions by de�ning the prodution Dn. Derived set de�nitions de�ne a set byombining previously-de�ned sets (or �anonymous� set de�nitions, whih are givenon-the-�y during a derived set de�nition) using union and intersetion.Abstration module bodies may also ontain delarations of predvars. In the ur-rent version of Hob, these prediate variables are tied to boolean variables in theimplementation on a one-to-one basis. Although it would be possible to support ar-bitrary de�nitions for these variables, we have not yet enountered a situation wherewe needed to do so.An analysis plugin n may also speify a syntax for module invariants by de�ningthe In prodution. Not all analysis plugins de�ne a syntax for module invariants.Using Multiple Analysis Plugins in a Module. In our experiene, we havefound that some implementation modules are best analyzed by multiple Hob analysisplugins. For instane, a given module may ontain both leaf and oordination proe-dures, whih require di�erent stati analysis tehniques in general. The Hob systemenables developers to analyze these kinds of implementation modules by inludingmultiple abstration bodies within a module's abstration setion. When an abstra-tion setion inludes multiple abstration bodies, then eah abstration body mustspeify whih proedures it applies to. Eah proedure must be analyzed by exatlyone Hob analysis plugin.We have implemented a doubly-linked list whih uses multiple analysis plugins.Figure 4-2 presents the relevant abstration setion. Lines 2 through 28 ontainthe Bohne decaf abstration body for the DLL module, while lines 29 through 3269

ontain the flags abstration body for that module. Our example abstration moduledelares that the clear proedure is to be analyzed with the flags plugins, while allother proedures are to be analyzed with the Bohne decaf plugin.
4.2 Flags Abstration Module LanguageHob's �ag analysis plugin implements a typestate analysis. This typestate analysisis more general than the traditional typestate formulation [91, 90℄ beause it uses itssets to represent all objets with a given typestate. The �ag analysis plugin uses thevalues of integer and boolean objet �elds (�ags) to de�ne the meaning of abstratsets. It veri�es set spei�ations by �rst onstruting set algebra formulas whosevalidity implies the validity of the set spei�ations, then verifying these formulasusing an o�-the-shelf deision proedure [52℄.The �ag analysis plugin is important for two reasons. First, the �ag analysis plu-gin an propagate onstraints between abstrat sets de�ned in external modules usingarbitrarily sophistiated abstration funtions. The plugin an therefore analyze mod-ules that, as they oordinate the operation of other modules, indiretly manipulateexternal data strutures de�ned in those other modules. This enables the �ag analy-sis to perform the inter-module reasoning required to verify global invariants relatingdi�erent data strutures, e.g. inlusion and disjointness of data strutures. Beausethe �ags plugin uses the boolean algebra of sets to internally represent its data�owfats, it an propagate and verify these onstraints without any loss of preision.Seond, �ag �eld values often re�et the high-level oneptual state of the entitythat an objet represents, and �ag hanges orrespond to hanges in the oneptualstate of the entity. One way to visualize this seond use of the �ag plugin is asfollows: the plugin is, in general, responsible for traking objet membership in sets.While most sets are de�ned externally�that is, the �ag plugin is only responsible fortraking hanges to those sets by using preonditions and postonditions�some setsare de�ned using a spei� simple lass of abstration funtions, and these sets arehandled diretly by the plugin.By using �ags in preonditions of objet operations, the developer an speifykey objet state properties required for the orret proessing of objets and theorret operation of the program. Standard typestate approahes exel at enforingtemporal operation sequening onstraints. The use of a set spei�ation languageadditionally enables developers to express, for instane, relationships between setsof objets with various typestates. Our �ag analysis plugin therefore goes beyondtemporal sequening onstraints and suessfully veri�es the more general propertieswhih are expressible in our set spei�ation language.Our �ags plugin supports loop invariants for reasoning about proedures thatontain loops. It an either use developer-provided expliit loop invariants or inferloop invariants from available information.70

1 abst module DLL {
2 use plugin "Bohne decaf" for {
3 Content = { n : Node |
4 "rtrancl (lambda v1 v2. next v1 = v2) (next root) n" };
5 Iter = { n : Node |
6 "rtrancl (lambda v1 v2. next v1 = v2) current n" };
7

8 invariant "ALL x y.
9 prev x = y > (x ~= null &

10 (EX z. next z = x) > next y = x) &
11 ((x = null | (ALL z. next z ~= x)) > y = null)";
12

13

14 invariant "init > (ALL x. ~(next x = root))";
15 invariant "(~init > root=null & current=null)";
16

17 invariant "(init > (root ~= null & (current=null |
18 rtrancl (lambda v1 v2. next v1 = v2)
19 (next root) current)))";
20

21 invariant "ALL x. x ~= null &
22 ~(rtrancl (lambda v1 v2. next v1 = v2) root x) >
23 ~(EX e. e ~= null & next e = x) & (next x = null)";
24

25 procs init, add, remove, removeFirst, getFirst,
26 isEmpty, openIter, nextIter, isLastIter,
27 closeIter, contains, removeAtIter;
28 }
29 use plugin "flags" for {
30 procs clear;
31 }
32 } Figure 4-2: Example List Abstration Module

71

4.2.1 Example: Flag abstration moduleThe Board module of our minesweeper example maintains the overall state of theminesweeper game board and oordinates with the data strutures whih are respon-sible for maintaining sets of exposed and unexposed ells. Figure 4-3 presents anabstration setion for the Board module. The Hob system veri�es this module us-ing the �ags analysis, whih allows developers to assign membership in abstrat setsbased on an objet's onrete �eld values. Line 1 of the example states that an ab-stration setion for the Board module follows; lines 1�9 will provide de�nitions forthe set and boolean variables used in the spei�ation setion of the Board module interms of that module's onrete program state. This module does not ontain any in-variants. The use plugin delaration on line 2 states that the Board module shouldbe analyzed by Hob's �ags plugin. Line 3 de�nes the set U (for Universe) as the setof all Cell objets in the onrete heap whih have the �eld init set to true. Allother sets in this module are de�ned as intersetions with the U set (the cap operatordenotes intersetion). Lines 4 through 7 de�ne the MarkedCells, ExposedCells,
UnexposedCells and MinedCells sets as derived sets. Line 4, for instane, statesthat the MarkedCell set ontains those objets that are members of the U set andhave their isMarked �eld set to true; the other set de�nitions are similar. Finally,line 8 delares that the gameOver, init and peeking boolean variables from theimplementation are visible as spei�ation-level boolean variables.Proteting Sets from External Changes. The Hob implementation languagede�nition spei�es that new Cell objets always isExposed set to false, the defaultinitial value for boolean �elds. If we de�ne the UnexposedCells set to ontain allobjets whose �eld isExposed is set to false, then this set would gain a new elementwhenever any part of the program instantiates a new Cell objet. In suh a situation,it would be very di�ult to reason modularly about the UnexposedCells set: anypart of the program ould modify this set! The impliation would be that any pluginthat wished to soundly analyze a proedure all would need to analyze all potentialallees from that site. Any modular analysis tehnique must, of ourse, somehow avoidthe analysis of all of a proedure's transitive allees. The Hob stationarity onditionavoids this potential barrier to modular analysis by requiring plugins to prevent suhpathologial set de�nitions. The set U satis�es the stationarity ondition, sine itontains those objets with �eld init set to true, and new objets have init set tofalse. Therefore, the subset UnexposedCells of U, as we've de�ned it, also satis�esthe stationarity ondition.Initial Program State. In general, developers may not de�ne sets that ontainnewly-initialized objets�objets that hold the initial �eld values assigned by theHob implementation language. Chapter 2 stated that in the Hob implementationlanguage, integer �elds are initially initialized to 0, while boolean �elds are initializedto false. The �ag plugin uses this property of the implementation language toenfore the onstraint that named sets must always de�ned to be initially empty.The format onstrut guarantees that these sets remain empty until a �ags module72

1 abst module Board {
2 use plugin "flags";
3 U = { x : Cell | "x.init = true" };
4 MarkedCells = U cap { x : Cell | "x.isMarked = true" };
5 ExposedCells = U cap { x : Cell | "x.isExposed = true" };
6 UnexposedCells = U cap { x : Cell | "x.isExposed = false" };
7 MinedCells = U cap { x : Cell | "x.isMined = true" };
8 predvar gameOver; predvar init; predvar peeking;
9 } Figure 4-3: Example Flag Abstration Moduleexeutes: due to the format onstrut, no other module may modify an objet's �ags,as long as modules only de�ne sets using the �elds that they have ontributed to atype. Our �ags plugin ensures that a module's set de�nitions use only the objet�elds that the module has ontributed.4.2.2 Loop invariant infereneLoops are typially problemati for stati analyses, as they introdue a unboundednumber of exeution paths that need to be analyzed. A standard approah for dealingwith loops is by using loop invariants. Loop invariants state a ondition that holdsregardless of the number of times that the loop iterate. Loop invariants tame theveri�ation task by eliminating the need to reason about an unbounded number ofexeution paths. Beause the Hob �ags plugin analyzes proedures by propagatingformulas in the boolean algebra of sets, it an use loop invariants expressed in thatlogi to verify properties of loops. In partiular, Hob's �ags plugin an either verifydeveloper-provided loop invariants or synthesize loop invariants from the programsoure ode and spei�ations. The loop invariant synthesis algorithm is a novelontribution of this thesis.Expliit Loop Invariants. If the developer provides an expliit loop invariant, the�ags plugin veri�es that the loop invariant: 1) holds on entry to the loop; and 2) ispreserved by the loop body. At the exit of the loop, the loop invariant onjoined withthe loop exit ondition haraterizes the post-loop program state.Our loop invariant veri�ation algorithm uses information from the loop's ontextto automatially augment the expliit loop invariant with properties that are knownto be invariant over the loop. In partiular, the loop's ontaining proedure will havea requires lause, whih states the proedure preondition. This lause involvesonly the initial values of sets at the beginning of the proedure (whih appear asunprimed set variables in our set spei�ation language). Therefore, the lause holdsthroughout the proedure's exeution, and this learly inludes the interior of theloop body. We also use the ontaining proedure's implementation, as well as its73

modifies lause, to identify all non-modi�ed sets, and onstrut a onjunt whihstates that these non-modi�ed sets are preserved by the loop1. We then onjoin boththe original proedure preondition and lauses guaranteeing the preservation of non-modi�ed sets to all expliit loop invariants. Developers therefore need not providethese two piees of redundant information, whih helps to make expliit invariantsmore onise and easier to understand.Inferred Loop Invariants. If the developer does not provide an expliit loop in-variant, the �ag analysis plugin attempts to automatially synthesize one. The syn-thesis starts with the boolean algebra formula haraterizing the program state atthe entry of the loop and weakens the formula by iterating the analysis of the loopuntil it reahes a �xpoint. We next present an example of the algorithm in ationand disuss some properties of the algorithm.Loop Invariant Inferene Example. Figure 4-4 presents the clear proedure,whih iterates through a set, removing eah element until the set is empty. We use thisproedure to illustrate our loop inferene tehnique. In this proedure, eah exeutionof the loop body removes an element from the Content set. Beause the preonditionof the removeFirst proedure must hold prior to its invoation, the loop body annotexeute suessfully unless the Content set is non-empty, i.e. ard(Content’) >= 1.Furthermore, to be useful in pratie, loop invariants must be strong enough to enablethe veri�ation of the proedures whih ontain them. In this ase, the postonditionof the clear proedure is ard(Content’) = 0. A valid loop invariant must thereforeensure that exeuting the loop body in a state satisfying the invariant 1) does notviolate the preondition of removeFirst, and 2) leads to a state that satis�es theloop invariant. A loop invariant that enables the analysis of clear must also ensurethat, upon termination of the loop, the postondition of clear holds (sine cleardoes not ontain any statements after the loop).One possible loop invariant that satis�es these riteria is
Ip : e′ ⇔ ard(Content’) = 0 ,where e′ is the return value from the isEmpty() proedure; it is true i� Content’is empty. Sine e′ is always false when exeution enters the top of the loop body, Ipexpresses the ondition that the set is non-empty, thereby guaranteeing that the loopbody an exeute orretly; and sine e′ is always true when exeution exits the loop,

Ip implies that the set is empty at the end of the proedure, satisfying the proedurepostondition.1Using the proedure's modifies lause alone results in an overly-onservative estimate of mod-i�ed private sets in the presene of sopes, beause sope-publi proedures do not delare modi-�ations of sope-private sets. Our use of the modifies lause in onjuntion with the proedureimplementation (to identify modi�ations to sope-private sets), on the other hand, allows the devel-oper to state more detailed information about publi sets than our modi�ed-set inferene algorithmould dedue. 74

specvar Content : Element set;

proc clear() // specification
requires true
modifies Content
ensures card(Content’) = 0;

proc clear() { // implementation
pre: bool e; e = isEmpty();
head: while (!e) {
body: Entry q = removeFirst();

e = isEmpty();
}

post: return;
} Figure 4-4: Proedure ontaining a loop
proc isEmpty() returns b : bool

ensures not b’ <=> card(Content)>=1

proc removeFirst() returns e : Element
requires card(Content)>0
modifies Content
ensures (card(e’)=1) & (e’ in Content) &

(Content’ = Content e’);Figure 4-5: Proedures alled within the loop
75

The �ags analysis plugin analyzes the clear() proedure by starting with the pro-edure preondition (in this ase, true) and suessively omputing an approximationof the strongest postondition over the statements in the proedure. Eventually, theanalysis reahes the while() statement ontaining the loop (labelled head), with theintermediate analysis result f . By onstrution, f holds for all reahable states atprogram ounter head that the analysis has explored up to this point. In our example,
f is the formula:

f = (∃e3. ¬e3) ∧ q′ = ∅ ∧ (e′ ⇔ ¬ard(Content’) ≥ 1) ∧ Content = Content’The formula f states that: 1) at some intermediate stage (represented by e3), thevariable e was false (in this ase, e was initially false); 2) the variable q pointsto null; 3) e’ is true i� the Content set is nonempty; and 4) the Content set isunhanged from its value on entry to the proedure. Note that e3 is only de�ned andnever aessed in the formula. This variable arises from the initial value false forloal variable e, whih is never read.Our inferene algorithm next strengthens f by onjoining the loop ondition,produing a formula f0 whih holds at the start of the loop at the label body afterzero loop iterations. For our example, f0 is f ∧ ¬e′:
f0 = (∃e3. ¬e3) ∧ q′ = ∅ ∧ (e′ ⇔ ¬ard(Content’) ≥ 1) ∧ Content = Content’ ∧ ¬e′Sine any loop invariant I must hold for all suh states, it must be the ase that
f0 ⇒ I. However, f0 is unlikely to be the desired loop invariant, sine it does nottake the e�et of the loop body into aount. In partiular, f0 is probably too strong.Our algorithm therefore omputes the strongest postondition over the loop body,starting with f0 at the top of the loop body, to obtain f ′0. The formula f ′0 holds forthe set of states that are reahable at the loop entry after exeuting exatly one loopiteration. Any aeptable loop invariant I must satisfy the onstraints f0 ⇒ I and
f ′0 ⇒ I. For our example:

f ′0 = (∃e3. ¬e3) ∧ (e′ ⇔ ¬ard(Content’) ≥ 1)
∧ (∃e5. ¬e5 ∧ (e5 ⇔ card(Content) = 1))
∧ Content’ = Content \ q′ ∧ ard(q′) = 1 ∧ q′ ∈ Content ∧ e′The formula f ′0 states that the set Content’ is equal to the set Content minus q′,whih points to an objet in the heap (sine ard(q′) = 1). The formula f ′0 also statesthat at some previous program state, the variable e was true i� the set Content hadardinality 1. (Note that e5 was formerly e′ at the top of the loop; when omposingformulas to take the e�ets of statements into aount, our analysis renames e′ to theexistentially quanti�ed e5.) Finally, f ′0 states that at some previous program state,the variable e was false, and that at the present state, e is true i� the Content’ setis empty. Note that these �nal two onjunts are ommon to f0 and f ′0.Building Potential Invariants. The formula f0 summarizes the program stateafter zero iterations of the loop body, while f ′0 summarizes the state after one iteration.76

Our goal is to produe a logial formula whih holds after an arbitrary number ofloop iterations. We an start by produing a formula whih holds after either zero orone loop iterations. We take onjunts from f0 whih are implied by f ′0, as well asonjunts from f ′0 whih are implied by f0. Any suh onjunts will then hold afterboth zero and one iterations of the loop body. We onjoin these onjunts to produethe formula f1:
f1 = (∃e3. ¬e3) ∧ (e′ ⇔ ¬ard(Content’) ≥ 1)

∧ Content’ = Content \ q′ ∧ q′ ∈ ContentIn formula f1, we dropped the intermediate state e5 and the onstraint ard(q′) = 1 .We dropped the intermediate state e5 beause it does not exist after zero iterationsof the loop, and we dropped the ardinality onstraint beause q′ is the empty setin f0 and known to be nonempty in f1; no ardinality onstraint in our analysisrepresentation satis�es both of these onditions. Dropping the ardinality onstraintallows q′ to ontain an arbitrary number of heap objets; it is no longer required topoint to a single loation in the heap.Our tehnique then heks whether f1 is a loop invariant, using the tehniquedesribed above for verifying expliit loop invariants. In our example, f1 is not aloop invariant: it ontains the onjunt Content’ = Content \ q′, where q′ is a freevariable; that is, in all iterations of the loop, Content’ is equal to Content minusthe set q′, for all values of q′. Here, q′ is only onstrained to be a subset of Content).While this onjunt holds for the zeroth and �rst iterations of the loop, it does nothold for all iterations of the loop, beause q′ is free. Therefore, we iterate again,omputing f ′1, the strongest postondition of f1 over the loop body. We ombineonjunts from f1 whih are implied by f ′1 with onjunts from f ′1 whih are impliedby f1, yielding the next estimate f2.The formula f2 summarizes the program state after zero, one and two iterations. Itontains the lause Content’ = Content\q8\q′. Beause q8 is existentially-quanti�ed(rather than free), and beause q8 does not arry any ardinality onstraints, the set
q8 an be interpreted to represent the di�erene between the initial Content set andthe intermediate Content’ set after any number of loop iterations. The analysis tests
f2 and �nds that it is a loop invariant.

f ′1 = ∃e9. (¬e9 ∧ ∃q8. (q8 ∈ Content ∧ q′ ∈ Content \ q8
∧ Content’ = Content \ q8 \ q′)
∧ (¬e9 ⇔ card(Content \ q8) = 1))

∧ (∃e3. ¬e3) ∧ ard(q') = 1 ∧ (e′ ⇔ ¬ard(Content’) ≥ 1)

f2 = ∃q8. (q8 ∈ Content ∧ q′ ∈ Content \ q8
∧ Content’ = Content \ q8 \ q′)

∧ (∃e3. ¬e3) ∧ q′ ∈ Content ∧ (e′ ⇔ ¬ard(Content’) ≥ 1)The general loop invariant inferene problem onsists of �nding a formula thatsummarizes all of the possible number of exeutions of the loop body. This formula is77

a �xed point (hene �invariant�) that is preserved by exeuting the loop body. One wayto �nd suh a formula is by starting with a formula that is stronger than the desiredinvariant and then weakening it. Formulas may be weakened by using disjuntion; thisis how we treat ontrol-�ow merges. Disjuntion preserves information; it summarizeswhat is happening if the loop might exeute n times or n + 1 times. On its own,disjuntion will never �nd a �xed point: without somehow weakening the formula,disjuntion ould only summarize the exeution of a �nite number of exeutions. Ourapproah to weakening formulas is ad-ho: we drop onjunts until we do reah a�xed point. We have designed our approah so that it is guaranteed to terminate,but the remaining formula might not be strong enough to enable the exeution of theloop body. However, in our experiene, our approah found all loop invariants neededby our benhmarks.Existential Quanti�ers. In our exposition so far, we have ignored the internalstruture of the onjunts in our formulas, and treated eah top-level onjunt asan atomi unit. However, we found it neessary in pratie to deompose top-levelonjunts, retaining only the parts of the onjunt whih are true. In partiular,our algorithm an infer stronger invariants by examining the internal struture ofexistentially quanti�ed lauses instead of dropping entire lauses at a time. Forinstane, in the formula above, if cj is of the form ∃e.
∧

cj
k, then our algorithmdrops sub-onjunts cj

k that are not implied by f ′i . Note, however, that even if someset of sub-onjunts K suh that cj
k ∈ K are individually implied by f ′i , it does notneessarily follow that f ′i ⇒

∧
K: in the presene of existential quanti�ers, two sub-onjunts may onspire to ontradit the anteedent. If we do onstrut suh a Kwhih fails to imply f ′i , then we drop those onjunts of K that mention e and tryagain.Comparing our inferred loop invariant f2 with the invariant Ip, we an observethat f2 has a number of extraneous lauses (e.g. q′ ∈ Content ∧ (∃e3. ¬e3), and alsothe lause ontaining q8) whih are not required to verify the loop or the proedure ingeneral. We have found no simple way to automatially produe smaller invariants.One possible heuristi is to eliminate those onjunts from an inferred loop invariantwhih are not required for the analysis of the loop body to go through. In ourexperiene, this strategy generates invariants that are sound, but too weak to provethe postonditions of some proedures, so we do not apply it.Enforing Termination. As presented above, our algorithm for generating andheking trial loop invariants is not guaranteed to terminate; we an onstrut on-trived examples on whih our algorithm does not terminate. In pratie, we are ableto infer all loop invariants in our example programs in at most three iterations.A small hange to the algorithm presented above ensures termination in all aseswhere it is possible to onstrut a loop invariant. We limit the number of iterationsthat the original algorithm may exeute. One the limit is reahed, the algorithmsubsequently drops any non-preserved onjunts and does not introdue any new ones;78

n ::= �ags
Dn ::= x.f= cFigure 4-6: Grammar for Flag Abstration Modulesthat is,

fi+1 =
∧

j

{cj | f ′i ⇒ cj}.This phase is guaranteed to terminate beause it operates on a �nite number ofonjunts; no new onjunts are added. If no onjunts are dropped in a giveniteration, then the algorithm has found a loop invariant and terminates. Otherwise,the size of the formula stritly dereases at eah step.Our algorithm, as amended, is guaranteed to never loop with an in�nite sequeneof potential invariants that are too strong. On the other hand, it is possible toonstrut an example where our algorithm produes an invariant that is not strongenough for verifying the loop body. If a loop invariant exists, the developer anprovide a hint to the inferene algorithm by inserting the pair of statements assert
C; assume C; inside the loop body.Impliations of Loop Invariant Inferene. Hob's analysis approah relies onproedure summaries to enable the modular analysis of all sites. Analysis pluginsmust somehow analyze loops whih our in module implementations; one way toanalyze loops is by verifying that the loops preserve loop invariants. Like proeduresummaries, loop invariants provide useful information for ode understanding; how-ever, unlike proedure summaries, they are not essential for modular analysis. Ourloop invariant inferene tehnique therefore redues the annotation burden on devel-opers, whih simpli�es the tasks of developing programs and verifying relevant datastruture onsisteny properties for these programs. We found that our loop invariantinferene tehnique was suessful in inferring all loop invariants in our benhmarks.4.2.3 Using the �ag analysis pluginFigure 4-6 presents the grammar for �ag abstration modules. The �ags pluginaepts base set de�nitions of the form x.f = c and derived set de�nitions whihombine suh base set de�nitions. The set de�nition S = { x : T | x.f = c }denotes all objets of type T in the onrete heap with �eld f equal to integer orboolean value c.A module M 's set de�nitions must satisfy the following onditions:� Any �eld f used in a set de�nition must be de�ned by module M .� Named sets may not ontain uninitialized (i.e. newly-instantiated) objets.These onditions allow the �ags plugin to satisfy the stationarity ondition. Notethat the seond ondition is needed to ensure that arbitrary external modules annotmodify a �ags module's sets by exeuting new statements.79

Beause the �ags plugin analyzes proedures by propagating formulas in theboolean algebra of sets, it would not gain any additional expressive power by sup-porting invariants at the level of abstration modules: Hob's spei�ation moduleinvariants have the same expressive power as would plugin-spei� �ags abstrationmodule invariants. We therefore do not provide a syntax for �ags analysis abstrationmodule invariants.To use the �ags plugin, a developer must give relevant �ag set de�nitions and en-sure that the implementation always ensures the spei�ed postonditions. When thepostondition for a �ags proedure ranges only over sets de�ned in that proedure'smodule, the �ags analysis plugin starts with the proedure preondition and om-putes the strongest postondition of the implementation by traking hanges in �agvalues. The analysis then uses the MONA deision proedure to verify that the imple-mentation's strongest postondition implies the proedure's spei�ed postondition.Otherwise, the �ags plugin relies on the design of the Hob system and inorporatesthe postonditions of alled proedures into its omputed strongest postondition toverify that �ags proedures satisfy their postonditions. We found the �ags pluginto be espeially useful for analyzing modules that delegate data struture manipula-tions to worker modules�oordination modules�due to its loop invariant inferenealgorithm; in the ase of a oordination module, the developer only needs to speifythe preonditions and postonditions of proedures in that module (as well as theinformation needed to verify the worker modules) to verify data struture onsistenyproperties.4.3 Bohne Abstration Module LanguageShape analysis is a family of stati analysis tehniques for showing onsisteny oflinked data strutures [71, 38, 84℄. Shape analysis is a promising tehnique for generaldata struture onsisteny heking, beause it an reason about statially unboundedsets of objets and relations between them. As a result, shape analysis has great po-tential for improving software reliability. Unfortunately, preise shape analyses tendto lak salability, greatly limiting their impat, despite signi�ant reent progress inimproving shape analysis e�ieny [95, 69, 70℄.Hob's Bohne plugin enables developers to use �eld onstraint analysis [93℄, apartiular instantiation of shape analysis, for verifying onsisteny properties of linkeddata strutures. Field onstraint analysis supports reursively-de�ned data strutureswhih have a tree-like bakbone plus nondeterministi �eld onstraints. Bohne anhandle a range of data strutures, from singly-linked lists to two-level skip lists. Likethe �ags plugin, the Bohne plugin an also use developer-supplied loop invariantsor infer them itself. Bohne uses symboli shape analysis based on boolean heaps todedue loop invariants.Field onstraint analysis uses set de�nitions stated in the monadi seond-orderlogi over trees augmented with nondeterministi �eld onstraints, whih allow de-velopers to onstrain non-tree �elds in the heap. Seond-order logi permits quanti�-ation over prediates, namely funtions and relations, as well as base objets in the80

logi; monadi seond-order logi restrits quanti�ation over prediates to quanti�-ation over one-plae prediates (i.e. sets). Due to this restrition on quanti�ation,monadi seond-order logi is deidable.Beause Bohne's underlying logi is seond-order, it is su�iently powerful to ex-press the onept of transitive losure, whih enables prediates in the logi to desribetree bakbones; nondeterministi �eld onstraints (stated in terms of invariants) thenenable developers to desribe properties of non-tree edges in the heap whose strutureis onstrained by the tree bakbone.4.3.1 Example: Bohne abstration moduleWe designed the �ags plugin to analyze relatively simple modules whih rely onother modules to arry out sophistiated data struture manipulations. Hob's Bohneplugin, on the other hand, uses shape analysis tehniques to statially analyze theworker modules that atually arry out data struture manipulations. Suh workermodules often do not ontain proedure alls. The Bohne plugin therefore supportsonly leaf proedures�proedures whih do not all other proedures in turn.Figure 4-7 presents the Bohne abstration body for the doubly-linked list modulewith header (DLL) used in the minesweeper example. The Hob system veri�es the DLLmodule with the Bohne decaf and flags plugins. �Bohne deaf� refers to a variantof the Bohne [93℄ shape analysis whih relies on developer-provided loop invariants;the full Bohne plugin infers loop invariants using prediate abstration. In this thesis,we disuss only the Bohne deaf plugin.Linked list set de�nitionsThe �rst part of the Bohne abstration sub-module for the DLL module ontainsset de�nitions. The Bohne plugin allows developers to speify set ontents usingmonadi seond-order logi (MSOL). Lines 2�3 use MSOL to de�ne the Content set,while lines 4�5 de�ne the Iter set. In Bohne's interpretation of MSOL, �elds in theheap are represented as relations between objets, so that next x y is true i� the �eld
x.next points to y. Therefore, the entral lambda-expression lambda v1 v2. next
v1 = v2 is a prediate whih relates its formal parameter v1 (a heap objet) withformal parameter v2, a andidate linked-list suessor; that is, the lambda expressionis true when v1.next = v2. Next, Bohne's built-in rtrancl higher-order funtiontakes a funtion and returns its re�exive transitive closure. This auses the lambdaprediate to be true for those objets v2 reahable from v1 by following zero ormore next �elds. Finally, we supply arguments to the rtrancl lambda expression:
Content is the set of all objets n reahable through next �elds from root.next,and Iter is the set of all objets n reahable from current.Linked list invariantsLines 7 through 22 state invariants for the doubly-linked list. These invariants musthold initially, are assumed to hold upon entry to linked list proedures and veri�ed81

upon exit. They enable the Bohne analysis to fous its attention only on reahableonrete states; otherwise, pathologial (and unreahable) program states would pre-vent Bohne from suessfully verifying the linked list. We next present all of theinvariants of this module.Field onstraints. The invariant on lines 7�10 is an example of a �eld onstrainton the prev �eld. In this ase, the onstraint on the prev �eld states that if x.prevpoints to y for x non-null, and if there exists another objet z suh that z.next pointsto x, then it must be the ase that y.next points to x. In other words, prev is theinverse of next whenever next has an inverse. The onstraint also states that x.prevmust be null if x is null or if no objet points to x through its next �eld.Field onstraints enable developers to give interpretations for derived �elds. De-rived �elds are important beause monadi seond-order logi an only support tree-like heap strutures; even a doubly-linked list is not a tree struture due to the
prev �elds. Our de�nitions of the Content and Iter sets fall within the monadiseond-order logi over trees beause they only disuss the subgraph of the heap whihonsists of the heap objets and the tree-strutured next �elds. In the presene of�eld onstraints, the Bohne shape analysis tool must verify 1) that mutations to the
Content and Iter sets are onsistent with their spei�ations, and 2) that the prev�eld ontinues to satisfy the appropriate �eld onstraints. In return, the �eld on-straint tells Bohne how to interpret referenes to prev in the implementation. Notethat this partiular �eld onstraint is deterministi, sine prev is a deterministi fun-tion of next. The Pointer Assertion Logi Engine [71℄ supports deterministi �eldonstraints. The Bohne system also supports nondeterministi �eld onstraints [93℄,whih state (partial) onditions that must hold on derived �elds; nondeterministi�eld onstraints enable developers to express data strutures like two-level skip lists.Only one pointer to root. The invariant on line 13 states that, if the modulehas been initialized (i.e. init is true), then for all objets in the heap, no objethas a next �eld pointing to root. No stati analysis ould onlude that the nextbakbone remains ayli upon addition to the list without using some form of thisinvariant.Sets initially empty. The invariant on line 14 ensures that Content and Initare both empty if init is false. This invariant holds by the de�nition of the Hobimplementation language: variables are initialized to null or false, as appropriate.Constraints on variable values. Lines 16�18 give more well-formedness on-straints on initialized onrete states. First, root must always be non-null if theprogram has been initialized. Furthermore, either current is null or it is reahablefrom root through the next field.Orphan objets. Finally, lines 20�22 onstrain objets that are not in the Contentset. If an objet x is not in Content, then it must not be reahable through the next82

1 use plugin "Bohne decaf" for {
2 Content = { n : Node |
3 "rtrancl (lambda v1 v2. next v1 = v2) (next root) n" };
4 Iter = { n : Node |
5 "rtrancl (lambda v1 v2. next v1 = v2) current n" };
6

7 invariant "ALL x y.
8 prev x = y > (x ~= null &
9 (EX z. next z = x) > next y = x) &

10 ((x = null | (ALL z. next z ~= x)) > y = null)";
11

12

13 invariant "init > (ALL x. ~(next x = root))";
14 invariant "(~init > root=null & current=null)";
15

16 invariant "(init > (root ~= null & (current=null |
17 rtrancl (lambda v1 v2. next v1 = v2)
18 (next root) current)))";
19

20 invariant "ALL x. x ~= null &
21 ~(rtrancl (lambda v1 v2. next v1 = v2) root x) >
22 ~(EX e. e ~= null & next e = x) & (next x = null)";
23

24 procs init, add, remove, removeFirst, getFirst,
25 isEmpty, openIter, nextIter, isLastIter,
26 closeIter, contains, removeAtIter;
27 } Figure 4-7: Bohne abstration body for doubly-linked list�eld. Furthermore, x.next must be null. This invariant enables Bohne to onlude,for instane, that adding an objet to the linked list adds preisely that objet to thelist, and no others.4.3.2 Using the Bohne analysis pluginFigure 4-8 presents the grammar for the Bohne abstration language. As with otheranalysis plugins, Bohne abstration modules ontain set de�nitions and invariants.In the ase of the Bohne plugin, set de�nitions must be expressed in monadi seond-order logi over trees. The Bohne plugin uses a subset of the Isabelle abstrationlanguage as its abstration language; this design deision allowed us to leverage ourpre-existing parser for the Isabelle abstration language.The Bohne plugin natively supports the rtrancl higher-order funtion for re�ex-83

ive transitive losure. A typial Bohne set de�nition uses the
S = { n : Node | rtrancl (lambda v1 v2. f v1 v2) r n };formulation to denote the set of objets starting at module variable r and reah-able through the f �eld. In priniple, Bohne also supports more sophistiated setde�nitions in the monadi seond-order logi over trees; however, in our work, wehave foussed on exploring appliations of the riher properties expressible as Bohneinvariants rather than on exploring appliations of more sophistiated Bohne set def-initions.Note that beause the Isabelle grammar is quite general, rtrancl does not needto appear expliitly in the Bohne abstration module language's grammar; duringparsing, rtrancl is treated as an uninterpreted funtion. rtrancl is given the properinterpretation in the Bohne veri�ation stage.Nondeterministi �eld onstraints enable developers to state properties of �eldswhih do not belong to a data struture's tree bakbone. Field onstraints are a spe-i� kind of invariant whih enable the veri�ation of implementations whih traversenon-tree �elds by stating the relationship between the non-tree �elds and the treebakbone �elds whih our in set de�nitions. As with invariants in general, non-deterministi �eld onstraints are also useful for stating properties of non-tree �eldsthat the developer expets to hold upon exit from all proedures (assuming that theseproperties hold upon entry). A nondeterministi �eld onstraint has the form

FCn(x, y) = ALL x y. n x y > f(x, y)where n is the onstrained �eld; this onstraint states that property FCn(x, y) holdswhenever x.n points to heap objet y. We have implemented an elimination algo-rithm for onverting modules whih use nondeterministi �eld onstraints into mod-ules whih use formulas expressible in the monadi seond-order logi over trees; theidea is to replae the ourrene G(f (x)) by the impliation ∀y. G(f (x)) ⇒ FCf (x, y).Our elimination algorithm is sound in all ases and omplete when �eld onstraintsare nondeterministi; please refer to [93℄ for further details on �eld onstraint analysis.Bohne also supports general monadi seond-order formulas as invariants. Invari-ants enable modular analysis by identifying ertain onrete states as being unreah-able by the implementation; without invariants, the analysis must assume the worstat eah proedure entry point, and this may inlude program states whih are toopathologial for veri�ation to sueed. In general, the developer must provide su�-iently strong invariants to enable the analysis to onlude that the tree-like bakboneremains tree-like after exeuting eah implementation proedure. Suh invariants usu-ally inlude prohibitions on pointers to the root of the data struture and prohibitionsof pointers to and from objets not in the data struture; in our doubly-linked listexample, these invariants were on lines 13�22.Additionally, if a developer intends to maintain relationships between a module'sonrete data strutures, Bohne an verify that these relationships are, in fat, pre-served by verifying that developer-provided invariants always hold upon exit from84

n ::= Bohne | Bohne deaf
Dn ::= F
In ::= F
F ::= ALL T.F | EX T.F | lambda T.F | G
G ::= A | A∗ | ∼ G | G ∧ G | G ∨ G | G ⇒ G | G ⇔ G | G = G | G 6= G
A ::= (F [, F]∗) | id | id [F] | null | true | false | ∅ | {id : F} | [|F [; F]∗|]T ::= id∗ | (id :: Y)∗

Y ::= Y → Y | Y set | id ref | void | universe | idFigure 4-8: Grammar for Bohne Abstration Modulesthe module's proedures. These invariants�stated at the abstration module level�enable developers to state low-level properties of the onrete state. The Hob systemalso aepts high-level relationships between data strutures. Suh relationships areexpressed in the set spei�ation language and given in a module's spei�ation se-tion.For the Bohne analysis, a module M 's invariants may only use �elds that module
M ontributes to a format. Note how formats ontribute to modular veri�ation:it is safe for other modules to remain oblivious of M 's invariants, sine they annotpossibly violate them.4.4 Theorem Proving Abstration Module LanguageThe Hob system enables the use of arbitrarily powerful stati analysis tehniques forreasoning about module implementations. Shape analysis, for instane, is one of themost preise stati analysis tehniques known today. However, sometimes developersreason about programs using tehniques that lie beyond the apabilities of the urrentstate of the art in automated program analysis. We believe that if a developer iswilling to expend the e�ort needed to formally prove a partiular data strutureonsisteny property, then the Hob system should seamlessly aept suh proofs inits program veri�ation methodology. Theorem proving tehniques an in prinipleverify arbitrarily ompliated onsisteny properties; interative theorem provers suhas Isabelle [81℄ and Athena [4℄ allow writing general mathematial statements aboutprogram state. The di�ulty in using theorem proving tools is that their appliationmay require manual e�ort and familiarity with their behaviour. Beause manual e�ortis expensive, theorem proving is e�etive only if it is foused on relevant parts of aprogram; the assumptions used during theorem proving must then be guaranteed bythe rest of the program. Hob's theorem proving plugin [99℄ shows how it is possibleto apply interative theorem proving tehnology to the veri�ation of data strutureonsisteny properties. Using this plugin, we veri�ed implementations of a set interms of a linear array, as well as a partial spei�ation of a priority queue (heap)implemented as a binary searh tree stored in an array.85

1 abst module Arrayset {
2 use plugin "vcgen";
3 Content = { x : Node | "exists j. 0 <= j & j < s & x : d[j]"};
4 predvar setInit;
5 invariant "0 < s";
6

7 } Figure 4-9: Example Theorem Proving Abstration SetionThe theorem proving plugin takes set de�nitions and invariants in the Isabelleformula syntax. It then onverts proedure spei�ations into Isabelle and omputesweakest preonditions from proedure implementations. The theorem proving pluginsplits the resulting proof obligations into subgoals, whih it attempts to prove auto-matially using Isabelle. It then saves the proof obligations that annot be provenautomatially for the developer to disharge manually. Essentially, a user of the the-orem proving plugin must show that the proedure's preondition (plus invariants)implies the weakest preondition needed to imply that the proedure's postondition(plus invariants) holds at the end of the proedure. Note that, unlike the other plug-ins we have desribed, the theorem proving plugin does not inlude a loop invariantinferene algorithm. Instead, the developer must always supply expliit loop invari-ants in ode to be veri�ed with the theorem proving plugin, whih then generates theappropriate veri�ation onditions for these annotated loops.4.4.1 Example: Theorem proving abstration moduleFigure 4-9 presents an abstration module for Arrayset, one of the set implementa-tions used in the minesweeper example. The Hob system uses the theorem proving(vcgen) plugin to analyze the Arrayset module; urrently, the theorem proving plu-gin is the only Hob plugin that an analyze properties of array-based data strutures.The theorem proving plugin generates veri�ation onditions in Isabelle. One a de-veloper disharges the relevant veri�ation onditions, the module is known to satisfythe spei�ed data struture onsisteny properties. A key point of the Hob systemis that lients of this module, or any module in general, do not need to understandhow the module is veri�ed. The e�ort of verifying a module an be amortized overall potential uses of the module.Line 3 of the abstration module gives the de�nition of the Content set. It �rststates that the Content set onsists of the objets x of type Node for whih there existssome integer j between 0 and s, the array's upper bound, suh that d[j] ontains x.Line 4 states that the setInit boolean variable is visible in spei�ations. Finally,line 6 states that the implementation-level variable s is always non-negative.86

4.4.2 Using the theorem proving analysis pluginAll analysis plugins must �rst oneptually ompute weakest preonditions froma module's implementations, spei�ations, set de�nitions, and invariants; pluginsthen verify that proedure preonditions imply the omputed weakest preonditions2.Hob's theorem proving plugin onforms to the general Hob analysis plugin sheme byomputing weakest preonditions. However, the theorem proving plugin di�ers fromother plugins beause it does not promise to disharge the resulting proof obligations(that is, it is not omplete): when using the theorem proving plugin, the developer isultimately responsible for guiding the theorem prover to the appropriate proofs.To use the theorem proving plugin, the developer must �rst provide set de�nitionsand invariants for the module under veri�ation. Our urrent implementation ofthe theorem proving plugin supports Isabelle/HOL, so developers may express setde�nitions and invariants in terms of Isabelle/HOL lauses. Figure 4-10 presents theonrete grammar for the theorem proving plugin's abstration language.Given implementation, spei�ation, and abstration parts of a module, the theo-rem proving plugin omputes weakest preonditions for the proedures in that module.Eah proedure's weakest preondition takes the form of a set of onjunts. The the-orem proving plugin then attempts to verify eah onjunt in turn. First, it veri�esif a onjunt belongs to the library of proved lemmas; if not, it attempts to dishargethe onjunt using proof hints inluded (with assert statements) in the proedureode; �nally, if that veri�ation fails, it attempts to prove the onjunt using Isabelle'sbuilt-in simpli�er and lassial reasoner with array axioms.In our experiene, most generated veri�ation-ondition onjunts are dishargedautomatially using array axioms. For the remaining onjunts, the fully automatedveri�ation fails, and the plugin reports that these onjunts are �not known to betrue�. After the developer interatively proves these di�ult ases in Isabelle, oursystem stores these ases in its library of veri�ed lemmas and subsequent veri�a-tion attempts pass suessfully without assistane. Our system ompares onjuntsagainst the library of proved lemmas by omparing abstrat syntax trees of formulas,taking into aount some basi properties of logial operations. This enables the reuseof existing lemmas even when the veri�ation onditions have hanged slightly.4.4.3 Expressive power of the theorem proving pluginThe theorem proving plugin allows developers to state and prove set de�nitions andinvariants by writing higher-order logi prediates for the Isabelle/HOL theorem prov-ing system. In general, higher-order logi is more powerful than the �rst-order logiused in our ommon set spei�ation language [64℄. In our examples, we have usedseond-order logi, whih allows quanti�ation over relations. Seond-order logi isneessary for naturally expressing the transitive losure relation, whih enables rea-soning about heap reahability (as needed for linked data strutures). More generally,2Reall that the �ags plugin atually omputes strongest postonditions rather than weakestpreonditions. Nevertheless, the �ags plugin satis�es the general ontrat of an analysis plugin; itjust uses a di�erent analysis tehnique to do so.87

n ::= vgen
Dn ::= F
In ::= F
F ::= ALL T.F | EX T.F | lambda T.F | G
G ::= A | A∗ | ∼ G | G ∧ G | G ∨ G | G ⇒ G | G ⇔ G | G = G | G 6= G

| G < G | G ≤ G | G > G | G ≥ G | G : G | G ∼: G | G ∪ G | G ∩ G
| G + G | G − G | G × G | G ÷ G | G :: G

A ::= arrayread | arraywrite | newarray | arraysize | �eldread | �eldwrite | (F [, F]∗)
| id | id [F] | null | true | false | nat | ∅ | {id : F} | [|F [; F]∗|]T ::= id∗ | (id :: Y)∗

Y ::= Y → Y | Y list | Y set | Y array | id ref | bool | int | void | universe | idFigure 4-10: Grammar for Theorem Proving Abstration Modulesseond-order logi enables the user to de�ne strutures whih are onstrained to hav-ing a �nite number of elements.Our use of Isabelle/HOL also enables developers to state internal onstraints whihrely on integer (or potentially �oating-point) values. For instane, a developer ouldde�ne a set whih ontains all elements of an array at prime indies. Beause thetheory of integers with addition and multipliation is undeidable, we hose to notinlude integer onstraints in our ommon set spei�ation language.The Hob approah enables developers to ombine arbitrarily expressive theoremproving invariants with more tratable logis for more straightforward parts of theprogram. When using the theorem proving plugin, developers may use basiallyarbitrarily expressive invariants and set de�nitions. But proedure preonditions andpostonditions must always be given using Hob's set spei�ation language. Upon exitfrom any proedure, Hob must verify that the program state satis�es that proedure'spostondition onjoined with any appliable invariants. Beause Hob ensures thatproedure postonditions always hold upon exit, the analysis of a module may relyon the validity of other modules' high-level set spei�ations without needing to seehow these spei�ations are veri�ed.Limits of Isabelle/HOL's expressive power. Isabelle/HOL allows users to writeany logial statement for whih it an ompute the type; in partiular, it allows quan-ti�ation over relations. Suh quanti�ation appears to be su�ient for expressinga large number of onepts used in modern mathematis. Isabelle/HOLCF [73℄ isan extension to Isabelle/HOL whih adds support for domain theory, thereby aidingthe reasoning proess for funtional programs. Isabelle/HOLCF does not inreasethe expressive power of Isabelle/HOL, but it does make some de�nitions and proofseasier to write. Finally, Isabelle/HOLZF supports the full axiom of hoie, unlikeIsabelle/HOL. Isabelle/HOL only supports a restrited form of the axiom of hoie(and this, of ourse, appears to have no impat on its usefulness).88

Comparing the theorem proving plugin and the Bohne plugin. The the-orem proving plugin might appear to be quite similar to the Bohne shape analysisplugin. Indeed, the Bohne plugin aepts a subset of the theorem proving's abstra-tion module syntax, and both the theorem proving plugin and the Bohne plugin usethe semantis of the implementation language to produe weakest preonditions fromthe soure module.The primary di�erene between these plugins is that, after generating veri�ationonditions, the Bohne plugin applies the MONA deision proedure to automatiallyverify these veri�ation onditions. The theorem proving plugin subsumes the Bohneplugin in terms of expressive power, sine it supports a superset of Bohne's abstrationmodule syntax. However, beause we designed it to aept a restrited input language,the Bohne plugin will generate a restrited domain of veri�ation onditions. Thisdomain is deidable. That is, proedures whih are spei�ed using Bohne an beshown to satisfy (or not) their spei�ations without user intervention3. Contrast thetwo-part Bohne plugin�it generates veri�ation onditions (for MONA to proess),then deides them�with the theorem proving plugin, whih just generates the veri�-ation onditions (for Isabelle/HOL). While the Isabelle/HOL theorem prover mightsuessfully prove some parts of the proof obligation resulting from the veri�ationondition, users of Isabelle have no guarantees. Any user of the theorem provingplugin is obliged to prove any subgoals that Isabelle annot prove automatially.In any ase, one the developer manually veri�es the needed veri�ation ondi-tions, the Hob system enables the developer to produtively use the analysis results.The broader impliation of the theorem proving plugin is that it allows the omposi-tion of veri�ation results obtained through theorem proving with veri�ation resultsobtained from stati analysis tehniques. We have suessfully used the Hob systemto establish global data struture onsisteny properties by ombining these di�erentveri�ation results.4.5 How Abstration Modules Enable Cheking ofGlobal PropertiesThe Hob system allows developers to state and verify global data struture onsistenyproperties using the sopes and defaults mehanisms. Figure 4-11 presents a sopeused in our minesweeper example. The sope invariant states that, outside the sope,the set Board.ExposedCells is always equal to the set ExposedList.Content; sim-ilarly, Board.UnexposedCells is equal to UnexposedList.Content. But the Boardmodule is analyzed with the �ags plugin, while the ExposedList and UnexposedListmodules are both analyzed with the Bohne plugin. Hene the Board sets and the
ExposedList sets are de�ned using ompletely di�erent formalisms and veri�ed us-ing di�erent stati analysis tehniques; despite this, the Hob system an suessfullyverify a statement that relates the two di�erent kinds of sets.3The developer does have to speify loop invariants for Bohne if the loop invariant inferene fails,however. 89

1 scope Model
2 {
3 modules Board, ExposedList, UnexposedList, List, Arrayset;
4 exports Board;
5 invariant (Board.ExposedCells = ExposedList.Content) &
6 (Board.UnexposedCells = UnexposedList.Content) &
7 (Board.init => ExposedList.setInit) &
8 (Board.peeking | (card(UnexposedList.Iter) = 0));
9 } Figure 4-11: Model sope from Minesweeper exampleThe Hob framework manages to divide the veri�ation task among analysis plu-gins by using abstration funtions throughout the analysis task. Due to the useof abstration funtions, analysis plugins may safely assume that implementations ofproedures in other modules implement their ontrats, as expressed in the set spei�-ation language. Analysis plugins therefore never need to inspet implementations orabstration funtions of other modules. In the ontext of global program properties,the Hob approah enables the overall program veri�ation task to guarantee that, forinstane, the Board.UnexposedCells set always equals the UnexposedList.Contentset, without requiring the flags plugin used for the Board module to read the odefor the UnexposedList module. Note that the analysis of the UnexposedList moduledoes not require the spei�ations for the Board module, beause the UnexposedListdoes not all the Board. Figure 4-12 illustrates this situation: it shows the modulesthat the flags and Bohne analyses see in the ontext of verifying the Board and

UnexposedList modules.

90

Figure 4-12: Module visibility by various analysis plugins

91

92

Chapter 5Ensuring Consisteny PropertiesThe Hob system veri�es two broad lasses of data struture onsisteny properties:loal properties and global properties. Developers use loal properties to establish thevalidity of Hob's set abstration by guaranteeing that data struture implementationsonform to their set interfaes, and then use global properties�expressed in termsof abstrat sets�to guarantee that domain-spei� onsisteny properties hold. Be-ause Chapter 3 has already desribed how Hob onverts global properties into loalproperties, it remains only to verify loal data struture onsisteny properties.The Hob system uses a suite of analysis plugins to ensure that various implemen-tations onform to their interfaes. Eah plugin is espeially designed to verify datastruture onsisteny properties for a partiular lass of implementations. It is thedeveloper's responsibility to selet an analysis plugin whih an verify the desireddata struture onsisteny properties. Setion 5.1 explains the general ontrat ofHob analysis plugins; Chapter 6 presents one plugin, our Hob �ags plugin, in detail.Figure 5-1 presents a shemati diagram illustrating what analysis plugins do. Brie�y,analysis plugins read the implementation, spei�ation and abstration setions of amodule M as well as the spei�ations for any modules that M alls, and deidewhether the module's implementation onforms to its spei�ation or not.Global onsisteny properties, unlike loal properties, are not neessarily relatedto any partiular program module. Developers must therefore inform the Hob systemabout the omplete set of global onsisteny properties to get sound analysis results.Setion 5.3 desribes our veri�ation driver, whih ensures that all neessary externalmodule delarations and sope delarations are inluded in the analysis of any givenmodule, and also ensures that Hob veri�es all of the modules in a program.5.1 Analysis Plugin ResponsibilitiesEah Hob analysis plugin is responsible for verifying that some target lass of pro-edures onform to their spei�ations. To verify that a proedure implementationonforms to its spei�ation, modular program veri�ation tools�inluding Hob�typially assume that the proedure's preondition holds upon entry to the proedureand attempt to show that the postondition holds upon exit from the proedure.93

implementation
for module M

abstraction
for module M

specification
for module M

Hob analysis plugin

VALID/INVALID

specifications
for M’s callees

Figure 5-1: Overview �owhart for generi analysis plugin. Boxes represent data.Hexagons represent ations.In the Hob approah, proedure spei�ations ontain preonditions (requireslauses) and postonditions (ensures lauses) expressed in the boolean algebra ofsets, whih we presented in Chapter 3. Hob implementations are written in the Hobimplementation language. This language is formally de�ned by its operational seman-tis, whih we presented in Chapter 2. Abstration modules, disussed in Chapter 4,mediate the relationship between the onrete states of the operational semantis andthe abstrat set-based spei�ations.Hob analysis plugins therefore use a module's abstration module to onvert pro-edure preonditions from the boolean algebra of sets into a suitable internal repre-sentation. Plugins then onstrut a summary of the possible program states uponexit from the proedure (whih are de�ned by referene to the Hob implementationlanguage's operational semantis). Finally, plugins must verify that eah of the pos-sible states upon exit imply the proedure postondition. Figure 5-2 summarizes thistextual desription by presenting a more detailed view of the internal workings ofanalysis plugins.The Hob system inludes the �ags, Bohne and theorem proving plugins. Chapter 6desribes the Hob �ags analysis plugin. The �ags analysis plugin supports abstra-tion modules whih assign set membership based on �eld values; beause it an inferloop invariants, it is also useful for analyzing high-level oordination modules. Coor-dination modules all upon other modules to manipulate data strutures but do notdiretly maintain any data strutures themselves. The Bohne plugin allows developersto use shape analysis tehniques to reason about program properties in the presene ofpointer-linked heap data strutures. Spei�ally, the Bohne plugin implements �eldonstraint analysis [93℄, a partiular instantiation of shape analysis. The theoremproving plugin enables developers to state and prove arbitrary program properties�94

implementation
for module M

abstraction
for module M

analysis

internal
representation

specifications
for M’s callees

 * precondition

 * postcondition

specification for M:

internal
representation

VALID/INVALID

implication checker

translator

translator

Figure 5-2: Detailed �owhart for generi analysis plugin. Boxes represent data.Hexagons represent ations.

95

inluding those that are beyond the reah of urrent stati analysis tehniques�byonstruting weakest preonditions from the implementation and relying on the de-veloper to disharge the resulting veri�ation onditions using the Isabelle theoremproving system [99℄.5.2 Developing New Analysis PluginsA key design goal of the Hob framework was to support the development of a varietyof analysis plugins. We next explain how to extend Hob with new analysis plugins.Hob analysis plugins are responsible for verifying proedure postonditions. Be-ause developers write these postonditions using the ommon set-based spei�ationlanguage, analysis plugins must implement a mapping between the spei�ation-levelset-based abstrat state and the implementation-level onrete state. The �rst step indeveloping a new analysis plugin is therefore to hoose a family of abstration map-pings for the plugin; for instane, the Bohne shape analysis plugin enables its users tomap pointer-linked heap data strutures (e.g. linked lists) to abstrat sets. Analysisplugins may also support implementation-level invariants, whih help make the anal-ysis problem more tratable by onstraining the set of possible onrete heap states.Beause di�erent analyses require markedly di�erent types of abstration mappingsand invariants, it is the responsibility of eah analysis plugin to translate abstrationmappings and invariants from strings into some suitable internal representation.The designer of a Hob analysis plugin should next deide whether or not to handleproedure alls. Some Hob plugins, suh as the Bohne plugin, are designed for leafproedures, and do not handle proedure alls. We believe that many program designsmodularize intriate data struture manipulations rather than intermingling suh ma-nipulations with proedure alls. Analysis plugins may therefore deline to handleproedure alls, saving some implementation e�ort. Note that all of the mahineryfor handling proedure alls will be present (in some form) in any analysis plugin:to handle proedure alls, an analysis plugin needs to integrate the preondition andpostondition of the alled proedure. But any analysis plugin must already integratethe preondition and postondition of the proedure under analysis. Handling proe-dure alls is therefore just an issue of hooking up the appropriate mahinery at theappropriate program points. Nevertheless, in our experiene, it was not neessary forall plugins to handle proedure alls.Most analysis plugins inlude some provision for handling loops. The key hallengein supporting loops is in handling the potentially unbounded number of exeutionpaths through the loop; many analyses use loop invariants to summarize the possiblee�ets of these paths. Existing Hob plugins support both developer-supplied loopinvariants and (in some ases) loop invariant inferene. Loop invariant inferenemakes it easier for developers to verify programs at the ost of plugin developmente�ort. Even if a plugin supports invariant inferene, the fat that inferene may beomputationally expensive (and possibly an open question, depending on the analysisplugin's internal representation) implies that it is almost always useful for analysisplugins to support developer-supplied loop invariants. A plugin developer might96

hoose to support developer-supplied loop invariants written in either, or both, theset spei�ation language and the plugin's onrete invariant notation. The Hobframework passes any provided loop invariants to the plugin as a string. If invariantsontain set spei�ations, the plugin may all bak into the Hob framework to parsethe set spei�ations into abstrat syntax trees.Having made these design deisions, a developer must next implement the analysisplugin. The Hob framework provides the plugin with abstrat syntax trees (ASTs) forthe module's implementation, spei�ation, and abstration setions. Whenever theHob framework annot provide an abstrat syntax tree beause the interpretation ofthe input depends on the analysis plugin (e.g. abstration mappings, assertions), ananalysis plugin developer must instead parse the strings into a suitable format insidethe plugin itself.The analysis plugin must aept the provided ASTs and deide whether, giventhe provided implementation, the postondition is guaranteed to hold at all proedureexits (assuming that proedure preonditions hold upon proedure entry). Reall thatthe Hob framework has proessed the preonditions and postonditions to inlude anyneessary global onsisteny onditions and the e�et of the proedure's modifieslause; at this point, the provided preonditions and postonditions an be veri�edwithout referene to any other part of the program. The Hob framework has alsoarranged for all implementation-level invariants to hold at entry points for publiproedures; the analysis is responsible for ensuring that these invariants hold uponexit.The Hob framework does not impose any partiular methodology for the oreveri�ation task. Existing plugins have taken a number of di�erent approahes. Manyexisting plugins translate the proedure preondition into an internal representationand perform some kind of veri�ation ondition generation, passing an impliationto a deision proedure for eah proedure exit point (and all site, if appropriate).The PALE plugin, however, translates an entire proedure (both its spei�ationand implementation) into a notation suitable for the PALE tool and delegates theveri�ation task to the PALE tool.One a plugin has deided whether or not an implementation onforms to itsspei�ation, the plugin must report suess or failure to the analysis tool. Analysisplugins are also enouraged to provide meaningful error messages in the event offailure.5.3 Hob Analysis DriverTo verify a program module M , the Hob system learly needs the implementation,spei�ation and abstration modules for M . However, this does not su�e: Hobalso needs spei�ations for M 's dependenies�the modules that M alls, as well assope de�nitions for sopes that M belongs to. Note that overlooking sope de�nitionsan result in soundness problems, beause sopes impose additional requirements formodules to satisfy (in the form of sope invariants). This setion desribes how theHob analysis driver ensures that Hob's analyses see all needed omponents when97

List

ArraySet

Board

Main

Controller

View

Model

Figure 5-3: Hob analysis driver state after parsing minesweeper �les. Boxes representimplementation/spei�ation/abstration triples. Ovals represent sopes.analyzing a module. It also presents a sample run of the Hob analysis driver on our
minesweeper example.Parse all �les. The Hob analysis driver �rst parses all Hob abstration, implemen-tation, and spei�ation �les in a diretory, as well as all sope delarations. Onethe Hob analysis driver has parsed all relevant �les, it an ompute inter-�le depen-denies. Figure 5-3 presents the state of the Hob analysis driver after parsing themodules in our minesweeper example.Instantiate modules. The Hob analysis driver next expands stati module in-stantiations (as desribed in Chapters 2 and 3), sine modules may have instantiatedmodules as dependenies. Figure 5-4 presents the state of the Hob analysis driverafter instantiating the List module as UnexposedList and ArraySet as ExposedSet.Add dependenies. The Hob analysis driver must next add dependenies betweendi�erent program omponents. The analysis driver �rst adds dependenies betweensopes and their ontained modules. Figure 5-5 illustrates the state of the Hob anal-ysis driver after adding dependenies from sopes to their ontained modules. Next,the analysis driver adds dependenies between modules and their allees. Figure 5-6presents the state of the Hob analysis driver after adding inter-module dependenies.Topologial sort and ommand generation. Having omputed all of the de-pendenies, the Hob analysis driver performs a topologial sort to determine 1) a98

List

ArraySet

Board

Main

Controller

View

Model

UnexposedList

ExposedSet

Figure 5-4: Hob analysis driver state after proessing minesweeper stati module in-stantiations. Solid boxes represent implementation/spei�ation/abstration triples.Dashed boxes represent instantiated modules. Ovals represent sopes.
List

ArraySet

Board

Main

Controller

View

Model

UnexposedList

ExposedSet

Figure 5-5: Hob analysis driver state after adding minesweeper sope dependen-ies. Solid boxes represent implementation/spei�ation/abstration triples. Dashedboxes represent instantiated modules. Ovals represent sopes. Lines represent sopeontainment. 99

List

ArraySet

Board

Main

Controller

View

Model

UnexposedList

ExposedSet

Figure 5-6: Hob analysis driver state after adding minesweeper inter-module de-pendenies. Solid boxes represent implementation/spei�ation/abstration triples.Dashed boxes represent instantiated modules. Ovals represent sopes. Lines representsope ontainment. Curved lines represent module dependenies.set of invoations of the Hob analysis tool whih guarantees that all modules areheked; and 2) the set of relevant �les to pass to the Hob analysis tool for eahinvoation. This set of relevant �les inludes the implementation, spei�ation, andabstration setions of a partiular module, plus any sopes that the module belongsto, and �nally all spei�ation modules for the module's allees. Figure 5-7 presentsthe analysis tool invoations whih, together, verify the minesweeper benhmark.

100

$../../bin/verify all
Verifying module Arrayset...

> analyze ./arrayset.fl ./arrayset.sl ./arrayset.al
Verifying module List...

> analyze ./list.fl ./list.sl ./list.al
Verifying module View...

> analyze ./view.fl ./view.sl ./view.al ./board.sl
Verifying module Board...

> analyze ./board.fl ./board.al ./model.scope ./view.sl
./arrayset.sl ./board.sl ./list.sl

Verifying module Controller...
> analyze ./controller.fl ./controller.sl ./controller.al

./board.sl ./view.sl
Verifying module Main...

> analyze ./main.fl ./main.sl ./main.al ./board.sl ./controller.slFigure 5-7: Commands generated by Hob analysis driver

101

102

Chapter 6Flags Analysis PluginThe Hob �ags analysis plugin veri�es modules in whih integer or boolean �ags in-diate abstrat set membership. The developer spei�es (using the �ags abstrationlanguage) the orrespondene between the implementation's onrete �ag values andthe spei�ation's abstrat sets, and additionally identi�es the onrete boolean vari-ables whih also appear as abstrat spei�ation-level boolean variables. The �agsplugin is also suitable for analyzing oordination modules, whih do not maintain anysets themselves, but instead oordinate the sets of other modules; in analyzing suhmodules, the �ags plugin keeps trak of set ontents for externally-de�ned sets andupdates them at proedure all sites.Setion 4.2 presented the abstration language for the �ags plugin. The abstra-tion language allows developers to speify what properties to verify. This hapterexplains how the �ags plugin veri�es properties. The �ags plugin uses the MONA de-ision proedure [51℄ to verify whether or not proedures satisfy their postonditions.MONA was built to proess formulas expressed in monadi seond-order logi so byompiling formulas into automata and analyzing these automata. Our �ags pluginonly emits formulas in the weak monadi seond-order theory of 1 suessor, a subsetof the logi that MONA supports, and our examples verify in dozens of seonds. Theweak monadi seond-order theory of 1 suessor su�es for the �ags plugin beausethis plugin only manipulates statements in �rst-order logi over uninterpreted sets.6.1 Flags Analysis ExampleFigure 6-1 presents the implementation and spei�ation of a short proedure, as wellas the relevant part of its abstration setion. This proedure either adds or removesan objet from the MarkedCells set by mutating its isMarked boolean-valued �eld.To analyze the proedure, the �ags analysis plugin generates boolean formulas foreah program point and veri�es whether or not the formulas at proedure exit pointsimply the stated postondition.
103

impl module Board {
proc setMarked(c:Cell; v:bool) {

c.isMarked = v;
}

}

spec module Board {
proc setMarked(c:Cell; v:bool)

requires (c in U) & (card(c)=1)
modifies MarkedCells
ensures (v <=> (c in MarkedCells’)) &

(MarkedCells’ <= MarkedCells + c);
}

abst module Board {
use plugin "flags";
U = { x : Cell | "x.init = true" };
MarkedCells = U cap { x : Cell | "x.isMarked = true" };

}Figure 6-1: Minesweeper Board spei�ations, implementations, and abstrationsAt the start of the proedure, the �ags plugin generates the following formulaby reiterating the proedure preondition and stating that all sets and variables areunmodi�ed.
∀2M.∀0p.∀2M ′.∀0p′. · · · (6.1)

(M = U ∩ M1) ∧ ∃M ′
1. M ′ = U ′ ∩ M ′

1 (6.2)
c ⊂ U ∧ card(c) = 1 (6.3)

∧ M ′ = M ∧ U ′ = U ∧ C ′ = C ∧ p ⇔ p′ ∧ · · · (6.4)The formula ranges over the set variables and boolean prediates in the program.Proedure parameters our as free variables of the formula, while the program'sabstrat state is given in terms of universally quanti�ed variables. Note that thisformula is a relation between unprimed (initial) sets and boolean variables and primed(urrent) sets and boolean variables. (For brevity, we refer to the MarkedCells set bythe abbreviation M . We also omit unused variables exept for peeking, abbreviatedas p. We hose to leave p in our example to illustrate our treatment of unmodi�edvariables.)Line 6.1 ontains universal quanti�ers for abstrat variables. ∀2 denotes universalquanti�ation over sets while ∀0 denotes universal quanti�ation over boolean vari-ables. Line 6.2 states de�nitions for derived sets; M is a derived set beause it isde�ned as the intersetion of the universal set U with the base set M1 of objets with104

isMarked set to true. These de�nitions are repeated twie, one for unprimed vari-ables and one for primed variables. Line 6.3 states the proedure preondition, whihholds throughout the proedure, sine it states onstraints on unmodi�able unprimedsets. Finally, line 6.4 onstrains sets and boolean variables that are unmodi�ed bythe proedure. Initially, all sets and variables are unmodi�ed. Eah modi�ation ofstate removes a variable from this line.The �ags plugin next proesses the statement c.isMarked = v, using the assign-ment statement transfer funtion, to obtain the following relation.
∀2M.∀0p.∀2M ′.∀0p′. · · · (6.5)

(M = U ∩ M1) ∧ ∃M ′
1. M ′ = U ′ ∩ M ′

1 (6.6)
∧ ((M ′

1 = M1 ∪ c) ∧ v) ∨ ((M ′
1 = M1 \ c) ∧ ¬v) (6.7)

∧ c ⊂ U ∧ card(c) = 1 (6.8)
∧ U ′ = U ∧ C ′ = C ∧ p ⇔ p′ ∧ · · · (6.9)(6.10)The transfer funtion updates the value of the impliit base M1 set by adding theobjet c i� the v variable is true (line 6.7).Having reahed the end of the proedure, the �ags plugin then generates thefollowing formula to submit to the MONA deision proedure.

∀2M.∀0p.∀2M ′.∀0p′. · · · (6.11)
(M = U ∩ M1) ∧ ∃M ′

1. M ′ = U ′ ∩ M ′
1 (6.12)

∧ ((M ′
1 = M1 ∪ c) ∧ v) ∨ ((M ′

1 = M1 \ c) ∧ ¬v)(6.13)
∧ c ⊂ U ∧ card(c) = 1 (6.14)
∧ U ′ = U ∧ C ′ = C ∧ p ⇔ p′ ∧ · · · (6.15)

=⇒ (6.16)
C ′ = C ∧ p ⇔ p′ (6.17)

∧ ((v ⇔ c ⊂ M ′) ∧ M ′ ⊂ M ∪ c) (6.18)The formula ontains two parts. Lines 6.11 through 6.15 speify the programstate after symboli exeution of the proedure, while lines 6.17 and 6.18 state therequirements on the program state needed by the proedure's postondition. To verifythat the proedure satis�es its spei�ation, MONA's deision proedure must provethat lines 6.11 through 6.15 imply lines 6.17 and 6.18. The known state at proedureexit (lines 6.11 through 6.15) simply ontain the relation that the transfer funtionomputes; this relation aptures the e�et of the assignment to the isMarked �eld,Lines 6.17 and 6.18 ontain the requirements that the �ags plugin must ensure.No exeutions of the proedure's implementation may modify any sets that are notdelared to be modi�ed, as stated in line 6.17. Also, the proedure's implementationmust ause its postondition to hold; line 6.18 states that onstraint.One the �ags plugin generates the appropriate formula, it passes the formula onto the MONA tool. In this ase, the veri�ation sueeds beause the anteedent is105

su�iently strong. The �ags plugin may therefore onlude that the proedure indeedimplements its spei�ation.6.2 Flags Analysis AlgorithmTo verify a proedure, the �ags analysis performs abstrat interpretation [20℄, usingthe spae of boolean formulas as the abstrat domain. It attempts to show thatproedure postonditions are implied by the analysis domain element omputed foreah proedure exit points. Figure 6-2 illustrates the operation of the �ags analysisalgorithm. Starting with the proedure preondition, the analysis's transfer funtionsmanipulate boolean formulas and modify these formulas following assignment state-ments and proedure alls. The analysis treats loops by using developer-providedloop invariants or by inferring the invariants itself. We all the key tehnique for ma-nipulating formulas inorporation. This tehnique updates a boolean algebra formulaby inorporating the e�et of a seond boolean algebra formula. Whenever the anal-ysis reates a new formula (mostly during inorporation), it also applies some simpleoptimizations to the formula before it is reated. We found that these optimizationswere ruial to the suessful veri�ation of our benhmark programs.More formally, our analysis assoiates a quanti�ed boolean formula F with eahprogram point. A formula F is a relation between two olletions of variables.Unprimed set variables S (or boolean variables b) denote initial values of sets (orbooleans) at the entry point of the proedure, while primed set variables S ′ (or primedboolean variables b′) denote the values of these sets (or booleans) at the urrent pro-gram point. In general, set and boolean variables are de�ned in their ontainingmodule's abstration setions; Setion 4.2 desribed how developers may de�ne setand boolean variables for the �ags plugin. The use of primed and unprimed variablesallows the �ags analysis to represent, for eah program point p, a binary relation onstates that overapproximates the reahability relation between proedure entry andpoint p [48, 19, 86℄.The �ags analysis also traks (objet-typed) loal variables using sets. For eahloal variable, the orresponding set ontains the objet to whih the loal variablerefers; suh a set omes with a ardinality onstraint that restrits the set to haveardinality at most one (null referenes are represented by the empty set). Thisapproah automatially disambiguates some loal variable and objet �eld aesses;if a formula ontains a onstraint stating that two loal variables are disjoint, thenthese variables are unaliased. Other stati analyses often rely on a separate pointeranalysis to provide this information.The initial data�ow fat at the start of a proedure is the preondition for thatproedure, transformed into a relation by onjoining S ′ = S for all relevant sets and
b′ ⇔ b for all relevant boolean variables. Clearly, at the beginning of a proedure, allsets and boolean variables have their initial values. At merge points, the analysis om-bines boolean formulas with disjuntion. The analysis also performs loop invariantveri�ation and inferene if neessary (Setion 6.6). After running the data�ow anal-ysis, our analysis heks that the proedure onforms to its spei�ation by heking106

 * precondition

 * postcondition

boolean
formula

boolean
formula

boolean
formula

OR OR

VALID/INVALID

use or infer
loop

invariant

verify
callee

precondition

optimize
formula

call MONA
decision

procedure

create
implication

compute
transfer function
(incorporation)

specification:abstractionimplementation:

 * statements

 * procedure calls

 * loops

callee
specifications

Figure 6-2: Flowhart for �ags analysis plugin. Boxes represent data. Hexagonsrepresent ations.
107

that the e�etive postondition (whih inludes the ensures lause and any requiredrepresentation or global invariants) holds at all exit points of the proedure. In par-tiular, the �ags analysis heks that for eah exit point e, the omputed formula Beimplies the proedure's postondition.6.3 InorporationThe transfer funtions in the data�ow analysis update boolean formulas to re�etthe e�et of eah statement. Reall that the data�ow fats for the �ags analysis areboolean formulas B whih denote a relation between the state at proedure entry andthe state at the urrent program point. Let Bs be the boolean formula desribing thee�et of statement s. Our �ag analysis uses the inorporation operation to update Bwith the e�et of Bs. The inorporation operation B ◦ Bs omputes the ompositionof the relations de�ned by the formulas B and Bs.Inorporation example. Let B ≡ y′ = y ∧ x′ = x ∧ S ′ = S ∧ S = x. We explainhow the �ags plugin abstratly exeutes the statement s: y = x. To exeute thisstatement, the plugin must inorporate Bs ≡ y′ = x ∧ x′ = x ∧ S ′ = S (representingthe e�et of s) into B (the state before s exeuted). Inorporation proeeds byquantifying over hatted sets v̂, substituting v̂ for v′ in B and v̂ for v in Bs andapplying quanti�er elimination. This gives the formula
∃Ŝ, x̂, ŷ. (ŷ = y ∧ x̂ = x ∧ Ŝ = S ∧ S = x) ∧

(y′ = x ∧ x′ = x̂ ∧ S ′ = Ŝ),whih simpli�es to S ′ = S ∧ x′ = x ∧ y′ = x, as desired.De�nition of inorporation. The �ags plugin omputes B ◦ Bs by applyingequivalene-preserving simpli�ations to the formula
∃Ŝ1, . . . , Ŝn, b̂1, . . . , b̂j . B[S ′i 7→ Ŝi, b′j 7→ b̂j] ∧ Bs[Si 7→ Ŝi, bj 7→ b̂j]Inorporation omputes the abstrat state after exeuting s in state B for the followingreason. The desired abstrat state is the relation between the sets upon entry to theproedure (expressed in terms of unprimed, unhatted sets and booleans Si and bj)and after s has exeuted (expressed in terms of primed sets and booleans S ′i and b′j).Inorporation reates (using existential quanti�ation) the hatted sets Ŝi and hattedbooleans b̂i, and uses them to represent the abstrat state after B by substitutingprimed variables of B by hatted variables. Sine Bs desribes the relation between theprogram's abstrat state before exeuting s (represented in Bs by unprimed variables)and after exeuting s (represented by primed variables), inorporation substitutes theunprimed variables of Bs with hatted variables. Conjoining the substituted B and

Bs formulae therefore gives a relation whih expresses the program's abstrat stateafter exeuting s from state B. 108

6.4 Transition RelationsOur �ags analysis handles eah statement in the implementation language by pro-viding appropriate transition relations for these statements. The generi transferfuntion is a relation of the following form:
JstK(B) := B ◦ F (st) ,where F (st) is the formula symbolially representing the transition relation for thestatement st, as expressed in terms of abstrat sets.Frame ondition generator. Before providing transfer funtions for implementa-tion language statements, we de�ne a generi frame ondition generator. This frameondition generator will show up in most of our transfer funtions. The generatorreates a boolean formula whih states that a partiular variable may potentially bemodi�ed, but that all other sets and booleans are unmodi�ed. Let

framex :=
∧

S 6=x, S not derived

S ′ = S ∧
∧

b6=x

(b′ ⇔ b),where S ranges over sets and b over boolean variables.Reall that the set spei�ation language enables developers to de�ne base setsand derived sets. A base set de�nition has the form {x:T | . . . }. Base set de�nitionsmay be named (S = {x:T | . . . }) or anonymous (when a base set de�nition oursas part of a larger derived set de�nition). Derived set de�nitions ombine named setsand anonymous set de�nitions using set operations.Note that our de�nition of the frame ondition expliitly omits derived sets. In-stead, the �ags analysis reates a formula stating that the anonymous base sets usedin the derived set de�nitions are preserved and onjoins derived set de�nitions beforeapplying the deision proedure. This treatment automatially works for derived setsand helps avoid inonsisteny: as long as the base sets making up a derived set arepreserved, then the derived set is preserved as well.We ontinue by presenting transition relations for the statements in our imple-mentation language.Assignment statements. Our �ags analysis traks values of boolean variables:
F (b = true) := b′ ∧ frameb
F (b = false) := (¬b′) ∧ frameb

F (b = y) := (b′ ⇔ y) ∧ frameb
F (b = 〈if ond〉) := (b′ ⇔ f+(〈if ond〉)) ∧ frameb

F (b =! e) := F (b = e) ◦ ((b′ ⇔ ¬b) ∧ frameb)where f+(e) is the result of evaluating e, de�ned below in our analysis of onditionals.109

The analysis also traks loal variable objet referenes:
F (x = y) := (x′ = y) ∧ framex

F (x = null) := (x′ = ∅) ∧ framex
F (x = new t) := ¬(x′ = ∅) ∧

∧
S(x′ ∩ S = ∅) ∧ framexWe next present the transfer funtion for mutating set membership. If R = {x :

T | x.f = c} is a set de�nition in the abstration setion, we have:
F (x.f = c) := R′ = R ∪ x ∧

∧

S∈alts(R)

S ′ = S \ x ∧ frame{R}∪ alts(R)where alts(R) = {S | abstration module ontains S = {x : T | x.f = c1}, c1 6= c.}The rules for reads and writes of boolean �elds are more detailed than those for�eld variables beause our analysis traks the �ow of boolean values:
F (x.f = b) :=

(
b ∧ B+′ = B+ ∪ x

∧
∧

S∈alts(B+) S ′ = S \ x

)

∧
(

¬b ∧ B−′ = B− ∪ x
∧

∧
S∈alts(B−) S ′ = S \ x

)

∧ frame{B}∪alts(B)
F (b = y.f) := (b′ ⇔ y ∈ B+) ∧ frameb.where B+ = {x : T | x.f = true} and B− = {x : T | x.f = false}.The rules presented above do not overlap in their appliability. However, theydo not over all statements in the Hob implementation language. We therefore use apair of default rules to onservatively aount for expressions not otherwise handled,

F(x.f = ∗) := framex F(x = ∗) := framex.Proedure alls. For a proedure all x=proc(y), our transfer funtion heksthat the allee's requires ondition holds, then inorporates proc's ensures ondition:
F (x = proc(y)) := ensures1(proc) ∧

∧

S

S ′ = Swhere both ensures1 and requires1 substitute aller atuals for formals of proc (in-luding the return value), and where S ranges over all loal variables.Conditionals. The analysis produes a di�erent formula for eah branh of an ifstatement if (e). We de�ne funtions f+(e), f−(e) to summarize the additionalinformation available on eah branh of the onditional; the transfer funtions for thetrue and false branhes of the onditional are thus, respetively,
Jif (e)K+(B) := f+(e) ∧ B Jif (e)K−(B) := f−(e) ∧ B.110

For onstants and logial operations, we de�ne the obvious f+, f−:
f+(true) := true f−(true) := false
f+(false) := false f−(false) := true

f+(!e) := f−(e) f−(!e) := f+(e)
f+(x!=e) := f−(x==e) f−(x!=e) := f+(x==e)

f+(e1 && e2) := f+(e1) ∧ f+(e2) f−(e1 && e2) := f−(e1) ∨ f−(e2)We de�ne f+, f− for boolean �elds as follows:
f+(x.f) := x ⊆ B f−(x.f) = x 6⊆ B

f+(x.f==false) := x 6⊆ B f−(x.f==false) := x ⊆ Bwhere B = {x : T | x.f = true}; analogously, let R = {x : T | x.f = }. Then,
f+(x.f==) := x ⊆ R f−(x.f==) := x 6⊆ R.We also prediate the analysis on whether a referene is null or not:
f+(x==null) := x = ∅ f−(x==null) := x 6= ∅.Finally, we have a ath-all ondition,

f+(∗) := true f−(∗) := truewhih onservatively aptures the e�et of unknown onditions.Assertions and Assume Statements. We analyze a statement s of the form
assert A by verifying that the formula for the program point s implies A. Assertionsallow developers to hek that a given set-based property holds at an intermediatepoint of a proedure. assume statements enable the developer to speify propertiesthat are known to be true, but whih have not been shown to hold by the analysis.Our analysis prints out a warning message when it proesses assume statements, andonjoins the assumption to the urrent data�ow fat. Assume statements have provento be valuable in understanding analysis outomes during the debugging of proedurespei�ations and implementations. Assume statements may also be used to ommu-niate properties of the implementation that go beyond the abstrat representationused by the analysis.Return Statements. Our analysis proesses the statement return x as an as-signment rv = x, where rv is the name given to the return value in the proeduredelaration. For all return statements (whether or not a value is returned), our anal-ysis heks that the urrent formula implies the proedure's postondition and stopspropagating that formula through the proedure.111

6.5 Verifying Impliation of Data�ow FatsOur �ags analysis veri�es impliation when it enounters an assertion, proedure all,or proedure postondition. In these situations, the analysis generates a formula ofthe form B ⇒ A where B is the urrent data�ow fat and A is the laim to beveri�ed1. The impliation to be veri�ed, B ⇒ A, is a formula in the boolean algebraof sets. We use the MONA deision proedure to hek its validity [51℄.6.6 Loop Invariant InfereneSetion 4.2.2 desribed our loop invariant inferene algorithm; we next desribe itsimplementation. The synthesis starts with the formula haraterizing the transitionrelation at the entry of the loop and weakens the formula by iterating the analysis ofthe loop until it reahes a �xpoint. Figure 6-3 presents pseudoode for the algorithm.Compute-Postondition is the algorithm that we have presented in the preedingsetion. This algorithm takes a boolean formula f and a statement s and outputs theboolean formula orresponding to the program state after exeuting s, if f was thestate before exeuting s. The top-level funtion Infer-Loop-Invariant thereforeattempts to �nd invariants by taking those onjunts whih are ommon to boththe pre-state f and the post-state f ′ of the loop (tehnially, it identi�es onjunts
c whih are implied by both f and f ′). If loop invariant inferene takes too long,then our algorithm enfores termination by dropping onjunts from f ′. The Get-Implied-Conjunts subroutine �nds those onjunts of its �rst parameter f1 whihare implied by the seond parameter f2, while the Handle-Existential subroutinehandles existential quanti�ers by dropping sub-onjunts (underneath the existentialquanti�er) that are not implied by the soure formula.6.7 Boolean Algebra Formula TransformationsIn our experiene, applying several formula transformations drastially redued thesize of the formulas emitted by the �ags analysis, as well as the time needed todetermine their validity using an external deision proedure; in fat, some benh-marks ould only be veri�ed with the formula transformations enabled. This setiondesribes a number of useful transformations that we disovered.Smart Construtors. The onstrutors for reating boolean algebra formulas ap-ply peephole transformations as they reate the formulas. Constant folding is thesimplest peephole transformation: for instane, optimizing B ∧ true gives B. Our1Note that B may be unsatis�able. This often indiates a problem in a proedure preondition.The �ags analysis an, optionally, hek whether B is unsatis�able every time it invokes the deisionproedure, and emit a warning if it is. This hek enabled us to identify errors in preonditionssooner; of ourse, it also slowed down the �ags analysis by a fator of 2. Without suh a hek,unsatis�able preonditions beome visible only at alls to a�eted preonditions, whih are analyzedseparately�and possibly muh later�due to modular veri�ation112

Infer-Loop-Invariant(f0, lo op-c ondition , lo op-b o dy , max-iter ations)1 i← 02 f ← f03 f ′ ← Compute-Postondition(f ∧ lo op-c ondition , lo op-b o dy)4 while i < max-iter ations and f ′ 6⇒ f5 do f ← Get-Implied-Conjunts(f, f ′, []) ∧ Get-Implied-Conjunts(f ′, f, [])6 f ′ ← Compute-Postondition(f ∧ lo op-c ondition , lo op-b o dy)7 i← i + 18 if i ≥ max-iter ations9 then while f ′ 6⇒ f10 do f ← Get-Implied-Conjunts(f, f ′, [])11 f ′ ← Compute-Postondition(f ∧ lo op-c ondition , lo op-b o dy)12 return fGet-Implied-Conjunts(f1, f2, [x0, . . . , xn])1 result← True2 foreah c in Conjunts(f1)3 if f2 ⇒ ∃x0, . . . , xn. c4 then result← c ∧ result5 else if c has the form ∃x.e6 then result← Handle-Existential(e,f2, [x0, . . . , xn, x]) ∧ result7 return resultHandle-Existential(e, f, [x0, . . . , xn])1 g ← Get-Implied-Conjunts(e, f, [x0, . . . , xn])2 if f ⇒ ∃x0, . . . , xn.g3 then return ∃xn.g4 g ← True5 foreah c in Conjunts(e)6 if c does not ontain xn7 then g ← c ∧ g8 return Get-Implied-Conjunts(g, f, [x0, . . . , xn−1])Figure 6-3: Pseudo-ode for Loop Invariant Inferene Algorithm

113

onstrutors fold onstants in impliations, onjuntions, disjuntions, and negations.Similarly, when there is a quanti�ation over a variable that is not subsequentlyused, we simply drop the quanti�er: ∃x.F beomes just F as long as x does notour free in F . Most interestingly, we fator ommon onjunts out of disjuntions:
(A∧B) ∨ (A∧C) is optimized to A∧ (B ∨C). Conjunt fatoring greatly redues thesize of formulas traked after ontrol-�ow merges, sine most onjunts are sharedon both ontrol-�ow branhes following a onditional. The e�ets of the onjuntfatoring transformation appears to be similar to the e�ets of SSA form onversionin weakest preondition omputation [37, 63℄.Basi Quanti�er Elimination. The �ags analysis plugin symbolially omputesthe omposition of statement relations during the inorporation step by existentiallyquantifying over all state variables. However, most relations orresponding to state-ments modify only a small part of the state and ontain the frame ondition thatindiates that the rest of the state is preserved. The result of inorporation antherefore often be written in the form ∃x.x = x1 ∧ F (x), whih simpli�es to F (x1).This transformation redues both the number of onjunts and the number of quan-ti�ers in a formula. Moreover, this transformation an redue some onjunts to theform t = t for some Boolean algebra term t, whih an then be eliminated by furthersimpli�ations.It is instrutive to ompare our tehnique to weakest preondition omputation [37℄and forward symboli exeution [16℄. These tehniques are optimized for the om-mon ase of assignment statements and perform relation omposition and quanti�erelimination in one step. Our tehnique�using inorporation and then performing arange of ad-ho formula optimizations�ahieves the same result in pratie, but iseasier to implement and also enables the optimization of general boolean formulas.Our tehnique an therefore also take advantage of equalities in transfer funtionsthat are not a result of analyzing assignment statements, but are given by expliitformulas in ensures lauses of proedure spei�ations. Suh transfer funtions mayspeify more general equalities suh as A = A′ ∪ x ∧ B′ = B ∪ x whih do notredue to simple bakward or forward substitution.Leveraging Quanti�er Elimination in Impliations The �ags analysis rewrites
∀x.f ⇒ g as ¬(∃x.f ∧ ¬g). One the analysis expresses impliations this way,the quanti�er-elimination optimization applies to the existential quanti�er inside thenegation, whih an greatly redue the size of the formulas that need to be veri�ed.Sine formulas with expliit impliations are easier to understand, we have added aruntime �ag whih spei�ally disables this optimization for debugging purposes.Quanti�er Nesting. We have experimentally observed that the MONA deisionproedure works substantially faster when eah quanti�er is applied to the smallestsope possible. We have therefore implemented a quanti�er nesting step that reduesthe sope of eah quanti�er to the smallest possible subformula that ontains all free114

variables in the sope of the quanti�er. For example, our transformation replaes theformula ∀x. ∀y. (f (x) ⇒ g(y)) with (∃x. f (x)) ⇒ (∀y. g(y)) .To take maximal advantage of our transformations, we simplify formulas afterapplying inorporation and before invoking the deision proedure. Our global sim-pli�ation step rebuilds formulas bottom-up and applies simpli�ations to eah sub-formula.6.8 Evaluating Formula Optimization ImpatWe analyzed our benhmarks on a 2.80GHz Pentium 4, running Linux, with 2 gi-gabytes of RAM. Table 6.1 summarizes the results of our formula transformationoptimizations. Eah line summarizes a spei� benhmark with a spei� optimiza-tion on�guration. A Xin the �Smart Construtors� olumn indiates that the smartonstrutors optimization is turned on; a × indiates that it is turned o�. Similarly,a Xin the �Optimizations� olumn indiates that all other optimizations are turnedon; a × indiates that they are turned o�. The �Number of nodes� olumn reportsthe sizes (in terms of AST node ounts) of the resulting boolean algebra formulas.Our results indiate that the formula transformations redue the formula size by 2 to60 times (often with greater redutions for larger formulas); the Optimization Ratioolumn presents the redution obtained in formula size. The �MONA time� olumnpresents the time spent in the MONA deision proedure (up to 73 seonds afteroptimization); the �Flags time� olumn presents the time spent in the �ags analysis,exluding the deision proedure (up to 477 seonds after optimization). Without op-timization, MONA ould not suessfully hek the formulas for the ompiler, board,view, ensemble and h2o modules beause of an out of memory error.

115

Optimizations Smart Number Optimization MONA FlagsConstrutors of nodes ratio time (s) time (s)prodons X X,× 12306 2.46 0.17 0.03
× X,× 30338 1.00 0.27 0.04ompiler X X 15854 32.06 0.45 5.10
X × 28003 18.15 0.60 6.19
× X,× 508375 1.00 N/A 60.27sheduler X X,× 442 2.44 0.05 0.04
× X,× 1082 1.00 0.12 0.14tas X X,× 2874 3.18 0.21 0.12
× X,× 9141 1.00 12.79 0.33board X X 28658 41.43 1.92 18.89
X × 106550 11.14 11.45 29.27
× X 926321 1.28 N/A 134.94
× × 1187379 1.00 N/A 151.46ontroller X X 6759 4.23 0.41 0.18
X × 7101 4.02 0.41 0.18
× X,× 28594 1.00 3.08 0.54view X X 15878 59.08 1.07 12.38
X × 53925 17.39 1.45 18.88
× X,× 938000 1.00 N/A 263.15atom X X 9677 3.14 0.53 0.13
X × 10244 2.97 0.54 0.13
× X,× 30447 1.00 40.95 0.43ensemble X X 120279 20.60 50.90 34.15
X × 148748 16.66 105.59 47.06
× X,× 2478004 1.00 N/A 464.52h2o X X 205933 4.32 73.80 477.01
X × 206167 4.31 81.85 475.86
× X,× 889637 1.00 N/A 1917.99Table 6.1: Formula sizes before and after transformation. The entry X, × in a SmartConstrutors olumn indiates that the smart onstrutors did not a�et the resultsin that row.

116

Chapter 7ExperieneWe have implemented our modular pluggable analysis system, populated it with sev-eral analyses (inluding the �ags, Bohne shape analysis, and theorem prover plugins),and used the system to develop several benhmark programs and appliations.7.1 Data Struture ImplementationsWe have veri�ed a number of data struture implementations using the Hob sys-tem. Our experiene on�rms the hypothesis that the Hob system an suessfullyverify that data struture implementations preserve loal invariants and onform totheir interfaes. A data struture implementation onforms to its interfae when allof the proedures in the implementation satisfy their postonditions upon exit, as-suming that those proedures' preonditions held upon entry. As we have desribedearlier, abstration funtions mediate between the onrete heap operations of theimplementations and the abstrat set operations of the interfaes.Using the Bohne shape analysis plugin, we have suessfully veri�ed singly-linkedlists, doubly-linked lists with and without iterators and header nodes, and two-levelskip lists. Setion 4.3 explained how developers speify and verify properties with theBohne plugin. We have also veri�ed properties of queues, staks, trees and priorityqueues using the PALE shape analysis plugin, a forerunner to the Bohne plugin.When the developer supplies loop invariants, Bohne veri�es data struture onsistenyproperties in times ranging from 1.7 seonds (for the doubly-linked list) to 8 seonds(for insertion into a tree). Bohne automatially infers loop invariants for insertionand lookup in the two-level skip list in 30 minutes total.7.1.1 Tree data strutureWe have used the Bohne plugin to verify insertion into a binary searh tree. Thistree maintains an abstrat set S of objets representing the ontents of the tree datastruture. The following de�nition gives the translation of the onrete heap stateinto the abstrat set S. In words, it states that S ontains the set of objets reahablefrom the root module-level variable through left and right �elds.117

S = {x : Entry |
"rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root x"};The Bohne plugin automatially veri�es that the tree's bakbone is ayli andthat the bakbone forms a tree along the left and right edges. In addition, weexpliitly instrut Bohne to verify the following two invariants:

invariant "ALL x. x ~= null &
~(rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root x) >

~(EX y. y ~= null & (left y = x | right y = x)) &
(left x = null) & (right x = null)";

invariant "ALL x y. parent x = y >
(x ~= null & (EX z. left z = x | right z = x) >

(left y = x | right y = x))
& (((ALL z. left z ~= x & right z ~= x) | x = null)

> y = null)";The �rst invariant states that that all heap objets x (exept null) that do notbelong to the tree are not pointed to by any other objet y in the heap1, and addition-ally that suh objets x have left and right �elds set to null. This invariant ensures,in partiular, that there are no �loose� tree fragments (in terms of this module's leftand right �elds) in the heap that exist independent of the main tree. Suh fragmentsare potentially problemati beause they may ause insertions to add unantiipatedextra objets to the tree.The seond invariant is a �eld onstraint on the parent �eld, whih is a derived�eld�that is, the parent �eld an be de�ned in terms of the left and right �elds.In partiular, this �eld onstraint states that the parent �eld is the inverse of the
left and right �elds. More preisely, if a heap objet x's parent pointer points to
y (again, for x non-null), and if there is some objet z whih has x as a hild, then
y has x as a hild. The seond invariant additionally states that if x has no parent(quantifying over the entire heap), then x's parent �eld must be set to null.Note that these two invariants desribe the pointer struture of the tree, and donot disuss any sortedness properties for tree elements. Sortedness properties, whihare properties of integers, are beyond the sope of the Bohne shape analysis plugin.The Hob analysis approah enables developers to state and verify partial properties ofdata strutures and programs. Developers who are onerned with the sortedness ofthe tree ould invent and use a speialized plugin that ould reason about propertiesof integers. Alternatively, developers ould use the theorem proving plugin, whihan handle arbitrarily ompliated properties at the ost of developer e�ort, to verifythe desired sortedness properties.One drawbak of verifying partial properties is that suh partial properties mightnot, by themselves, be strong enough to enable the veri�ation of other desired prop-erties. The two invariants stated above are too weak to enable the veri�ation of any1Note that this reahability relation is de�ned by only the left and right edges. Hob's formatmehanism enables the Bohne plugin to safely ignore all other �elds in the heap.118

interfae for a remove proedure that states that the proedure removes its parameterfrom the tree. The issue is that any e�ient implementation of a remove proedure�whih would remove its parameter from the tree, assuming that the parameter is inthe proper position�must rely on the ordering of elements in the tree. If the onretetree in the heap were to ontain improperly sorted elements, then e�ient implemen-tations of remove would not be able to orretly remove the requested objet, whihwould make it impossible to guarantee the proedure's desired postondition. Notethat a stronger invariant language would enable the veri�ation of remove.We an, however, verify the add proedure for trees. This proedure's spei�ationstates that the proedure adds its parameter e to the set S.
proc add(e:Entry; v:int) requires card(e) = 1 & not (e in S)

modifies S
ensures S’ = S + e;Figure 7-1 presents the omplete implementation of the add proedure. Thisproedure implements a standard searh for e in the tree, removing it if present. Theproedure is remarkable only for its loop invariant. Bohne is, in priniple, apableof inferring this loop invariant given suitable abstration prediates. However, theveri�ation �nishes in dozens of seonds rather than dozens of minutes if the developersupplies the invariant expliitly. The invariant for add states the following properties:� The parameter e is non-null and remains unhanged.� The objets e, n and p are all reahable in the tree.� If loal variable p is non-null, then n is the hild of p.� If p and n are both null (indiating an empty tree), then root also ontains

null.� The de�nition of the set S ontinues to hold: an objet x belongs to the abstratset ’S2 if and only if x is reahable from the root through left and right �elds.� For all non-null objets x in the heap that do not belong to the tree, no non-nullobjet y points to x, and that x's left and right �elds are null.Note that we restate the module's invariants within the loop invariant. In general,module invariants must be stated expliitly in the loop invariant beause they mightbe temporarily violated during the exeution of the add proedure; stating themexpliitly guarantees that they are not violated aross loop iterations.2The prime indiates that the statement is about the urrent value of S; Bohne expets the primebefore the set name, rather than after it, as in the general Hob onvention.119

1 proc add(e:Entry; v:int) {
2 e.v = v;
3 e.left = null; e.right = null; e.parent = null;
4 Entry n = root, p = null;
5 bool wentLeft;
6 while "e ~= null & e = ’e &
7 ~(rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root e) &
8 rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root n &
9 rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root p &

10 (p ~= null > (left p = n & wentLeft | right p = n & ~wentLeft)) &
11 (p = null & n = null > root = null) &
12 (ALL x. (x : ’S) <=>
13 rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root x) &
14 (ALL x. x ~= null &
15 ~(rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root x) >
16 ~(EX y. y ~= null & (left y = x | right y = x)) &
17 (left x = null) & (right x = null))"
18 (n != null) {
19 p = n;
20 wentLeft = (v < n.v);
21 if (wentLeft)
22 n = n.left;
23 else
24 n = n.right;
25 }
26 if (p == null) {
27 root = e;
28 } else {
29 e.parent = p;
30 if (wentLeft) {
31 p.left = e;
32 } else {
33 p.right = e;
34 }
35 }
36 } Figure 7-1: Implementation of TreeSet insert proedure

120

7.1.2 Stak data strutureWe next desribe one aspet of our experiene verifying a stak implemented as adoubly-linked list. The PALE shape analysis plugin (a predeessor to our urrentBohne shape analysis plugin) disovered an invariant violation in the ourse of veri-fying the stak's implementation. Like our tree, our stak data struture maintainsan abstrat set S representing the ontents of the stak. The Hob system veri�es thatstak insertions atually insert the given objet into the stak (the insert proedureensures that S’ = S + e), and that removals atually remove an objet from thestak, if possible (the removeFirst proedure ensures that card(S) = 0 | (exists
e:Entry. (S’ = S e) & card(e) = 1)).Hob's shape analysis plugins use developer-provided invariants to hek that ob-jets that belong to a set have onsistent values for navigational �elds (e.g. next,
prev), and that objets that do not belong to the set have their navigational �elds setto null. Our experiene suggests that is not di�ult to write implementations that in-advertently violate these invariants. Our initial implementation for the removeFirstproedure was as follows:

proc removeFirst() returns e:Entry {
Entry res = root;
if (root != null) root = root.next;
pragma "removed res";
return res;

}where the pragma statement indiates to the PALE analysis plugin that it is verifyinga set removal. We found that the analysis reports an error while verifying this imple-mentation. Careful inspetion of the above ode reveals that the removed objet, res,retains a referene to an objet in the stak even after its removal. Suh an implemen-tation violates the invariant that objets not belonging to the data struture musthave their next and prev �elds set to null. Unexpeted �eld values for �orphan�heap objets may in turn lead to non-list strutures appearing in the heap. Adding
res.next = null to this proedure satis�es the PALE plugin: setting eah objet's
next �eld to null on exit enables PALE to verify the invariant that all objets passedin to the insert proedure will have their next �eld set to null.7.2 WaterHaving desribed the veri�ation of a few data strutures using the Hob analysis sys-tem, we ontinue by desribing appliations of Hob to verifying omplete appliations.Our �rst appliation is water, a port of the Perfet Club benhmark MDG [10℄.Benhmark desription. The water benhmark evaluates fores and potentials ina system of water moleules in the liquid state using a preditor/orretor method.The entral loop of the omputation performs a time step simulation. Eah step121

predits the state of the simulation, uses the predited state to ompute the foresating on eah moleule, uses the omputed fores to orret the predition and obtaina new simulation state, then uses the new simulation state to ompute the potentialand kineti energy of the system.Our implementation of the water benhmark inludes the simparm, atom, H2O,
ensemble, and main modules, as well as a number of helper modules. Figure 7-2presents the module dependeny diagram for the water benhmark, with an arrowbetween the box for module A and the box for module B indiating that module Aalls module B. These modules ontain 2000 lines of implementation and 500 lines ofspei�ation.

main

consts

H2O

acc_double

skratch_pad

util

ensemble

simparm

atom

vec

Figure 7-2: Module dependeny diagram for water benhmarkThe main module initializes the program state, alls the main loop (whih is in the
ensemble module), and prints out the �nal program state. The ensemble moduleaptures the state of the entire omputation and alls the other modules to atuallyarry out the omputation. The simparm module stores inputs to the omputationand values that are omputed one at the beginning of the omputation, while therelated consts module stores physial onstants used by the simulation. The H2Omodule stores olletions of atoms, whih are traked by the atom module. Thehelper modules skratch_pad, vec, acc_double and util perform auxiliary tasks.Consisteny properties. We veri�ed the following properties for the water benh-mark. These properties an be haraterized mainly as typestate properties; for themost part, they do not desribe data struture properties, sine the water benhmarkdoes not maintain spei� relationships between di�erent objets in the heap.� Spae for simulation parameters is always alloated and the parameters alwaysloaded before aesses to the simulation parameters.122

� The predic and correc ations on atom objets are always interleaved: noatom is orreted unless it has just been predited, and vie-versa.� Ations on moleules are properly sequened: for instane, a moleule alwayshas its kineti energy alulated before the boundary box is applied to it.� Global omputation state transitions are onsistent with the transition orderdelared by the developer.The Hob system veri�es that the program does not load simulation parametersbefore it alloates arrays for holding these parameters, and that the program does notaess the simulation parameters until they have been loaded from the disk and storedinto the arrays. The simparm module is responsible for storing simulation parameters,whih are loaded from a text �le at the start of the omputation. To trak the urrentstate, this module de�nes two boolean variables, Init and ParmsLoaded. If Init istrue, then the module has been initialized, i.e. the appropriate arrays have beenalloated on the heap. If, additionally, the variable ParmsLoaded is true, then thesimulation parameters have been loaded from disk and written into these arrays.One important property of the main omputation onerns atoms (handled bythe atom module); atoms are the fundamental unit of this simulation. Atoms ylebetween the predited and orreted states, whih are distinguished by values of the
predic and correc �ags on atoms. The predic and correc proedures perform theomputations neessary to e�et these state hanges. Only atoms in the �orreted�state may have their position predited, and only atoms in the �predited� state mayhave their position orreted. To enfore this property, we de�ne two sets, Predic and
Correc, and populate them with predited and orreted atoms, respetively. The
correc proedure operates on a single atom; its preondition requires this atom tobe a member of the Predic set. The correc proedure's postondition ensures that,upon exit, the atom is no longer in the post-state of the Predic set, but is insteadin the post-state of the Correc set. The predic proedure has the orrespondingsymmetri spei�ation.The next step up from the atom is the moleule. Moleules (handled by the H2Omodule) ontain three atoms, traking their position and veloity. We verify thatwhen a moleule is in the predited or orreted state, the atoms in the moleuleare also in the same state. Moleule states indiate not only whether the programhas predited or orreted the position of the moleule's atoms, but also whether theprogram has applied intra-moleule fore orretions, whether it has saled the foresating on the moleule, and other similar properties. The interfae of the H2O modulean therefore ensure that the program performs the operations on eah moleule in theorret order�for example, the bndry proedure may only be alled with moleulesin the Kineti set, whih have had their kineti energy alulated by the kinetiproedure.Finally, the ensemble module manages the olletion of moleule objets. Thismodule stages the entire simulation by iterating over all moleules and omputingtheir positions and veloities over time. The ensemble module uses boolean prediatesto trak the state of the omputation as a whole. When the ensemble's boolean123

prediate INTERF is true, for example, then the program has ompleted the inter-fore omputation for all moleules in the simulation. By enoding allowable statetransitions into proedure preonditions and postonditions, our analysis veri�es thatthe program's state progresses in only the following order:
Init ; INITIA ; PREDIC ; INTRAF ; VIR ; INTERF ; · · ·For example, the benhmark has a proedure INTRAF. This proedure requires thatthe boolean �ags INITIA and PREDIC be true upon entry, and ensures that the �ag

INTRAF’ is true upon exit.Unsoundness. Hob's suessful veri�ation of the water benhmark depends onan impliation from the simulation's global boolean prediates to properties rangingover the olletion of moleule objets. We do not urrently verify this partiularimpliation; instead, we urrently use assume statements to let the veri�ation gothrough. In the short term, the developer an manually verify all of a program's
assume statements by inspeting the ode. We foresee two possible longer-term so-lutions: the developer may use a theorem prover to verify the properties that arebeyond the reah of Hob's urrent analysis plugins, or a new analysis plugin that anverify the relevant properties ould beome available.Disussion. The properties that we verify for the water benhmark ensure thatthe omputation's phases exeute in the orret order; suh properties are espeiallyvaluable in the maintenane phase of a program's life, when the original designer, ifavailable, may have long sine forgotten the program's phase ordering onstraints.Inidentally, Hob spei�ations' set ardinality onstraints also prevent empty sets(and null pointers) from being passed to proedures that expet non-empty sets ornon-null pointers.7.3 HTTP ServerThe HTTP 1.1 server implements a server whih responds to requests for web pages.We have used this server to host the Hob projet homepage.Benhmark desription. Our web server reads on�guration data from disk andthen listens for HTTP requests on the port spei�ed in the on�guration �le. It servesresponses to these requests by transmitting the appropriate headers and ontent tothe lient. If the lient's request indiate that it supports ompression, the serveruses library routines to ompress the data using the gzip algorithm, and then sendsthe ompressed version to the lient. Furthermore, we optimized our HTTP serverby ahing the results of previous requests (both unompressed and ompressed) inmemory and serving results from the ahe whenever possible.Figure 7-3 presents a module dependeny diagram for our web server. The
HTTPServer module reeives onnetions and sends responses to the lient. It uses the124

Figure 7-3: Module dependeny diagram for web server
HTTPRequest and Sendfile modules to proess the request and send the response,respetively. The Sendfile module takes a �lename and a onnetion and serves theappropriate response to the lient, using the Cache module to store �le ontents inmemory for later requests. In all, the Hob webserver ontains 14 modules, 1229 linesof implementation, and 335 lines of spei�ation.The HTTP server inludes the following sets of objets. HTTPRequest.Headersstores a set of HTTP request headers. The related HTTPResponse.C set storesHTTP response headers. The ahe uses a pair of sets, CacheSet.Content and
CacheBlacklist.Content, to store past requests and (if appropriate) their orre-sponding responses. The CacheSet.Content set stores objets that point to re-sponses to ertain requests, while the CacheBlacklist.Content set ontains infor-mation about objets that must not be plaed in the ahe (typially beause theyare too large).Data struture onsisteny properties. Our implementation of the web servermaintains the following onsisteny properties. Some of these properties onstrainthe heap and prevent orruption in the program's heap-based data strutures. Other,more interesting, properties, summarize design deisions that we made during ourimplementation of the web server.� The linked list making up the ahe set maintains its list invariants (e.g., thelinked list prev �eld is the inverse of its next �eld).� The server on�guration is loaded before any requests are served.� Response headers are always leared between requests.� Responses are always either served from the ahe or blaklisted from the ahe.Serving a request. When serving an HTTP request, the server �rst reads datafrom the lient desribing the request and the form of response that the lient isexpeting. The server then reates an HTTP response header and populates theset HTTPResponse.C with the proper header entries. Next, it searhes the ahe125

blaklist CacheBlacklist.Content and the ahe ontent CacheSet.Content forahed versions of the response; if no ahed ontent is available, and the ontent isnot blaklisted, then it adds the ontent to the ahe. The program then onsultsthe sendHead and sendBody proedure parameters (whih depend on the request) todetermine whether it should serve the header and ontent, and serves the relevantparts of the response to the lient.Response headers. The usual struture of an HTTP response ours in two parts:response header and ontent. A response header is a list of olon-separated strings,eah string ontaining a key and a value. In our implementation, we build up anHTTP response in the HTTPResponse module. The HTTPResponse module also on-tains a proedure whih sends the response, as onstruted, over the network to alient.Our use of sets allows us to doument and statially enfore the usage patternof the HTTP response module: we represent the urrent response header as a set,
HTTPResponse.C, and add header entries to this set. Sine we do not wish to emitstale header information from previous requests, the preondition of the sendFileproedure inludes the ondition that card(HTTPResponse.C) = 0. When servingany HTTP request, the web server always emits a basi header, inluding mandatory�elds like the Date �eld; suh �elds enable us to guarantee that the HTTPResponse.Cset is non-empty. We ensure that this preondition always holds by restoring it uponexit from sendFile; in partiular, we ensure that card(HTTPResponse.C’) = 0.Note that this spei�ation does not onstrain the membership of C during theexeution of the proedure. In fat, the HTTPResponse.emit proedure requires that
C be non-empty; learly, it is inonsistent with this partiular design to transmitempty responses. A di�erent (and in our opinion inferior) design might only populatethe set C if the lient had requested that headers be transmitted. Our spei�ationslearly doument the design deision that we took in this partiular implementationand prevent maintainers from inadvertently violating this design in the maintenanephase of the program's lifeyle.Transmitting �les to lients. The sendFile proedure oordinates the task ofsending a �le to a lient, serving the �le from the ahe if possible. Content is generallystored in the ahe before being served. To avoid undesirable ahe e�ets, however,our server blaklists ahe entities that are too large (greater than 1 megabyte inour urrent implementation). To simplify the implementation, we hose to have ourweb server always load the ontent into the ahe and then serve the ontent fromthe ahe, as long as the ontent is not blaklisted. Our implementation re�ets thisdesign deision. In the absene of any reliable information about the design, the devel-oper would have to glean this design deision from the implementation, in partiularby loating and understanding the following ode in the sendFile proedure:

if (!Cache.hasEntry (c)) {
/* ... [load content into t_array] ... */
Cache.setEntryContent (c, t_array);126

if (!blacklist)
Cache.addEntry (c);

}
else

Cache.loadEntryContent (c);
/* ... */
Cache.sendEntry(oc, c);and observing that the entry c is always loaded from the ahe or populated fromdisk and, if not blaklisted, added to the ahe.Our approah makes this design deision expliit and muh more aessible. Wedelare the sets CacheSet.Content and CacheBlacklist.Content. We de�ned thesesets using instantiated linked lists, and Hob's ability to ombine the shape analysisfor the ahe sets with the simpler typestate analysis used for this module is ruialfor obtaining a global design onformane result. The sendEntry proedure, whihtransmits an entry to the lient, relies on membership information for these twosets. This membership information propagates from postonditions of alls to themediating Cache module. The spei�ation for the sendEntry proedure thereforereads as follows.
private proc sendEntry (oc:out_channel; n:Entry) returns c:int

requires (n in CacheSet.Content) |
(n in CacheBlacklist.Content)

ensures true;Disussion. The spei�ation of the sendEntry proedure makes it absolutelylear that the ontent to be transmitted will either be in the CacheSet.Contentor CacheBlacklist.Content sets. The Hob analysis engine establishes the preon-dition for the sendEntry proedure by inspeting the rest of the sendFile proedureand observing that either the entry is already in the ahe or newly added to theahe, so that n in CacheSet.Content; or the entry is blaklisted, in whih ase n
in CacheBlacklist.Content. In this way, the sendEntry spei�ation learly andaessibly douments this design deision, and the Hob analysis system automatiallyveri�es that the implementation orretly onforms to this design.7.4 MinesweeperOur next benhmark, minesweeper, shows how Hob an verify data struture onsis-teny properties that span multiple modules.Benhmark desription. The minesweeper benhmark implements the standardmodel-view-ontroller (MVC) design pattern. Figure 7-4 presents a module depen-deny diagram ontaining the modules whih make up the minesweeper implementa-tion. The game board module (Board) represents the game state and plays the role ofthe �model� part of the MVC pattern; the ontroller module (Controller) responds127

to user input; the view module (View) produes the game's output; the exposed ellmodule (ExposedSet) uses an array to store the ells that the player has exposedin the ourse of the urrent game; and the unexposed ell module (UnexposedList)instantiates a linked list to store the set of ells that have not yet been exposed. Thereare 750 non-blank lines of implementation ode in the 6 implementation setions ofminesweeper and 236 non-blank lines in its spei�ation and abstration setions.The Board module stores one representation of the game state. (Game state infor-mation is also stored in the ExposedSet and UnexposedList modules, whih must re-main onsistent with the Board.) At an abstrat level, the board's sets MarkedCells,
MinedCells, ExposedCells, UnexposedCells, and U (for Universe) represent sets ofells with various properties; the U set ontains all ells known to the board. Theboard also uses a global boolean variable gameOver, whih it sets to true whenthe game ends. Conretely, the Board stores an array of Cell objets and the globalboolean variable. The Board module represents state information for eah Cell usingthe isMined, isExposed and isMarked �elds of Cell objets.

Figure 7-4: Module dependeny diagram for Minesweeper implementationData struture onsisteny properties. The minesweeper appliation uses avariety of data strutures and veri�es a range of important onsisteny propertiesboth within and between these data strutures. Among the data struture onsistenyproperties that the Hob system veri�es are the following:1. The set of unexposed ells in the UnexposedList module form an aylidoubly-linked list with all prev referenes being inverses of next referenes.2. The iterator pointer of the UnexposedList module is either null or points insidethe list.3. If the board is initialized, then the ExposedSet module storing the exposedells is also initialized. 128

4. The set of unexposed ells maintained in the Board module (using �ags) isidential to the set of unexposed ells maintained in the linked UnexposedListdata struture.5. The set of exposed ells maintained in the Board module (using �ags) is identialto the set of exposed ells maintained in the ExposedSet array.6. Unless the game is over, the set of mined ells is disjoint from the set of exposedells.7. The sets of exposed and unexposed ells are disjoint.8. At the end of the game, all ells are revealed; i.e. the set of unexposed ells isempty.Notie that the list of minesweeper properties ontains two di�erent kinds of prop-erties: i) data struture onsisteny properties that involve the implementation of asingle data struture, suh as Property 1, and ii) more abstrat properties involvingrelationships between objets stored in multiple data strutures, suh as Properties 4,5, 6, and 8. One somewhat unusual feature of these abstrat properties is that theyare outward-looking: they apture important features of the system that are diretlymeaningful to the users of the system, and not just the implementors. To the best ofour knowledge, the Hob system is the only urrently existing system that supportsand promotes the expliit identi�ation and guaranteed heking of these kinds ofoutward-looking, appliation-oriented properties.Verifying data struture use. Our minesweeper implementation uses iterators toproess the list of unexposed ells in two ontexts; both of these ontexts are shownin Figure 7-5. One use of iteration is the revealAllUnexposed proedure, whih isexeuted at the end of the game. This proedure auses the implementation to exposeall of the Board ells. The seond use is in a peek proedure whih we added to ourminesweeper implementation. The �peek� ommand allows the player to peek at allunexposed ells. We implemented this ommand by iterating twie over the set ofunexposed ells, �rst exposing them, then hiding them.Figure 7-5 ontains loop invariants for our examples. These invariants help toexplain how the �ags analysis an analyze eah of these examples. It turns outthat our �ags analysis plugin an suessfully infer these loop invariants [59℄, therebyeliminating a potential soure of annotation burden on the programmer. Furthermore,this invariant inferene exeutes relatively quikly, in a number of seonds. We believethat one reason for the suess of our loop invariant inferene tehnique is that thetehnique operates at the level of abstrat set variables.Note that users of the linked list module always use the list through its interfae;suh users annot diretly manipulate the list itself. In other words, users of thelinked list do not have aess to the next and prev pointers making up the linkedlist struture. In general, verifying onsistent interfae use is simpler than verifyingonsisteny of data struture operations, and our Hob system therefore uses the sim-pler but more e�ient �ags plugin to verify the onsisteny of data struture uses. In129

1 // in Board specification
2

3 proc setExposed(c:Cell; v:bool) returns causedGameOver:bool
4 ...
5 ensures (v => (ExposedCells’ = ExposedCells + c)
6 & (UnexposedCells’ = UnexposedCells c)
7 & (UnexposedList.Iter’ = UnexposedList.Iter c))
8 & ((not v) => ((ExposedCells’ = ExposedCells c)
9 & (UnexposedCells’ = UnexposedCells + c)))

10 & ...
11

12 proc revealAllUnexposed()
13 requires gameOver
14 modifies ExposedCells, UnexposedCells
15 ensures card(UnexposedCells’) = 0;
16

17 // in Board implementation
18

19 proc peek() {
20 peeking = true;
21 Cell c;
22 UnexposedList.openIter();
23 bool b = UnexposedList.isLastIter();
24 while "(b’ <=> (UnexposedList.Iter’ = {})) & peeking’"
25 (!b) {
26 c = UnexposedList.nextIter();
27 View.drawCellEnd(c);
28 b = UnexposedList.isLastIter();
29 }
30 // ... wait for key press ...
31 UnexposedList.openIter();
32 b = UnexposedList.isLastIter();
33 while "(b’ <=> (UnexposedList.Iter’ = {})) & peeking’"
34 (!b) {
35 c = UnexposedList.nextIter();
36 View.drawCell(c);
37 b = UnexposedList.isLastIter();
38 }
39 peeking = false;
40 }
41

42 proc revealAllUnexposed() {
43 UnexposedList.openIter();
44 bool b = UnexposedList.isLastIter();
45 // loop invariant in quotes below:
46 while "... & (b’ <=> (UnexposedList.Iter’ = {})) &
47 (UnexposedList.Iter’ = UnexposedList.Content’)" (!b) {
48 Cell c = UnexposedList.nextIter();
49 setExposed(c, true);
50 b = UnexposedList.isLastIter();
51 }
52 }Figure 7-5: Doubly-Linked List Client. An optional loop invariant appears in quotesafter the while keyword.

130

this example, we use the �ags plugin to verify that the preondition for nextIter �namely, that the Iter set is nonempty�is always satis�ed before alls to nextIter.Our implementations satisfy this onstraint by �rst alling the isLastIter proedureand ensuring that it returns false.The peek example nondestrutively iterates over the UnexposedList set with-out hanging the baking Content set, whereas the revealAllUnexposed proedureremoves all elements from the list during iteration. The revealAllUnexposed pro-edure guarantees that the unexposed set is empty at the end of the proedure asfollows. The proedure maintains the invariant that the Iter set equals the Contentset during every loop iteration, beause nextIter removes an element from the
Iter set and setExposed removes the same element from Content. Note that the
revealAllUnexposed loop runs until isLastIter returns true, whih implies that
Iter is true as well. Beause of the equality between Iter and Content, the �agsanalysis plugin may onlude that, upon loop exit, Content is empty as well.Hob's set abstration supports typestate-style reasoning at the level of individualobjets (for example, all objets in the ExposedCells set an be viewed as havinga oneptual typestate Exposed). Our system also supports the notion of globaltypestate. (Note that we have used both of these sorts of typestates�loal andglobal typestates�in the earlier water benhmark as well.) The Board module, forexample, has a global gameOver boolean variable whih indiates whether or not thegame is over. The Hob system uses this variable and the de�nitions of relevant setsto ensure the preservation of the following sope invariant,

gameOver ∨ disjoint(MinedCells, ExposedCells).This sope invariant onnets a global typestate property�is the game over?�with a objet-based typestate state property evaluated on objets in the program�nomined ells are also exposed. As desribed in Chapter 3, the Hob system asks analysisplugins to verify these sope invariants by onjoining the invariants to proedurepreonditions and postonditions. Note that sope invariants must be true in theinitial state of the program. If some initializer must exeute �rst to establish aninvariant, then the invariant an be guarded by a global typestate variable whih theinitializer sets to true. Note the similarity between suh a initialization guard andthe gameOver guard that appears above.A seond sope invariant states equalities between sets:
(Board.ExposedCells = ExposedSet.Content) ∧

(Board.UnexposedCells = UnexposedList.Content).This property ensures that the state of the board is onsistent�in other words, thatthe ExposedSet and UnexposedList heap data strutures and the Board do not on-tain ontraditory information. The Hob system veri�es this property by onjoiningit to the ensures and requires lauses of appropriate proedures. In this ase, itturns out that the Board module beomes responsible for maintaining this invariant.131

Yet the analysis of the Board module does not, in isolation, have the ability to om-pletely verify the invariant: the �ags analysis annot reason about the onrete stateof ExposedSet.Content or UnexposedList.Content (whih are de�ned in othermodules). Instead, relying on the ensures lauses of Board's allees, in ombinationwith its own reasoning that traks membership in the ExposedCells set, enables ouranalysis to verify the invariant (assuming that ExposedSet and UnexposedList workorretly).7.5 Impliations of Modular AnalysisWhile the Hob system was designed to verify both that modules preserve internal datastruture onsisteny properties and that modules preserve onsisteny propertiesrelating data strutures, Hob's modular analysis approah approah often allows thetwo kinds of properties�properties of oordination modules and of leaf modules�to be veri�ed separately. Coordination modules are those that de�ne few, or no,abstrat sets of their own, but instead oordinate the ativity of other modules toaomplish tasks. In the minesweeper benhmark, the View and Controller modulesare examples of suh modules. The View module has no state at all; it simply queriesthe board for the urrent game state and alls the system graphis libraries to displaythe state. Conversely, leaf modules suh as ExposedSet and UnexposedList oftenimplement a single data struture and ensure that the data struture remains in aonsistent state. Suh modules do not oordinate the ations of other modules andusually state no inter-data struture onsisteny properties.Beause oordination modules oordinate the ations of other modules�and donot enapsulate any data strutures of their own�the analysis of these modules onlyneeds to operate at the level of abstrat sets. Our �ags analysis is apable of ensuringthe validity of these modules sine it an trak abstrat set membership, solve formulasin the boolean algebra of sets, and inorporate the e�ets of invoked proedures asit analyzes eah module. Note that for these modules, our �ags analysis need notreason about any orrespondene between onrete data struture representationsand abstrat sets; it instead assumes that the modules whih implement the setsproperly implement the orrespondene between implementations and spei�ations.7.6 Summary and Re�etionsWe have used the Hob system to verify a number of data strutures, inluding thosebased on linked lists and arrays, using theorem proving and shape analysis teh-niques. Furthermore, we have veri�ed onsisteny properties for three omplete ap-pliations: the water moleule simulation, a web server, and an implementation of theminesweeper game. These implementations inlude up to 2000 lines of implementa-tion and 500 lines of spei�ation. The spei�ations that we have heked using Hobinlude a number of properties that re�et appliations' design information, enablingdevelopers to verify that programs onform (and that they ontinue to onform) totheir designs. 132

Re�etions on the Hob spei�ation approah. Our design deision limitingthe expressive power of our spei�ation language made this language espeially suit-able for speifying properties related to a program's design. The fat that Hob's setspei�ations fous on sets as abstrations of data strutures�whih are entral toa program's operation�implies that suh spei�ations an more e�etively exposedesign information than full funtional spei�ations. As an example, onsider againthe sope invariant about the disjointness of mined ells and exposed ells:
gameOver ∨ disjoint(MinedCells, ExposedCells).This invariant is remarkably onise. It states that either the gameOver boolean �agis true, or that the sets MinedCells and ExposedCells are disjoint. The invarianttherefore onstrains the program's state in a highly domain-spei� way. Note thatthis invariant is not a generi property that holds for all programs, but rather aproperty speialized to this partiular appliation. Additionally, this invariant statesa fat that is relevant to end users: users expet that a minesweeper implementationshould not expose a mined ell unless the game is over.Furthermore, this invariant has a preise meaning: given any state of the onreteheap, it is possible to deide whether or not the invariant holds in that state. TheHob system deides whether or not an invariant holds by using the de�nitions ofthe MinedCells and ExposedCells sets. In this partiular ase, we de�ned boththe MinedCells and ExposedCells sets using the �ags plugin; for instane, the

MinedCells set onsists of the heap objets with �elds init and isMined both setto true. Note that these set de�nitions have been fatored out of the invariant itselfand into the appropriate abstration modules (as desribed in Chapter 4). Developersmay therefore swap out set de�nitions and replae them with di�erent de�nitions,even de�nitions whih are to be veri�ed using di�erent analysis plugins. Invariantssuh as this one therefore illustrate how the Hob system enables developers to verifyproperties of arbitrarily ompliated data strutures and relationships between suhdata strutures.If we view invariants as distilled design information, then set de�nitions are ir-relevant to the invariants, and the invariants are better expressed without inlineset de�nitions. Consider the minesweeper invariant above. For the purposes of theminesweeper appliation's design, it is unimportant that the ExposedCells set on-sists of those Cell objets with �eld isExposed set to true. It is only important thatthe ExposedCells set and the MinedCells sets are disjoint. Of ourse, developersdo need to agree on a ommon voabulary before they an ommuniate using thesesets; the need to assign meaningful names to sets is similar to the need to assignmeaningful names to proedures and lasses.Our deision to use a set spei�ation language also�unexpetedly�enabled usto deploy a simple loop invariant inferene algorithm, whih we previously desribedin Setion 6.6. This algorithm worked fairly well in our experiene and it ontributedto our veri�ation of the minesweeper and web server examples.Of ourse, sine our spei�ations are partial and set-based, they do not always133

apture all important design deisions. For instane, one property that we would haveliked to state and verify for the web server was that the ontent length, as stated inthe response header, always orresponds to the number of bytes that we send tothe lient. However, this property is inexpressible in Hob's spei�ation language:we hose to omit integers from the spei�ation language to limit the omplexity ofthe required deision proedure and to enable the use of pre-existing tools to deideformulas expressed in the Boolean algebra of sets.Implementation language design. To evaluate the Hob approah, we had todevelop programs for the Hob implementation language and write spei�ations forthem. In our experiene, it was inonvenient to port programs to the Hob imple-mentation language, due to its lak of modern programming language features suhas dynami dispath. In retrospet, we might have hosen to inlude more featuresin the programming language, whih would have made it slightly more di�ult toimplement the Hob system, but muh easier to write programs for it. Beause one ofthe primary bottleneks in our researh was the availability of benhmarks, it seemsthat trading inreased system development omplexity for dereased benhmark de-velopment omplexity would have been advantageous.Consisteny properties for leaf and oordination modules. Our experieneillustrated that it was possible to verify onsisteny properties for leaf modules (whihdo not make any alls to other modules) using modular stati analysis tehniques.The analysis of the linked list using the PALE plugin showed that it is possible touse stati analysis to verify properties that go beyond what is possible to verify usingtesting, sine it would be di�ult to onstrut a test ase whih exposes the problem.Reasoning about oordination modules that use higher-level set spei�ations sug-gests that it is possible to use Hob's set spei�ations to build more salable and moreautomated stati analyses whih verify design properties. We found that it was pos-sible to verify typestate properties for systems, as we did in the water example. Suhproperties ensure that the proper operations our in the orret order, both at aglobal level and at a per-objet level. The minesweeper and web server examplesfurthermore demonstrated that it was possible to verify properties whih related datastrutures (using their set spei�ations). In our experiene, we found that theseproperties suessfully expressed design-level information about the programs thatwe were verifying.User relevane. We were surprised to �nd that Hob's set spei�ations are well-suited for expressing outward-looking user-level onstraints on the program's be-haviour. Generally, stati analysis tehniques operate by reading soure ode andreating models of the program's onrete data strutures. It is possible to use thesemodels to onstrain permissible program states. However, in general, onstrainingonrete program states may or may not a�et the program's observable behaviour:it is quite di�ult to relate the state of a program's internal data strutures and aset of desired program outputs. 134

Hob's set spei�ations, however, allowed us to express the following user-visibleonstraints in both the minesweeper and web server benhmarks:� In the web server benhmark, set spei�ations ensure that response headersare always for the urrent request and are never stale.� In the minesweeper benhmark, set spei�ations ensure that the mined ellsare never exposed unless the game is over.Hob's developer-provided set de�nitions enable stati analyses to verify propertiesthat diretly a�et user-relevant onerns (in our above example, ontents of the re-sponse header and the set of mined ells) by translating them into onstraints on theonrete program state (the state of the linked list or array). The abstration fun-tions that make up Hob set de�nitions therefore make it possible for our Hob analysissystem to statially verify properties that diretly a�et the program's output. Hob'sability to state and verify properties that are diretly relevant to users of the softwaremakes Hob's veri�ation approah espeially ompelling to developers and valuableto their end users.

135

136

Chapter 8Related WorkThe Hob spei�ation language enables developers to suintly express design prop-erties. One of our primary goals in designing Hob was to make design informationrelevant, aessible and understandable. The Hob spei�ation language thereforeallows developers to speify a seleted subset of ritial design properties. We be-lieve that our spei�ation language hits a �sweet spot� between expressiveness andveri�ability; it is targetted partiularly towards expressing data struture properties.We ontrast Hob's streamlined spei�ation language to more powerful spei�ationlanguages suh as Z and VDM, whih allow developers to speify (but not automati-ally verify) arbitrary properties of systems, as well as design notations suh as UML,whih are speialized for design properties (again, without veri�ation support).Hob relies on stati analysis to automatially verify that systems onform to theirdesign properties. We disuss related work on stati analysis tehniques, inludingtypestate systems, shape analysis, model heking and abstrat interpretation. Hob'sprimary ontribution in this area is in integrating di�erent analysis tehniques byusing the program's module struture and using the ombined power of these analysistehniques to verify data struture onsisteny properties; we ompare Hob to relatedresearh that ombines deision proedures.8.1 Spei�ation LanguagesProgram spei�ations enable modular veri�ation by enabling the veri�ation ofprogram parts�modules�against their interfaes. Most related work in the area ofspei�ation languages proposes omplete methodologies for better software devel-opment. Hob, on the other hand, uses a spei�ation language to enable programveri�ation. Beause the design of the spei�ation language in�uenes the types ofproperties that an assoiated veri�ation system an ensure, we next survey relatedwork on spei�ations for software systems.Spei�ation methodologies typially over the part of a projet's lifeyle betweenthe projet's design phase and its implementation and delivery to ustomers. Someof these methodologies (for instane, Z) provide a general notation whih develop-ers may use to express program properties, but still expet developers to arry out137

proofs by hand. Most of these methodologies inlude some tool support in the formof veri�ation ondition generators and proof assistants. However, unlike Hob, thesemethodologies do not leverage urrent stati analysis tehnologies, suh as shape anal-ysis, to automatially verify program properties. In the absene of automati supportfor verifying onformane to spei�ations, design drift�the phenomenon wherebydesign information beomes outdated and therefore fails to re�et the urrent apa-bilities of a software system�inevitably beomes a problem, espeially onsideringthat software maintenane typially ontinues long after the software has been ini-tially delivered to ustomers.Origins of spei�ation languages. Parnas was one of the earliest advoates formodule spei�ations in [80℄. Many of the ideas proposed in this work have beomeommonly aepted, at least in priniple. The basi proposal is that spei�ationsshould enable the developers of a module and the lient of that module to ommuni-ate e�etively. Spei�ations should hide implementation details but expose usageonstraints and guarantees. Parnas aknowledges that spei�ations an easily beerroneous. Sine spei�ations generally annot be exeuted, Parnas suggests thatdevelopers should arry out manual symboli testing of spei�ations: they shouldinvent a number of prediates whih ought to be onsequenes of their spei�ationsand verify that these prediates do hold.The original proposal for spei�ations [80℄ does not propose a spei� spei�ationlanguage1. Hob's set-based spei�ations are espeially appropriate for data strutureonsisteny properties. However, many other spei�ation notations exist, and wenext disuss some of these notations. We start with notations that are intended tomodel systems in general, suh as the Z notation, and ontinue with wide-spetrumspei�ation languages and objet models. We then explore spei�ation languagesthat are more spei�ally targetted towards programs rather than systems, like theLarh and JML spei�ation notations. Like the Larh and JML approahes, the Hobapproah embeds spei�ation information diretly into the program soure ode. Hobgoes beyond previous approahes: one of Hob's major ontributions is in verifyingthat implementations atually onform to their spei�ations.The Z spei�ation language. The Z notation [94, 89℄ allows system designersand implementers to express properties of their systems. Z was primarily designed asa notation for writing spei�ations and for manually proving statements about thesespei�ations; it is partiularly onvenient for writing short proofs about equivalenesbetween Z spei�ations.Z is based on �rst-order prediate logi and typed set theory. Z spei�ations aretherefore undeidable in general; that is, no algorithm an hek (in general) thatZ spei�ations are logially onsistent, and the developer annot ompute (in allases) whether a given statement is implied by a system's spei�ations. A numberof tools exist to typehek, model hek and animate (i.e. exeute on small examples)1Parnas states, in a footnote, that the spei�ation language that he uses in his paper should notbe onsidered in any way to be a model spei�ation language, due to its shortomings.138

Z spei�ations. These tools an inrease a developer's on�dene that his system'sspei�ations are meaningful, but annot provide any guarantees to that e�et. Thepower of the Z notation enables it to ompletely speify system properties, so that�inpriniple�any system ould be spei�ed ompletely, even down to the implementationlevel.Z spei�ations have been used to design large industrial systems. One reportis [46℄, whih desribes the experiene of some pratitioners at IBM in speifyingthe CICS transation proessing system. Even without any automati veri�ationof the spei�ations or the resulting implementations, they reported that the useof formal spei�ations led to implementations with fewer errors in general, and toearlier detetion.Beause Z and Hob have di�erent design goals�Z enables developers to stateproperties of systems while Hob enables developers to verify data struture onsis-teny properties�Z and Hob di�er in terms of spei�ation language expressiveness.Hob requires developers to speify more speialized properties than Z; Hob's prop-erties are either global or loal data struture onsisteny properties. Global datastruture onsisteny properties state relationships between sets (de�ned in termsof abstration funtions), while loal onsisteny properties primarily ensure thatset implementations maintain the proper invariants. Developers bene�t from usingHob spei�ations beause their implementations an be veri�ed against propertiesspei�ed for the Hob system; this is not true for properties spei�ed in terms of Zdesigns.We are aware of one proof assistant for Z spei�ations, ProofPower, whih usesan implementation of higher-order logi (HOL) as its bakend and embeds Z intoHOL. However, to our knowledge, there are no analogues to the Hob system whihan automatially prove that implementations�espeially implementations with heapdata strutures�onform to their Z spei�ations.Wide-spetrum spei�ation languages. The wide-spetrum spei�ation lan-guage approah attempts to help developers ensure that implementations math theirspei�ations by providing a family of syntatially related languages to both spe-ify and implement systems [49, 34, 22, 2℄. Previous work on automatially provingthat implementations onform to their spei�ations has been sparse, and we are notaware of any suh researh in the ontext of wide-spetrum spei�ation languages.Often, developers �nd de�ienies in spei�ations while implementing them.When orreting these de�ienies, developers must take are to expliitly updateboth the original spei�ation and its implementation. In pratie, implementationsand spei�ations tend to end up diverging�or drifting�in the absene of tools thatautomatially verify that an implementation onforms to its spei�ation. We allthis phenomenon design drift.The Hob approah does not use a wide-spetrum spei�ation language; we in-stead provide separate spei�ation and implementation languages, and automatiallyverify the onformane of an implementation to its spei�ation using the providedabstration funtions. Hob therefore guarantees that a program's implementation139

ontinues to onform to its design throughout its maintenane phase, preventing de-sign drift.Perhaps the most-used wide-spetrum spei�ation approah is the Vienna De-velopment Method [49℄; its suessor VDM++ [34℄ extends VDM with support forobjet-oriented analysis and design. VDM is quite expressive; it enables developers towrite spei�ations for systems using numbers, sets, maps, sequenes, and funtions.In fat, it is so expressive that the type-heking problem for VDM is undeidable, be-ause types may depend on onditional VDM expressions. VDM has been extensivelyused in industry; published examples inlude models of railway interlok systems, nu-lear safety systems, and telephone exhanges [62℄. The primary tool supporting theVDM is the VDM++ Toolbox [21℄, whih inludes some support for type heking,an interpreter for exeutable VDM spei�ations, an veri�ation ondition generatorfor VDM models whih generates onditions that ensure that these models are freeof run-time errors, a test faility, and an automati ode generator. Other wide-spetrum languages inlude RAISE [22℄, whih adds support for modular reasoningand onurreny, and the B-method [2℄, whih uses abstrat mahines to represent theations of the system. These spei�ation languages generally require manual proofsof re�nements between di�erent levels of spei�ations and implementations. TheHob approah, on the other hand, automatially veri�es that implementations on-form to their spei�ations. Hob's approah helps prevent design drift by informingdevelopers immediately when implementations and spei�ations diverge; it is there-fore possible to impose development proesses that require developers to immediatelyorret either the implementation or the spei�ation in ase of divergene.Larh. The Larh projet [44℄ explored the expressive potential of spei�ation lan-guages. In the Larh approah, spei�ations had two parts: an auxiliary spei�ationand a trait. Traits enable developers to state properties of the mathematial objetsthat appear in Larh spei�ations. Using these traits, developers would be able touse appropriate notations for the spei�ation task at hand. Hob, on the other hand(like VDM and Z) takes a strong position on the types of spei�ations that users maywrite; we hose set spei�ations for Hob beause we believe that sets are partiularlyapt for stating data struture onsisteny properties. Furthermore, Hob spei�ationsare designed primarily to enable veri�ation.Hob does support extensibility in the following sense: it allows developers toprovide user-de�nable abstration funtions whih relate onrete states to abstratstates as implemented in analysis plugins; if Hob's set of analysis plugins is insu�ient,then developers may write their own analysis plugins. By �xing the spei�ation lan-guage to the boolean algebra of sets, we simplify the task of analysis plugins; after all,plugins must onsume and produe onditions expressed in the ommon spei�ationlanguage, and an overly-ompliated spei�ation language would impose an exessiveburden on writers of analysis plugins. We believe that the hoie of a set spei�ationlanguage is a reasonable ompromise between expressiveness and tratability in thisregard.We next highlight the di�erenes between Larh and Hob by brie�y disussing140

the spei�ation of a bounded stak in Larh. Basially, the Larh spei�ation doesnot abstrat away the ordering of the elements in the stak, while Hob representsthe ontents of the stak as an (unordered) set. When using the Larh spei�a-tion, the developer must refer to a stak state by writing a sequene of operations,e.g. push(push(push(empty, S), 2), 3), onsistent with a world-view based onalgebrai spei�ations of abstrat data types. The Hob approah instead allows de-velopers to state set-based properties of the stak's ontents. This enables developersto state, for instane, that the stak's ontents are disjoint from some other datastruture's ontents.One limitation of the algebrai spei�ation methodology is that it is di�ult tostate global program properties using algebrai spei�ations. Beause the Hob spe-i�ation language supports global data strutures and has set-based spei�ations,it an easily state global program properties, whih will appear as relations betweensets.In general, the Larh system does not have many tools for reasoning about im-plementations, sine it was designed to explore issues assoiated with spei�ationlanguages. One implementation-oriented tool is LCLint [29℄, whih performs a lim-ited set of stati heks for generi memory-safety properties, guided by some Larhprogram properties. LCLint veri�es that programs never violate abstration barriers;that they always speify and use all global variables; that modi�es lauses are au-rate (with some limitations and some unsoundness); that uses our after de�nitions;and that maros are properly used.Note in partiular that LCLint does not perform any heks based on requiresor ensures lauses. Contrast this to Hob�one of the key goals of the Hob systemis to verify that eah proedure's ensures lause always holds upon exit from thatproedure, as long as the requires lause holds upon entry.Java Modelling Language. The Java Modelling Language enables developers tospeify properties for Java programs. JML applies many of the ideas from the Larhprojet to objet-oriented Java programs. JML spei�ations are typially embeddedas omments within Java programs. The spei�ation language mostly ontains Javaexpressions, plus a few extra keywords.Unlike Larh, Hob is designed to allow designers and developers to express andverify design-level information about a bounded (at ompile time) olletion of namedabstrat sets of objets. Hob's spei�ation language is the boolean algebra over setsand boolean variables. Unlike JML spei�ations, whih support implementation-level onstruts suh as strings, integers, or �oating-point values, Hob's set-basedspei�ation language is foussed on a partiular set of properties that we believe isimportant and relevant to a system's design.We �nd our approah produtive in that it fousses the attention of the design-ers and developers on some important ore aspets of the design and failitates thee�etive veri�ation of those aspets. In partiular, the Hob approah disouragesdevelopers from writing spei�ations that simply reiterate the implementation usingspei�ation-level onstruts, beause we hose to omit the needed onstruts from141

the Hob spei�ation language.8.1.1 Expressing design informationThe spei�ation languages we have disussed so far are primarily targetted towardsexpressing general system properties. We next disuss notations that were targettedspei�ally for expressing design properties, inluding some that address the issue ofdesign drift by extrating models diretly from soure ode. We believe that suhapproahes are most likely to sueed in addressing the design drift problem.Objet Models. Objet-oriented analysis and design rely on a suite of tehniquesfor speifying (typially software-based) systems. The entral tehnique is objetmodelling. An objet model graphially desribes the design of a system with boxesfor the di�erent lasses in a software system and arrows for the relationships betweenthese lasses. The most popular methodology for objet-oriented design is the Uni�edModelling Language [83℄. When following the UML methodology, a developer reatesa set of design artifats whih desribe the system being designed and implemented.These artifats are intended to be desriptive, not presriptive; nothing guaranteesthat a system onforms to its design. It is the sole responsibility of the developer toensure that the artifats produed at eah stage remain onsistent with eah other,without even the notational help provided by wide-spetrum spei�ation languages.The UML approah typially does not inlude formal veri�ation.There is rih tool support for objet models; some tools, inluding TogetherJ andRational Rose, help the developer ensure that the implementation is onsistent withthe objet model by automatially generating a skeleton of the implementation fromthe objet model. Nevertheless, suh approahes are still a�eted by the design driftproblem: unless the model is generated from the soure, the soure and model willdiverge in the ourse of development. We have previously developed the token anno-tation system, whih embeds objet modelling metadata into Java soure ode andan later automatially extrat this metadata to generate the model [61℄. We believethat suh an approah will failitate the di�ult task of keeping design informationup-to-date.Traditional objet models do not inlude onstraints on system behaviours; objetmodels are instead intended for speifying the system arhiteture, i.e. the onne-tions between di�erent system omponents. The Objet Constraint Language [79℄and the Alloy system [3℄ provide two ways of speifying system behaviours on top ofobjet models. Alloy also inludes tools for visualizing and automatially hekingonsisteny properties of these objet models, using bounded model heking. Thesetools, however, do not verify that implementations of the objet models onform tothe original models.Beause the Hob approah attempts to verify data struture onsisteny prop-erties, its fous is quite di�erent from that of objet modelling languages. The keyfeatures relevant to an objet modelling language are the expressive power and theease-of-use of that language. The Alloy language was also designed to failitate in-ternal onsisteny heks for spei�ations. The Hob spei�ation language supports142

more than just objet models and internal onsisteny heks; we designed it in on-ert with the Hob implementation language and the abstration languages to enablethe stati veri�ation of data struture onsisteny properties.Design onformane. Re�exion models [74℄ support the onept of design onfor-mane: they enable developers to developers propose a model of a software systemand then ompare properties of the atual system to the model. The idea is to usean algorithm to extrat a model from the soure ode; their tool then presents thedi�erene between the proposed model and the extrated model to the developer. Re-�exion models may, in priniple, use many di�erent kinds of models. In their paper,Murphy et al. propose the following model extration algorithm: group a numberof �les together as a module (using wildards) and use proedure alls to de�ne theinter-module interation struture. Other model extration algorithms would also bepossible. Like Hob, re�exion models attak the problem of design drift, by identifyingdi�erenes between the intended design and the atual implementation. While suhan approah is quite useful, Hob an enode many design properties that would bedi�ult to express in terms of graphial re�exion models. Beause Hob expressesproperties of the program state, it an state (for example) that two sets are alwaysdisjoint.The Pattern-Lint tool [85℄ uses dynami analysis and shallow stati analysis teh-niques to verify whether or not software systems onform to desired arhitetural on-straints. The novelty in Pattern-Lint appears to stem from how it deides whether ornot systems onform to their designs: Pattern-Lint ollets evidene for and against adesign property to deide whether or not the implementation onforms to that designproperties. Pattern-Lint only uses very simple stati analysis tehniques: it appearsto only inspet method alls and shared global variable aesses.8.2 Analysis Tehnologies and Veri�ation SystemsThe Hob system veri�es set-based spei�ations by ombining various stati analysisand theorem proving tehnologies. We next disuss a number of related approahesto stati program veri�ation. A number of these approahes are stati analysis ap-proahes; these inlude typestate systems, shape analysis, and abstrat interpretation.We also desribe some researh whih uses model heking. The typial appliationof model heking veri�es that module interfaes are used appropriately (but, unlikeHob, does not verify that the modules are properly implemented). Finally, we disusstheorem proving tehnology; in our ontext, theorem provers help onstrut proofsthat indiate that implementations have desired properties.In general, eah of the researh projets below presents a single approah to veri-fying a single lass of program properties; there is no e�ort to integrate results fromdi�erent analysis approahes. For instane, ESC/Java uses the Simplify theoremprover to disharge all of its veri�ation onditions. We believe that by applying spe-ialized tools�working together�to speialized lasses of data struture onsisteny143

properties, the Hob system enables the veri�ation of more sophistiated propertieson larger programs than previous researh.Typestate systems. Typestate systems trak the oneptual states that eah ob-jet goes through during its lifetime in the omputation [91, 23, 32, 31, 28℄. Theygeneralize standard type systems in that the typestate of an objet may hange duringthe omputation. Aliasing (or more generally, any kind of sharing) is the key problemfor typestate systems�if the program uses one referene to hange the typestate ofan objet, the typestate system must ensure that either the delared typestate of theother referenes is updated to re�et the new typestate or that the new typestate isompatible with the old delared typestate at the other referenes.Most typestate systems avoid this problem altogether by eliminating the possi-bility of aliasing [91℄. Generalizations support monotoni typestate hanges (whihensure that the new typestate remains ompatible with all existing aliases) [32℄ andenable the developer to temporarily prevent the program from using a set of potentialaliases, hange the typestate of an objet with aliases only in that set, then restorethe typestate and reenable the use of the aliases [30℄. It is also possible to supportobjet-oriented onstruts suh as inheritane [24℄. Fink et al. propose the integrationof pointer analysis tehniques with typestate property veri�ation for Java programsin [33℄. Their tehnique sales due to the use of a series of abstrations: the simplerabstrations quikly rule out many potential problems and leave more sophistiatedproperties to more expensive analyses. The role system [54℄ also integrates pointeranalysis tehniques with typestate veri�ation. In the role system, however, the de-lared typestate of eah objet haraterizes all of the referenes to the objet, whihenables the typestate system to hek that the new typestate is ompatible with allremaining aliases after a nonmonotoni typestate hange.In our approah, the typestate of eah objet is determined by its membership inabstrat sets as determined by the values of its enapsulated �elds and its partiipa-tion in enapsulated data strutures. Our generalizations of typestate inlude mul-tiple orthogonal typestates (orresponding to multiple sets), and, most importantly,the ability to verify atual properties assoiated with the typestate abstration, asopposed to taking for granted the orretness of interfae spei�ations.Bierho� and Aldrih desribe a dynami analysis system for verifying typestateproperties in Java programs that orretly handles typestates in the ontext of sub-lassing [8℄. Like Hob, [8℄ also supports multiple orthogonal typestates. While adynami analysis an prevent programs from exeuting undesirable ations, typiallyby terminating a program when it attempts to exeute suh ations, the advantageof our stati approah is that it provides stronger guarantees that programs never vi-olate typestate onstraints on any possible exeution before atually exeuting theseprograms.Shape analysis. The goal of shape analysis is to verify that programs preserve on-sisteny properties of (potentially-reursive) linked data strutures. In [67℄, Lukhamand Suzuki desribe an early attempt to verify properties of linked data strutures.144

They expliitly inorporate reahability and ayliity into the �rst-order StanfordPasal Veri�er logi. Their tool dedues that the appropriate shape onstraints hold,making use of user guidane throughout the theorem proving proess. However, theydo not have any notion of shape abstrations as in modern shape analysis, so thatthe desired program properties are expressed as assertions in Pasal-like expressionsaugmented with the reahability prediate; it is therefore di�ult to modularize theirapproah.Sine then, researhers have developed many shape analyses and the �eld remainsone of the most ative areas in program analysis today [41, 71, 54℄. In general, shapeanalyses fous on extrating and verifying detailed onsisteny properties of individualdata strutures.We expliitly mention TVLA, the Three-Valued Logi Analysis engine [84℄. TVLAhas some similarity to Hob in that it is not a single analysis, but rather a frameworkwhih allows researhers to speify spei� abstrations of the heap. The TVLA toolembeds the operational semantis of a partiular implementation language and pro-dues abstrat interpreters for this language using the spei�ed abstration. The Hobframework gives developers more �exibility to develop analysis plugins�Hob plug-ins do not neessarily have to use abstrat interpretation, as shown by our theoremproving plugin. We also designed Hob so that it would be able to verify higher-leveldomain-spei� properties, in addition to low-level properties of the onrete heap.Beause shape analyses are very preise, the detail of the properties these analysesmust trak have limited their salability. One of our primary researh goals is toenable the appliation of these sophistiated analyses in a modular fashion, with eahanalysis operating on only that part of the program relevant for the properties thatit is designed to verify.Model Cheking Approahes. Model heking is a lightweight approah to pro-gram veri�ation that attempts to detet violations of ertain spei�ation propertiesin systems by setting up an abstrat model of the program and exhaustively test-ing the program in that abstrat model. Bultan et al. desribe one appliation ofmodel heking to modular veri�ation in [7℄. Their researh fousses on detetingsynhronization errors in onurrent programs: they �nd instanes where programsimproperly order synhronization operations. Suh a model-heking approah ane�etively use the information provided in terms of module interfaes, as long as theinterfaes have only �nite amounts of state (whih the model heker an exhaustivelyexplore); this is similar to verifying programs with typestate-like spei�ations.Note that, like ESC/Java, Bultan's model-heking approah only veri�es theuse of the interfaes, and not the underlying implementations of these interfaes.The model heking approah is not, in isolation, well-suited to verifying Hob-styleproperties of unbounded data strutures in the onrete heap, beause it is di�ultto exhaustively explore an unbounded data struture. Tehniques suh as symbolimodel heking ould help, but have not yet been applied to heap data strutures.145

Abstrat interpretation. The ASTREE stati analyzer [9℄ has suessfully veri-�ed millions of lines of automatially generated C ode for the absene of run-timeerrors. Like Hob, ASTREE ombines a number of di�erent stati analyses to statiallyverify program properties; ASTREE uses abstrat interpretation over a number of spe-ialized abstrat domains. However, the goals of ASTREE di�er substantially fromour goals. We emphasize two points in partiular. First, ASTREE's input languageis a subset of C whih does not inlude dynami memory alloation; we spei�allydesigned Hob to support the inlusion of shape analyses, whih reason about the rela-tionships between di�erent dynamially alloated objets. Seond, ASTREE veri�esthat programs never enounter run-time errors suh as out-of-bounds array aessesand arithmeti over�ows; the set of properties of interest is built into the ASTREEanalyzer itself. The Hob system, on the other hand, veri�es developer-provided datastruture onsisteny properties. These properties enable the developer to expressdomain-spei� program properties whih apture the program's design information.Stanford Pasal Veri�er. The Stanford Pasal Veri�er [40, 66℄ was an early pro-gram veri�ation e�ort. It was surprisingly powerful for its time. Like Hob, theStanford Veri�er attempted to prove that a proedure's postonditions held uponexit if its preonditions held upon entry. However, a key di�erene between Hob andthe Stanford Veri�er is that the Stanford Veri�er exlusively uses theorem provingto establish program properties, ompared to Hob's notion of analysis plugins. Ina retrospetive evaluation of the Stanford Veri�er [68℄, Lukham writes (in 1981)that �... theorem proving still represents a major bottlenek in veri�ation systems.�We believe that, even though theorem proving tehnology has improved sine 1981,the use of stati analysis tehniques�as in the Hob system�greatly failitates theveri�ation of many important program properties.Another key di�erene between the Stanford Veri�er and Hob is in the expetedsope of the preonditions and postonditions. The Stanford Veri�er ambitiouslyattempted to prove partial orretness for proedures, rather than our more limiteddata struture onsisteny properties. Unfortunately, proving orretness for realistiprograms was beyond the apability of both the omputer hardware and the theoremproving tehnology of the time. Note that, due to its design goals, the StanfordVeri�er aepts preonditions and postonditions diretly stated its underlying logi(whih Lukham desribes as being �umbersome�). Unlike Hob, it does not use a setspei�ation language or abstration funtions. Therefore, even though the StanfordVeri�er an reason about heap reahability using ustom reach primitives added ontop of its �rst-order logi [67℄, heap data strutures are quite di�ult to reason aboutin pratie, due to the lak of abstration funtions. It is muh easier to expressproperties of sets using their names.ESC/Java and ESC/Java2. ESC/Java [36℄ (and its suessor ESC/Java2) areprogram heking tools whih aim to identify ommon errors in programs with the helpof program spei�ations expressed in a subset of the Java Modelling Language [12℄.ESC/Java and ESC/Java2 urrently use the Simplify theorem prover to verify pro-146

gram properties; their design is reminisent of the Stanford Pasal Veri�er's design,updated to use more modern spei�ation languages and theorem provers. The de-signers of ESC/Java have expliitly stated that, like ASTREE, it was designed tostatially identify potential run-time errors, e.g. null-pointer exeptions. ESC/Javaadditionally attempts to establish, at least partially, that preonditions hold at allsites. The Hob system was prinipally designed to verify program-spei� properties,whih inlude preonditions and postonditions, but also global data struture on-sisteny properties. Hob's support for abstration funtions and sopes make datastruture onsisteny properties muh easier to express.The ESC/Java2 tool [26, 18℄ extends the original ESC/Java work by supportingurrent versions of Java and verifying more JML onstruts. In partiular, ESC/Java2(as well as ESC/Modula-3 [26℄) allows the use of heap abstrations via its support formodel �elds. Model �elds use developer-provided representations. These represen-tations are similar in spirit to the set de�nitions whih appear in Hob's abstrationmodules. However, not all model �elds are annotated with representations; for in-stane, the library annotations provided with ESC/Java2 for the LinkedList lassdo not disuss the atual onrete ontents of the LinkedList as a set of objets inthe heap. The �rst-order logi used by the underlying Simplify theorem prover [25℄does not support transitive losure; e�etive �rst-order approximations of transitivelosure are still ative areas of researh [76, 65, 56℄. ESC/Java2 has therefore not beenused to verify the onrete data struture onsisteny properties that Hob veri�es forlinked lists, essentially beause its logi is not powerful enough. Cok explains howESC/Java2 handles model �elds in [17℄; essentially, it treats them as method allsand inludes the postonditions of the model �elds' representations.On the other hand, the Hob system enables the developer to use�and verify�implementations whih use arbitrary set de�nitions, as long as an appropriate analysisplugin exists. This enables, for instane, the shape analysis and Isabelle plugins touse logis whih go far beyond the expressiveness of the set spei�ation language.The logi used for inter-analysis ommuniation is still the �rst-order set-based spe-i�ation language, and we require that eah a analysis plugin be apable of reasoningabout the �rst-order set spei�ation language.Spe#. The Spe# programming system [5℄ adds ESC/Java2-like features to C#,inluding the ability to speify method ontrats, frame onditions and lass ontrats.These ontrats may be veri�ed either at run-time or statially. Stati veri�ationrelies on the Boogie veri�er, whih uses a theorem prover to disharge its veri�ationonditions.We disuss two key di�erenes between our approah and the proposed Boogieapproah. First, Boogie envisions the use of a single general-purpose theorem proverto disharge the generated veri�ation onditions. Hob, on the other hand, is designedto support a diverse range of potentially narrow, speialized analyses; as we've seen,this range inludes shape analyses, typestate analyses and interative theorem provers.Hob's goal of supporting speialized analyses is re�eted in Hob's format onstrutand in its abstrat set spei�ation language, both of whih are designed to support a147

strong separation between di�erent analyses (suh a separation is neessary, of ourse,if multiple analyses are to ooperate to suessfully analyze a single program). Thisapproah minimizes the amount of expertise required to work within the Hob systemand maximizes the ability of developers with speialized skills to ontribute to Hob.We believe that enabling as many developers to ontribute as possible will lead to ariher, more powerful analysis system.Seond, Boogie is designed to verify objet invariants, with an objet ownershipmehanism supporting the hierarhial spei�ation and veri�ation of invariants thatinvolve hierarhies of linked objets. This mehanism eliminates a form of spei�-ation aggregation for omputations that traverse a hierarhy of owned objets�ifthe proedure all hierarhy mathes the ownership hierarhy, eah proedure needonly state onsisteny requirements for the objet that it diretly aesses, not all ofthe hild objets that that objet owns. This hierarhial spei�ation approah isreminisent of hierarhial aess spei�ations in Jade [82℄ and hierarhial lokingmehanisms in databases [87℄.Hob, on the other hand, is designed to support omputations organized around a�at set of data strutures. The onstruts that eliminate spei�ation aggregation utaross the proedure all hierarhy rather than working within it. This adoption ofross-utting organizational approahes re�ets the maturation of omputer siene asa disipline�over time, the overwhelming dominane of hierarhial approahes willfade as the e�etiveness of using other approahes in addition to hierarhies beomesobvious.Other theorem provers. We use the Isabelle/HOL interative theorem prover [81,78℄ to disharge the veri�ation onditions generated by our theorem proving anal-ysis plugin. Other interative theorem provers inlude Athena [4℄, whih separatesomputations from dedutions in the ontext of proof presentations and searhes;HOL-Light [45℄, whih has an espeially small set of base axioms; and CVC Lite [6℄,whih is quite adept at automatially proving theorems about programs with arraysdue to its support for integer arithmeti. Users of the ACL2 [50℄ theorem-provingsystem have applied theorem-proving tehniques as well as term-rewriting tehniquesto verify properties of large-sale systems, among them software systems [72℄. Withsome engineering work, any of these theorem provers ought to be embeddable intothe Hob system as an analysis plugin.Typial appliations of stati analysis. Many systems that use stati analysisto improve software quality, suh as FindBugs [47℄, searh for violations of generiproperties that all programs written in a partiular programming language must sat-isfy. Other systems, suh as Synergy [43℄, verify usage properties for system alls(suh as loking primitives). While suh properties are somewhat domain-dependent,in that they only apply to programs that belong to a ertain domain (e.g. deviedrivers), these properties still do not disuss anything spei� about the programsthemselves. The spei�ation languages that we have disussed ould enable the ver-i�ation of design-level properties. However, to our knowledge, other spei�ation148

languages have not been used for verifying suh properties. Note that the level ofdetail in most other spei�ation languages makes it di�ult to identify whih prop-erties are design properties in a potentially unwieldy spei�ation. We believe theHob approah is the �rst approah that gives developers the power to both stateand verify truly domain-spei� properties whih an express aspets of a softwaresystem's design.8.3 Combining Stati AnalysesOur researh aims to enable the appliation of multiple analyses that hek arbitrarilyompliated properties within a single program. This ontrasts with most existingapproahes, whih attempt to develop a single new analysis algorithm or tehnique.Our system supports the loose integration of analyses where eah analysis applies toone proedure or module. The set spei�ation language is key to this integration,as it serves as a lingua frana between analysis plugins. Hob's design deisions weretaken, in part, to failitate the inorporation of external tools.Most other veri�ation systems ombine analyses by using a single analysis engine(usually a theorem prover) and ombine the deision proedures for di�erent prop-erties using Nelson-Oppen tehniques [75℄ and their generalizations (e.g. [96, 97℄).Theorem provers based on these priniples inlude Simplify [25℄, Verifun [35℄, andCVC [92℄. In [13℄, Chang and Leino explore an approah that proposes a tighterombination of a partiular domain (uninterpreted funtion symbols) with an arbi-trary base domain. Their approah would enable the appliation of stati analysistehniques whih ould reason about the program state using a number of di�erentabstrat domains.Brie�y, our approah works well for ombining analyses at granularities abovethe proedure level, while the Nelson-Oppen approah is targeted towards ombininganalyses below the proedure level. Note also that the two tehniques are not mutu-ally exlusive: the Nelson-Oppen tehnique of ombining abstrat domains ould beinorporated into a Hob analysis plugin. An important design goal of our Hob systemwas to enable developers to ommuniate data struture onsisteny properties to thebakend stati analysis engines for veri�ation.Compositional Reasoning Our researh has only onsidered safety properties inthe ontext of sequential programs. In [1℄, Lamport and Abadi desribe a generalComposition Priniple whih examines the irumstanes under whih it is safe toompose spei�ations. In the ase of Hob-style data struture onsisteny proper-ties for sequential programs, the Composition Priniple basially states that whensequentially omposing two proedures, the omposition of the proedures requiresthe preondition of the �rst proedure and ensures the postondition of the seondproedure, as long as the postondition of the �rst proedure implies the preondi-tion of the seond proedure. We expet to extend the Hob system to support moregeneral types of software systems in the future, inluding onurrent and reativesystems, and we expet to use the full Composition Priniple for suh systems.149

150

Chapter 9ConlusionThis dissertation has been motivated by the problem of verifying that implementa-tions satisfy stated design properties. In this dissertation, I have presented the Hobsystem, whih an verify that implementations onform to design properties expressedin the form of global data struture onsisteny properties. Developers may use Hob'sset spei�ation language (whih ontains the boolean algebra of sets) to state de-sign properties and a standard imperative language for implementations. Hob's setspei�ation language also ontains the sopes and defaults mehanisms, whih en-able developers to omit redundant lauses from spei�ations and therefore to writeshorter spei�ations.Beause implementations and spei�ations at on di�erent representations ofthe program state�onrete heap states for implementations versus abstrat setsfor spei�ations�the Hob system uses developer-provided abstration funtions torelate implementation and spei�ation states. Abstration funtions mediate be-tween onrete states and abstrat states by giving de�nitions for abstrat sets interms of onrete states. Stati analysis tehniques use these abstration funtionsto verify that implementations orrespond to their set-based spei�ation; many pre-ise analyses exist and are apable of verifying some quite sophistiated lasses ofimplementations.Issues assoiated with using preise stati analyses inlude salability limitationsand the diversity of important data struture properties, some of whih will inevitablyelude any single analysis. A key element of the Hob approah is in its use of modularanalysis to address these issues: developers may divide the program into modules andverify eah proedure belonging to these modules separately, hoosing an appropriateanalysis tehnique for eah module. To enable modular analysis, Hob modules enap-sulate �elds (not objets) and data struture implementations; the analysis relies onspei�ations based on membership in abstrat sets; and developers may use sets toexpress (and enable the veri�ation of) properties that involve multiple data stru-tures in multiple modules analyzed by di�erent analyses. The tehniques desribed inthis dissertation will enable the produtive appliation of a variety of preise analysesto verify important software design properties.This dissertation has desribed how the Hob framework integrates the �ags, Bohneand theorem proving analysis plugins. The �ags plugin enables developers to reason151

about modules that manipulate sets de�ned by integer and boolean �ag values, aswell as modules that oordinate the ations of lient modules. The Bohne pluginsupports reasoning about linked heap strutures by summarizing them in terms ofmonadi seond-order logi. Finally, the theorem proving plugin allows developersto state arbitrarily ompliated program properties and to verify them (by diretingtheorem provers towards proofs of these properties). The Hob system enables devel-opers to ombine implementation modules whih are analyzed using the �ags, Bohneand theorem proving modules. Furthermore, the use of a ommon set spei�ationlanguage enables developers to verify global onsisteny properties whih depend onresults obtained by any plugin in the Hob framework.Finally, this dissertation has evaluated the feasibility of the Hob approah byapplying it to a number of benhmarks, inluding minesweeper, a web server, anda MIDI �le player. I found that the Hob approah was suitable for apturing er-tain kinds of design information. In partiular, the use of set spei�ations enableddevelopers to state and verify outward-looking properties. These properties ouldonstrain a program's behaviour and guarantee that it does not misbehave in ertainuser-visible ways.9.1 Future WorkI next outline several possible researh diretions.Veri�ed data struture library. The Hob system enables the development ofa standard library of veri�ed data strutures. To date, we have implemented andveri�ed a number of useful data strutures, inluding linked-list and array-based setimplementations. I believe that it should be possible to implement all of the datastrutures in ommon usage and to verify data struture onsisteny properties forthese data strutures. Beause Hob's set spei�ation language only supports a target-ted lass of spei�ation properties, it would not be possible to speify all propertiesof interest. However, set spei�ations should be expressive enough to state manyuseful properties.A library of veri�ed data strutures would be useful in itself, as a toolbox fordevelopers to use, but would also ontribute to our understanding of an analysissystem's power. Suh a library an shed light on whih properties a system an verifyas well as whih properties the system an ommuniate to the developer.Spei�ation and implementation inferene. Developers using the Hob sys-tem must urrently state both spei�ations and implementations; in some sense,the spei�ations and implementations redundantly state some of the same informa-tion. While this redundany an help to identify errors in both spei�ations andimplementations, the overall researh goal of ensuring that implementations onformto their designs does not depend on this redundany. Note that a spei�ation in-ferene approah would be no worse than the urrent state of the art in terms of�nding program errors, sine spei�ations are urrently either nonexistent or�at152

best�unheked. Even though inferred spei�ations would not immediately �ndany errors, they would be helpful for identifying design drift: developers ould benoti�ed when their implementations hange and no longer math previously-inferredspei�ations.In priniple, it would be possible for analysis plugins to synthesize spei�ations�or at least initial drafts of spei�ations�from some lasses of implementations, tobe polished by the developer later on. The �ag analysis plugin would be partiularlysuitable for inferring spei�ation.Conversely, it should also be possible to synthesize implementations from spei�-ations, at least for a ertain (limited) lass of implementations. To synthesize im-plementations, it would be neessary to dedue the sequene of method alls requiredto implement a given set of postonditions, a searh problem. Suh a synthesizerwould enable a style of programming whih ould turn out to be similar to the SETLprogramming language [27℄.Novel spei�ation mehanisms. A related area for future investigation is im-proved spei�ation languages. Our spei�ation language notions of sopes and de-faults arose from an examination of how existing spei�ation language mehanismsould be improved. A general problem with spei�ations is that developers some-times write nonsensial spei�ations whih make program properties either vauouslytrue or unsatis�able. I believe that the exploration of further spei�ation onstrutsan yield tehniques whih would make it easier to reate meaningful program spei-�ations.Handling onurrent programs. Conurreny has beome a ubiquitous featureof modern programming environments. It would be produtive to explore the issuesinvolved in ombining onurreny and the global data strutures supported by theHob system. A major obstale to developing reliable onurrent programs is thepossibility that multiple threads may update the same data struture at the sametime. Modular analysis of onurrent programs is partiularly di�ult beause a keyassumption in our urrent modular analysis tehnique is violated: side e�ets fromonurrent threads may our at any time in a proedure's exeution. In the on-urrent setting, it is no longer su�ient to assume the preondition of a proedureand prove the postondition. One possible solution is to augment the Hob system tosupport programs in whih the developer may hoose to implement data struturesusing either private per-thread instanes (whih are not subjet to hanges by onur-rent threads) or using atomi transations to ontrol updates to data whih is sharedbetween threads. The urrent Hob approah ought to be easily adaptable to privatedata strutures. However, novel spei�ation and veri�ation tehniques would beneeded for transation-based shared data strutures. For example, the urrent Hobsope invariant mehanism relies on the fat that only one thread is aessing themodules that are working together to maintain the invariant. At the very least, theremust be some spei�ation mehanism allowing developers to identify the parts of thestate that must be aessed under a transation ontext.153

This researh would enable developers to verify higher-level data struture on-sisteny properties for onurrent systems, inluding relationships between loal andshared data strutures. These properties ould go beyond the urrent state of the artfor the analysis of onurrent systems, whih verify basi properties suh as freedomfrom data raes and typestate properties.Integrating dynami analysis results. Approahes based on dynami analysisand testing have proven to be e�etive for both disovering and enforing programproperties. For instane, Nimmer and Ernst have investigated the dynami detetionof program invariants, as implemented in the Daikon tool, and the stati veri�ationof these invariants, using the ESC/Java system; this work is desribed in [77℄. Whilethe Hob system urrently uses stati analysis approahes exlusively, future workould produtively investigate the possible ontributions of dynami analysis in theontext of the Hob approah. One approah, whih is being urrently explored byZee [98℄, uses information from program exeutions to guide loop invariant inferene. Ibelieve that beause Hob's set spei�ations fous on high-level relationships betweendi�erent parts of the program rather than low-level onrete heap properties, theinferene of Hob-style set spei�ations ould enable the automati inferene of designinformation.9.2 ImpliationsUntil now, developers have been unable to rely on design information to guide themin the ourse of software development and maintenane: suh information is oftenoutdated and inaurate. Beause the Hob system an automatially verify whetheror not an implementation mathes its design, it enables developers to ensure that aprogram's design information remains valid throughout the program's lifeyle. Inpartiular, automati veri�ation enables developers, or their managers, to inludeprogram veri�ation in development proesses in the same way that unit testing hasbeen inorporated into urrent development proesses.It has historially been di�ult to enfore the use of spei�ations in softwareprojets. Besides Hob, a number of other reent proposals have also proposed the useof spei�ation information in onjuntion with stati or dynami program analysisfor verifying this spei�ation information; examples inlude Bierho� and Aldrih'sdynami typestate [8℄ and the Spe# programming system [5℄. I believe that on-temporary approahes to the use of spei�ations will enjoy greater suess than pastexhortations advoating the importane of spei�ations. These past exhortationsmay have been ignored beause past approahes failed deliver any onrete bene�tsfrom the use of spei�ations. Beause the Hob approah enables developers to verifyimplementations against spei�ations, spei�ations an remain up-to-date, and de-velopers an on�dently use these spei�ations when maintaining software. Further-more, suessful veri�ation (of both low-level data struture onsisteny propertiesand global properties that relate di�erent data strutures) will augment developers'on�dene in the overall quality of their software.154

The heap aliasing problem has always been an issue for stati analyses; all statianalyses must somehow �nitize the heap to soundly handle the aliasing problem.Hob's set-based spei�ations enable developers to state onstraints on the heap, in-luding aliasing onstraints, and to �nitize the heap using a �xed number of sets.Note that Hob's set spei�ation language obviates the need to disuss pointer-basedrelationships between heap objets at the level of global spei�ations, hiding theomplexities inherent in the underlying onrete state and replaing them with rela-tionships between abstrat sets. My experiene with set-based spei�ations suggeststhat they are a useful abstration of the heap and that their use ought to ease thedevelopment of future stati analysis tehniques.Hob's set-based spei�ations also point out a new approah for researhers touse in making stati analysis results aessible to developers. Even though modernstati analyses are apable of verifying extremely detailed program properties, theseanalyses are not useful unless developers an provide program properties to the anal-yses in the required form. When using the Hob system, a program analysis expertan provide neessary abstration funtions during a module's initial design. Subse-quently, developers an apply stati analyses to a module's implementation withoutthe assistane of the expert, even as the module evolves, as long as the fundamen-tal representation invariants remain unhanged. Of ourse, the Hob approah alsoenables developers to bene�t from stati analysis in the sense that Hob enables de-velopers to invoke veri�ed proedures, knowing that these proedures satisfy theirontrats.Formal veri�ation of large software systems has long been a goal of the programveri�ation ommunity. I believe that an approah like Hob's modular pluggableanalysis approah is most likely to sueed in verifying suh systems. There has beena onstant tension between analysis power and salability: more-powerful analyseshave historially saled poorly, yet they are needed to verify important properties ofprograms. A suessful solution to the program veri�ation problem must be able toharness powerful analysis tehniques (to obtain needed analysis results) but may onlyapply them to limited parts of the program (for salability reasons). Modular analysisenables the produtive use of di�erent analyses, of varying power, to potentially verifyproperties of signi�antly-sized programs.

155

156

Bibliography[1℄ Martín Abadi and Leslie Lamport. Composing spei�ations. Transations onProgramming Languages and Systems, 15(1):73�132, 1993.[2℄ Jean-Raymond Abrial, Matthew K. O. Lee, Dave Neilson, P. N. Sharbah, andIb Sørensen. The B-method. In Proeedings of the 4th International Symposiumof VDM Europe on Formal Software Development-Volume 2, pages 398�405.Springer-Verlag, 1991.[3℄ The Alloy Modelling Language and Analyzer. Papers and tool available at:
http://alloy.mit.edu. Software Design Group, Computer Siene and Arti�-ial Intelligene Laboratory, MIT, Cambridge, MA.[4℄ Konstantine Arkoudas, Karen Zee, Viktor Kunak, and Martin Rinard. Verifyinga �le system implementation. In Sixth International Conferene on Formal En-gineering Methods (ICFEM'04), volume 3308 of LNCS, Seattle, Nov 8-12, 20042004.[5℄ Mike Barnett, K. Rustan M. Leino, and Wolfram Shulte. The Spe# program-ming system: An overview. In CASSIS 2004: International Workshop on Con-strution and Analysis of Safe, Seure and Interoperable Smart devies, Marh2004.[6℄ Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of theooperating validity heker. In Rajeev Alur and Doron A. Peled, editors, Pro-eedings of the 16th International Conferene on Computer Aided Veri�ation(CAV '04), volume 3114 of Leture Notes in Computer Siene, pages 515�518.Springer-Verlag, July 2004. Boston, Massahusetts.[7℄ Aysu Betin-Can, Tev�k Bultan, Mikael Lindvall, Benjamin Lux, and StefanTopp. Appliation of design for veri�ation with onurreny ontrollers to airtra� ontrol software. In Proeedings of the 20th IEEE International Confer-ene on Automated Software Engineering (ASE 2005), pages 14�23, Long Beah,California, November 2005.[8℄ Kevin Bierho� and Jonathan Aldrih. Lightweight objet spei�ation with type-states. In Harald C. Gall, editor, Proeedings of ESEC-FSE '05, pages 217�226,September 2005. 157

[9℄ Bruno Blanhet, Patrik Cousot, Radhia Cousot, Jér�me Feret, LaurentMauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A Stati Ana-lyzer for Large Safety-Critial Software. In ACM PLDI, San Diego, California,June 2003. ACM.[10℄ W. Blume and R. Eigenmann. Performane analysis of parallelizing ompilerson the Perfet Benhmarks programs. IEEE Transations on Parallel and Dis-tributed Systems, 3(6):643�656, November 1992.[11℄ Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership typesfor objet enapsulation. In Pro. 30th ACM POPL, 2003.[12℄ Lilian Burdy, Yoonsik Cheon, David Cok, Mihael D. Ernst, Joe Kiniry, Gary T.Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools andappliations. Tehnial Report NII-R0309, Computing Siene Institute, Univ.of Nijmegen, Marh 2003.[13℄ Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstrat interpretation withalien expressions and heap strutures. In VMCAI'05, January 2005.[14℄ David R. Cheriton and Mihael E. Wolf. Extensions for multi-module reords inonventional programming languages. In Proeedings of the 14th ACM SIGACT-SIGPLAN symposium on Priniples of programming languages, pages 296�306.ACM Press, 1987.[15℄ David G. Clarke, John M. Potter, and James Noble. Ownership types for �exiblealias protetion. In Pro. 13th Annual ACM Conferene on Objet-OrientedProgramming, Systems, Languages, and Appliations, 1998.[16℄ Lori Clarke and Debra Rihardson. Symboli evaluation methods for pro-gram analysis. In Program Flow Analysis: Theory and Appliations, hapter 9.Prentie-Hall, In., 1981.[17℄ David R. Cok. Reasoning with spei�ations ontaining method alls and model�elds. Journal of Objet Tehnology, 4(8):77�103, September�Otober 2005.[18℄ David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and JML:Progress and issues in building and using ESC/Java2 and a report on a asestudy involving the use of ESC/Java2 to verify portions of an Internet voting tallysystem. In CASSIS: Constrution and Analysis of Safe, Seure and InteroperableSmart devies, 2004.[19℄ P. Cousot and N. Halbwahs. Automati disovery of linear restraints amongvariables of a program. In Conferene Reord of the Fifth Annual ACMSIGPLAN-SIGACT Symposium on Priniples of Programming Languages, pages84�97, Tuson, Arizona, 1978. ACM Press, New York, NY.[20℄ Patrik Cousot and Radhia Cousot. Systemati design of program analysis frame-works. In Pro. 6th ACM POPL, pages 269�282, 1979.158

[21℄ CSK, editor. VDM++ Toolbox User Manual. VDMTools, 2005.[22℄ Bent Dandanell. Rigorous development using RAISE. In Proeedings of theonferene on Software for itial systems, pages 29�43. ACM Press, 1991.[23℄ Robert DeLine and Manuel Fähndrih. Enforing high-level protools in low-levelsoftware. In Pro. ACM PLDI, 2001.[24℄ Robert DeLine and Manuel Fähndrih. Typestates for objets. In Pro. 18thECOOP, June 2004.[25℄ David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover forprogram heking. Tehnial Report HPL-2003-148, HP Laboratories Palo Alto,2003.[26℄ David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Ex-tended stati heking. Tehnial Report 159, COMPAQ Systems Researh Cen-ter, 1998.[27℄ Robert K. Dewar. The SETL programming language.http://birh.ees.lehigh.edu/∼baon/setlprog.ps.gz.[28℄ S. Drossopoulou, F. Damiani, M. Dezani-Cianaglini, and P. Giannini. Fikle:Dynami objet re-lassi�ation. In Pro. 15th ECOOP, LNCS 2072, pages 130�149. Springer, 2001.[29℄ David Evans. Stati detetion of dynami memory errors. In Pro. ACM PLDI,1996.[30℄ Manuel Fahndrih and Robert DeLine. Adoption and fous: Pratial lineartypes for imperative programming. In Pro. ACM PLDI, 2002.[31℄ Manuel Fähndrih and K. Rustan M. Leino. Delaring and heking non-nulltypes in an objet-oriented language. In Proeedings of the 18th ACM SIGPLANonferene on Objet-oriented programing, systems, languages, and appliations,pages 302�312. ACM Press, 2003.[32℄ Manuel Fähndrih and K. Rustan M. Leino. Heap monotoni typestates. In Inter-national Workshop on Aliasing, Con�nement and Ownership in objet-orientedprogramming (IWACO), 2003.[33℄ Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanual Geay.E�etive typestate veri�ation in the presene of aliasing. In Pro. InternationalSymposium on Software Testing and Analysis, 2006.[34℄ John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nio Plat, and MarelVerhoef. Validated Designs for Objet�oriented Systems. Springer, New York,2005. 159

[35℄ Corma Flanagan, Rajeev Joshi, Xinming Ou, and James B. Saxe. Theoremproving using lazy proof expliation. In CAV, pages 355�367, 2003.[36℄ Corma Flanagan, K. Rustan M. Leino, Mark Lilibridge, Greg Nelson, James B.Saxe, and Raymie Stata. Extended Stati Cheking for Java. In Pro. ACMPLDI, 2002.[37℄ Corma Flanagan and James B. Saxe. Avoiding exponential explosion: Gener-ating ompat veri�ation onditions. In Pro. 28th ACM POPL, 2001.[38℄ Pasal Fradet and Daniel Le Métayer. Shape types. In Pro. 24th ACM POPL,1997.[39℄ Erih Gamma, Rihard Helm, Ralph Johnson, and John Vlissides. Design Pat-terns: Elements of Reusable Objet-Oriented Software. Addison-Wesley, Reading,Mass., 1994.[40℄ Steve M. German. Automating proofs of the absene of ommon runtime errors.In POPL '78: Proeedings of the 5th ACM SIGPLAN-SIGACT symposium onPriniples of Programming Languages, pages 105�118, 1978.[41℄ Rakesh Ghiya and Laurie Hendren. Is it a tree, a DAG, or a yli graph? InPro. 23rd ACM POPL, 1996.[42℄ M. J. C. Gordon and T. F. Melham. Introdution to HOL, a theorem provingenvironment for higher-order logi. Cambridge University Press, Cambridge,England, 1993.[43℄ Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V. Nori,and Sriram K. Rajamani. Synergy: A new algorithm for property heking. InProeedings of the 14th Annual Symposium on Foundations of Software Engi-neering, Portland, Oregon, November 2006.[44℄ John Guttag and James Horning. Larh: Languages and Tools for Formal Spe-i�ation. Springer-Verlag, 1993.[45℄ John Harrison. HOL Light: A tutorial introdution. In Mandayam Srivas andAlbert Camilleri, editors, Proeedings of the First International Conferene onFormal Methods in Computer-Aided Design (FMCAD'96), volume 1166 of LNCS,pages 265�269. Springer-Verlag, 1996.[46℄ Iain Houston and Steve King. CICS projet report: Experienes and resultsfrom the use of Z in IBM. In S. Prehn and W. J. Toetenel, editors, Proeedingsof VDM'91, volume 551 of Leture Notes in Computer Siene, pages 588�596.Springer Verlag, 1991.[47℄ David Hovemeyer and Willian Pugh. Finding bugs is easy. In ACM SIGPLANNoties, volume 39, pages 92�106, Deember 2004.160

[48℄ B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approah to inter-proedural shape analysis. In 11th SAS, 2004.[49℄ Cli� B. Jones. Systemati Software Development using VDM. Prentie HallInternational (UK) Ltd., 1986.[50℄ Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors. Computer-Aided Reasoning: ACL2 Case Studies. Kluwer Aademi Publishers, 2000.[51℄ Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICSNotes Series NS-01-1, Department of Computer Siene, University of Aarhus,January 2001.[52℄ Nils Klarlund, Anders Møller, and Mihael I. Shwartzbah. MONA implemen-tation serets. In Pro. 5th International Conferene on Implementation andAppliation of Automata. LNCS, 2000.[53℄ Dexter Kozen. Complexity of boolean algebras. Theoretial Computer Siene,10:221�247, 1980.[54℄ Viktor Kunak, Patrik Lam, and Martin Rinard. Role analysis. In Pro. 29thPOPL, 2002.[55℄ Viktor Kunak, Hai Huu Nguyen, and Martin Rinard. An algorithm for deid-ing BAPA: Boolean Algebra with Presburger Arithmeti. In 20th InternationalConferene on Automated Dedution, CADE-20, Tallinn, Estonia, July 2005.[56℄ Shuvendu K. Lahiri and Shaz Qadeer. Verifying properties of well-founded linkedlists. In POPL06, 2006.[57℄ Patrik Lam. A general framework for the �ow analysis of onurrent programs.Master's thesis, MGill University, 2000.[58℄ Patrik Lam, Viktor Kunak, and Martin Rinard. Generalized typestate hekingusing set interfaes and pluggable analyses. SIGPLAN Noties, 39:46�55, Marh2004.[59℄ Patrik Lam, Viktor Kunak, and Martin Rinard. Generalized typestate hekingfor data struture onsisteny. In 6th International Conferene on Veri�ation,Model Cheking and Abstrat Interpretation, 2005.[60℄ Patrik Lam, Viktor Kunak, and Martin Rinard. Hob: A tool for verifying datastruture onsisteny. In 14th International Conferene on Compiler Constru-tion (tool demo), April 2005.[61℄ Patrik Lam and Martin Rinard. A type system and analysis for the automatiextration and enforement of design information. In Pro. 17th ECOOP, 2003.[62℄ Peter Gorm Larsen and John Fitzgerald. VDM information: Examples reposi-tory, November 2000. 161

[63℄ K. Rustan M. Leino. E�ient weakest preonditions. KRML114a, 2003.[64℄ Daniel Leivant. Higher order logi. In D. M. Gabbay, C. J. Hogger, and J. A.Robinson, editors, Handbook of Logi in Arti�ial Intelligene and Logi Pro-gramming, Volume 2: Dedution Methodologies, pages 229�321. Clarendon Press,Oxford, 1994.[65℄ T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava, and G. Yorsh.Simulating reahability using �rst-order logi with appliations to veri�ation oflinked data strutures. In CADE-20, 2005.[66℄ David C. Lukham, Steven M. German, Friedrih W. von Henke, Rihard A.Karp, P. W. Milne, Derek C. Oppen, Wolfgang Polak, and William L. Sherlis.Stanford Pasal Veri�er user manual. Tehnial Report CS-TR-79-731, StanfordUniversity, 1979.[67℄ David C. Lukham and Norihisa Suzuki. Veri�ation of array, reord and pointeroperations in Pasal. Transations on Programming Languages and Systems,1(2):226�244, Otober 1979.[68℄ David C. Lukham and F.W. von Henke. Program veri�ation at Stanford.Software Engineering Notes, 6(3):25�27, July 1981.[69℄ Roman Manevih, G. Ramalingam, John Field, Deepak Goyal, and Mooly Sagiv.Compatly representing �rst-order strutures for stati analysis. In Pro. 9thInternational Stati Analysis Symposium, pages 196�212, 2002.[70℄ Roman Manevih, Mooly Sagiv, G. Ramalingam, and John Field. Partially dis-juntive heap abstration. In Roberto Giaobazzi, editor, Proeedings of the 11thInternational Symposium, SAS 2004, volume 3148 of Leture Notes in ComputerSiene, pages 265�279. Springer, August 2004.[71℄ Anders Møller and Mihael I. Shwartzbah. The Pointer Assertion Logi Engine.In Programming Language Design and Implementation, 2001.[72℄ J Strother Moore. Proving theorems about Java and the JVM with ACL2. InModels, Algebras and Logi of Engineering Software, pages 227�290. IOS Press,2003.[73℄ Olaf Müller, Tobias Nipkow, David von Oheimb, and Oskar Slotosh. HOLCF= HOL + LCF. Journal of Funtional Programming, 9:191�223, 1999.[74℄ Gail C. Murphy, David Notkin, and Kevin Sullivan. Software re�exion models:Bridging the gap between soure and high-level models. In Gail E. Kaiser, editor,Proeedings of the 3rd ACM SIGSOFT symposium on Foundations of softwareengineering, pages 18�28, 1995.[75℄ Greg Nelson. Tehniques for program veri�ation. Tehnial report, XEROXPalo Alto Researh Center, 1981. 162

[76℄ Greg Nelson. Verifying reahability invariants of linked strutures. In POPL,1983.[77℄ Jeremy W. Nimmer and Mihael D. Ernst. Stati veri�ation of dynamiallydeteted program invariants: Integrating Daikon and ESC/Java. In Proeedingsof RV'01, First Workshop on Runtime Veri�ation, Paris, Frane, July 23, 2001.[78℄ Tobias Nipkow, Lawrene C. Paulson, and Markus Wenzel. Isabelle/HOL: AProof Assistant for Higher-Order Logi, volume 2283 of LNCS. Springer-Verlag,2002.[79℄ Objet Management Group (OMG). OCL 2.0 spei�ation, 2005.[80℄ D. L. Parnas. A tehnique for software module spei�ation with examples.Communiations of the ACM, 15(5):330�336, May 1972.[81℄ Lawrene C. Paulson. Isabelle: A Generi Theorem Prover. Number 828 inLNCS. Springer-Verlag, 1994.[82℄ Martin C. Rinard. The Design, Implementation and Evaluation of Jade, aPortable, Impliitly Parallel Programming Language. PhD thesis, Stanford Uni-versity, 1994.[83℄ James Rumbaugh, Ivar Jaobson, and Grady Booh. The Uni�ed ModellingLanguage Referene Manual. Addison-Wesley, Reading, Mass., 1999.[84℄ Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametri shape analysisvia 3-valued logi. ACM TOPLAS, 24(3):217�298, 2002.[85℄ Mohlale� Se�ka, Aamod Sane, and Roy H. Campbell. Monitoring ompliane ofa software system with its high-level design models. In ICSE'96, pages 387�396,1996.[86℄ Miha Sharir and Amir Pnueli. Two approahes to interproedural data �owanalysis problems. In Program Flow Analysis: Theory and Appliations. Prentie-Hall, In., 1981.[87℄ Abraham Silbershatz and Zvi Kedem. Consisteny in hierarhial databasesystems. Journal of the ACM, 27(1):72�80, January 1980.[88℄ Thoralf Skolem. Untersuhungen über die Axiome des Klassenkalküls and über�Produktations- und Summationsprobleme�, welhe gewisse Klassen von Aus-sagen betre�en. Skrifter utgit av Vidnskapsselskapet i Kristiania, I. klasse, no.3, Oslo, 1919.[89℄ J. M. Spivey. The Z Notation: A Referene Manual. Prentie-Hall, In., 1992.[90℄ Robert E. Strom and Daniel M. Yellin. Extending typestate heking usingonditional liveness analysis. IEEE Transations on Software Engineering, May1993. 163

[91℄ Robert E. Strom and Shaula Yemini. Typestate: A programming language on-ept for enhaning software reliability. IEEE TSE, January 1986.[92℄ A. Stump, C. Barrett, and D. Dill. CVC: a Cooperating Validity Cheker. In14th International Conferene on Computer-Aided Veri�ation, 2002.[93℄ Thomas Wies, Viktor Kunak, Patrik Lam, Andreas Podelski, and Martin Ri-nard. Field onstraint analysis. In Pro. 7th International Conferene on Veri-�ation, Model Cheking and Abstrat Interpretation, 2006.[94℄ Jim Woodok and Jim Davies. Using Z. Prentie-Hall, In., 1996.[95℄ Eran Yahav and Ganesan Ramalingam. Verifying safety properties using sepa-ration and heterogeneous abstrations. In Pro. ACM PLDI, 2004.[96℄ Calogero G. Zarba. The Combination Problem in Automated Reasoning. PhDthesis, Stanford University, 2004.[97℄ Calogero G. Zarba. A quanti�er elimination algorithm for a fragment of settheory involving the ardinality operator. In 18th International Workshop onUni�ation, 2004.[98℄ Karen Zee. Personal ommuniation, 2006.[99℄ Karen Zee, Patrik Lam, Viktor Kunak, and Martin Rinard. Combining theo-rem proving with stati analysis for data struture onsisteny. In InternationalWorkshop on Software Veri�ation and Validation (SVV 2004), Seattle, Novem-ber 2004.

164

	Introduction
	Scalability and Diversity
	Approach Based on Abstract Set Specifications
	Two novel specification-level constructs

	Verifying Program Properties
	Rationale
	Results
	Limitations
	Contributions
	Structure

	Hob Implementation Language
	Example: Doubly-Linked List Implementation
	Explicit module definitions
	Static module instantiation
	Type and variable declarations
	Procedures
	Executing Hob programs

	Implementation Language Grammar
	Operational Semantics
	Discussion
	Implications of encapsulating fields
	Implications of static instantiation

	Hob Specification Language
	Example: Doubly-Linked List Specification
	Specification module definitions and instantiations
	Specification variable definitions
	Procedure definitions

	Example: Global Properties (Scopes)
	A global invariant
	Specifying global invariants
	Verifying global invariants
	Specification aggregation

	Example: Global Properties (Defaults)
	Specification Language Grammar
	Core specification language
	Scopes
	Defaults

	Discussion
	Scopes and specification aggregation
	Advantages and disadvantages of defaults
	Implications of using a set specification language
	Comparison: Static analysis and testing

	Hob Abstraction Languages
	Analysis Approach
	Specifying Hob abstraction functions
	Common abstraction module grammar

	Flags Abstraction Module Language
	Example: Flag abstraction module
	Loop invariant inference
	Using the flag analysis plugin

	Bohne Abstraction Module Language
	Example: Bohne abstraction module
	Using the Bohne analysis plugin

	Theorem Proving Abstraction Module Language
	Example: Theorem proving abstraction module
	Using the theorem proving analysis plugin
	Expressive power of the theorem proving plugin

	How Abstraction Modules Enable Checking of Global Properties

	Ensuring Consistency Properties
	Analysis Plugin Responsibilities
	Developing New Analysis Plugins
	Hob Analysis Driver

	Flags Analysis Plugin
	Flags Analysis Example
	Flags Analysis Algorithm
	Incorporation
	Transition Relations
	Verifying Implication of Dataflow Facts
	Loop Invariant Inference
	Boolean Algebra Formula Transformations
	Evaluating Formula Optimization Impact

	Experience
	Data Structure Implementations
	Tree data structure
	Stack data structure

	Water
	HTTP Server
	Minesweeper
	Implications of Modular Analysis
	Summary and Reflections

	Related Work
	Specification Languages
	Expressing design information

	Analysis Technologies and Verification Systems
	Combining Static Analyses

