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2 University of Waterloo, Waterloo, Ontario, CanadaAbstrat. Perfet pre-deployment test overage is notoriously di�ult toahieve for large appliations. With enough end users, many more test aseswill be enountered during an appliation's deployment than during testing.The use of runtime veri�ation after deployment would enable developers todetet and report on unexpeted situations. Unfortunately, the prohibitiveperformane ost of runtime monitors prevents their use in deployed ode.In this work we study the feasibility of ollaborative runtime veri�ation,a veri�ation approah whih distributes the burden of runtime veri�ationonto multiple users. Eah user exeutes a partially instrumented programand therefore su�ers only a fration of the instrumentation overhead.We fous on runtime veri�ation using traemathes. Traemathes are aspei�ation formalism that allows users to speify runtime veri�ation prop-erties via regular expressions with free variables over the dynami exeutiontrae. We propose two tehniques for soundly partitioning the instrumen-tation required for traemathes: spatial partitioning, where di�erent opiesof a program monitor di�erent program points for violations, and temporalpartitioning, where monitoring is swithed on and o� over time. We evaluatethe relative impat of partitioning on a user's runtime overhead by apply-ing eah partitioning tehnique to a olletion of benhmarks that wouldotherwise inur signi�ant instrumentation overhead.Our results show that spatial partitioning almost ompletely eliminates run-time overhead (for any partiular benhmark opy) on many of our test ases,and that temporal partitioning sales well and provides runtime veri�ationon a �pay as you go� basis.1 IntrodutionIn the veri�ation ommunity it is now widely aepted that, espeially for largeprograms, veri�ation is often inomplete and hene bugs still arise in deployed odeon the mahines of end users. However, veri�ation ode is rarely deployed, dueto large performane penalties indued by urrent runtime veri�ation approahes.Consequently, when errors do arise in prodution environments, their auses areoften hard to diagnose: the available debugging information is very limited.Traemathes [1℄ are one mehanism for speifying runtime monitors. Trae-mathes enable developers to state sequenes of program events and ations to takeif the exeution mathes the sequene. Events bind objets in the heap; a traemathonly triggers if all of the events our on a onsistent set of objets.



Aording to researhers in industry [13℄, larger industrial ompanies would likelybe willing to aept runtime veri�ation in deployed ode if the overhead is below5%. In previous work on traemathes, we have shown that, in many ases, statianalysis an enable e�ient runtime monitoring by improving both the spei�a-tion [3℄ and program under test [6℄. Most often, our tehniques an redue runtimeoverhead to under 10%. However, our evaluation also showed that unreasonably largeoverheads�sometimes more than 100%�remained for some lasses of spei�ationsand programs. Other tehniques for runtime monitoring also inur similar runtimeoverheads; for instane, the Program Query Language [10℄ auses up to 37% over-head on its benhmark appliations (although it is intended to be a debugging toolrather than a tool for monitoring deployed programs), and JavaMOP [7℄ inurs upto 13% overhead on non-pathologial test ases for runtime monitoring.In this work, we attak the problem of runtime veri�ation-indued overhead byusing methods from remote sampling [9℄. Beause ompanies whih produe largepiees of software (whih are usually hard to analyze) often have aess to a largeuser base, one an generate di�erent kinds of partial instrumentation (�probes�) foreah user. A entralized server an then ombine runtime veri�ation results fromruns with di�erent probes. Although there are many advantages to a sampling-basedapproah, we are interested in using sampling to redue instrumentation overheadfor individual end users. We have developed two approahes for partitioning theoverhead, spatial partitioning and temporal partitioning.Spatial partitioning works by partitioning the instrumentation points into di�er-ent subsets. We all eah subset of instrumentation points a probe and eah useris given a program instrumented with only one probe. This works very well inmany ases, but in some ases a probe may ontain a very hot�that is, expensive�instrumentation point. In those ases, the unluky user who gets the hot probe willexperiene most of the overhead.Temporal partitioning works by turning the instrumentation on and o� periodi-ally, reduing the total overhead. This method works even if there are are very hotprobes, beause even those probes are only enabled some of the time. However, sineprobes are disabled some of the time, any runtime veri�ation properties of interestmay be ignored while the probes are disabled.In both spatial and temporal partitioning, the remaining instrumentation mustoperate orretly and, in partiular, must never report false positives. The key pointis that our transformations must never remove instrumentation points that an re-move andidate bindings; identifying suh instrumentation points an be di�ult fortraemathes, whih may bind one or more objets and require eah event to maththe same objets. We have found a simple mehanism for reduing the number ofthese instrumentation points that appears to work well on our benhmarks.We explored the feasibility of our approah by applying our modi�ed traemathompiler to benhmarks whose overheads persisted after the stati analysis in [6℄.We �rst experimented with spatial partitioning. We found that some benhmarkswere very suited to spatial partitioning. In these ases, eah probe produed loweroverhead than the omplete instrumentation, and many probes arried less than 5%overhead. However, in other ases, some probes were so hot that they aounted for



almost all of the overhead; spatial partitioning did not help muh in those ases. Wealso experimented with temporal partitioning and examined runtimes when probeswere enabled for 10, 30, 50, 70, 90 and 100 perent of the time. As expeted, wefound that the overhead inreased steadily with the proportion of time that theprobes were enabled, so that one an gain limited runtime monitoring by runningprobes only some of the time.The remainder of this paper is strutured as follows. In Setion 2, we give bak-ground information on traemathes and desribe the instrumentation for evaluatingtraemathes at runtime. In Setion 3, we explain the spatial and temporal parti-tioning shemes. We evaluate our work in Setion 4, disuss related work in Setion5 and �nally onlude in Setion 6.2 BakgroundThe goal of our researh is to monitor exeutions of programs and ensure thatprograms never exeute pathologial sequenes of events. In this projet, we monitorexeutions using traemathes. A traemath de�nes a runtime monitor using aregular expression over an alphabet of user-de�ned events in program exeutions.The developer is responsible for providing a traemath to be veri�ed and de�nitionsfor eah event, or symbol, used in the traemath. He provides de�nitions for symbolsusing AspetJ [8℄ pointuts. Pointuts often speify patterns whih math names ofurrently exeuting methods or types of urrently exeuting objets. Pointuts mayalso bind parts of the exeution ontext. For instane, at a method-all pointut, thedeveloper may bind the method parameters, the aller objet, and the allee objets,and may refer to these objets when the traemath mathes. If a traemath doesnot bind any variables, then it redues to verifying �nite-state properties of theprogram as a whole.1 tracematch(Iterator i) {2 sym next before:3 call(* java.util.Iterator+.next()) && target(i);4 sym hasNext before:5 call(* java.util.Iterator+.hasNext()) && target(i);67 next next { /* emit error message; may access variable i */ }8 } Figure 1. Traemath heking that hasNext() is always alled before next()Figure 1 presents an example traemath. The traemath header, in line 1,delares a traemath variable i. Lines 2�5 delare two symbols, next and hasNext,whih establish the alphabet for this traemath's regular expression. The next sym-bol mathes alls to an Iterator's next() method and binds the target objet of themethod all to i. The hasNext symbol mathes alls to Iterator.hasNext(), on thesame iterator i. Line 7 delares the traemath's pattern (regular expression) andbody. The pattern, next next, states that the traemath body must exeute aftertwo onseutive alls to next(), as long as no hasNext() all intervenes.



A ruial point about the semantis of traemathes' regular expressions is thatintermediate events mathing an expliitly-delared symbol annot be ignored ; thatis, any ourrene of a non-mathing symbol in an exeution invalidates relatedpartial mathes. In our example, a sequene next hasNext next (all on the sameiterator, of ourse) would not math. (Avgustinov et al. disuss the semantis oftraemathes in detail in [2℄.)The implementation of traemathes uses �nite state mahines to trak the statesof ative partial mathes. The ompiler traks variable-to-objet bindings with on-straints ; eah state q in the �nite state mahine has an assoiated onstraint thatstores information about groups of bound heap objets that must or must not bein state q. Constraints are stored in Disjuntive Normal Form as a set of disjunts.Eah disjunt maps from traemath variables to objets. Note that the runtimeost of this approah omes from the large number of simultaneously-bound heapobjets, and that the number of traemath variables does not ontribute to theruntime ost.
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Figure 2. Finite state mahine for the traemath of Figure 1Figure 2 presents the automaton for the HasNext pattern; we an observe thattwo alls to next (on the same i) will ause the automaton to hit its �nal state q2.Note that state q1 arries a dashed self-loop. We all this loop a skip-loop. Skip loopsremove partial mathes that annot be extended to omplete mathes: they delete apartial math whenever an observed event invalidates that partial math.As an example, assume that state q1 is assoiated with the onstraint {[i 7→

i1], [i 7→ i2]}; that is, the program has exeuted next() one, and only one, oneah of the iterators i1 and i2, following the most reent all to hasNext() on eahof i1 and i2. If the program then exeutes hasNext() on i2, then another all to
next() on i2 an no longer trigger an immediate math. Hene the skip-loop labelled
hasNext will redue the onstraint on the intermediate state q1 to {[i 7→ i1]}; theimplementation disards the disjunt for i2 at q1. (In the traemath semantis, theskip-loop implements a onjuntion of the onstraint at q1 with the binding i 6= i2.)The traemath ompiler weaves ode to monitor traemathes into programsat appropriate event loations. For every stati ode loation orresponding to apotential event exeution, the ompiler therefore inludes instrumentation ode thatalso updates the appropriate disjunts. This instrumentation ode is alled a shadow.In this paper, we use a previously-published stati analysis that removes shadowsif they an be shown to never ontribute to omplete mathes [6℄; for instane, aprogram whih alls hasNext() but never next() would never trigger the �nal stateof the HasNext automaton, so the hasNext shadows an removed.



3 Shadow partitioningsCollaborative runtime veri�ation leverages the fat that many users will exeutethe same appliation many times to redue the runtime veri�ation overhead foreah user. The two basi options are to (1) redue the number of ative shadows forany partiular run; or (2) redue the (amortized) amount of work per ative shadow.To explore these options, we devised two partitioning shemes, spatial and temporalpartitioning. Spatial partitioning (Setion 3.1) redues the number of ative shadowsper run, while temporal partitioning (Setion 3.2) redues the amortized workloadper ative shadow over any partiular exeution.Our partitioning shemes are designed to produe false negatives but no falsepositives. Our monitoring may miss some pattern mathes (whih will be aughteventually given enough exeutions), but any reported math must atually our.3.1 Spatial partitioningSpatial partitioning redues the overhead of runtime veri�ation by only leaving ina subset of a program's shadows. However, hoosing an arbitrary subset of shadowsdoes not work; in partiular, arbitrarily disabling skip shadows may lead to falsepositives. Consider the following ode with the HasNext pattern.1 for(Iterator i = c.iterator(); i.hasNext();)2 Object o = i.next();In this ase, if the iterator i only exists in this loop, one safe spatial partitioningwould be to disable all shadows in the program exept for those in the loop. However,disabling the hasNext skip shadow on line 1 and enabling the next shadow on line2 on a olletion with two or more objets gives a false positive, sine the monitor�sees� two alls to next() and not the all to hasNext() whih prevents the math.Enabling arbitrary subsets of shadows an also lead to wasted work. Disabling the
next shadow in the above example and keeping the hasNext shadow would, of ourse,lead to overhead from the hasNext shadow. But, on their own, hasNext shadows annever lead to a omplete math without any next shadows.We therefore need a more prinipled way of determining sensible groups of shad-ows to enable or disable. In previous work, we have desribed the notion of a shadowgroup, whih approximates 1) the shadows needed to keep traemathes triggerableand 2) the skip-shadows whih must remain enabled to avoid false positives. We willnow summarize the relevant points; the omplete details are given in [6℄. We startby de�ning the notion of a stati joinpoint shadow.De�nition 1 (Shadow). A shadow s of a traemath tm is a pair (labs, binds),where labs is the label of a delared symbol of tm and binds is a variable binding,modelled as a mapping from variables to points-to sets. A points-to set is a setof objet-reation sites in the program. The points-to set pts(v) for a variable vontains the reation sites of all objets whih ould possibly be reated at runtimeand assigned to v.In the example ode above, the hasNext shadow in line 1 would be denoted by
(hasNext, {i 7→ {i1}}), assuming that we denote the reation site of iterator objetsthat might be bound by this shadow by i1.



De�nition 2 (Shadow group). A shadow group is a pair of 1) a multi-set of shad-ows alled label-shadows and 2) a set of shadows alled skip-shadows . All shadowsin label-shadows are labelled with labels of non-skip edges on some path to a �nalstate, while all shadows in skip-shadows are labelled with a label of a skip-loop.We use a multi-set for label-shadows to reord the fat that the automaton mightnot reah its �nal state unless two or more shadows with the same label exeute.For instane, the HasNext pattern only triggers after two next shadows exeute; themultipliities in the multi-set enode the number of times that a partiular symbolneeds to exeute before the traemath ould possibly trigger.De�nition 3 (Consistent shadow group). A onsistent shadow group g is ashadow group for whih all variable bindings of all shadows in the group have points-to sets with a non-empty intersetion for eah variable.For our HasNext example, a onsistent shadow group ould have this form:label-shadows = [(next , i 7→ {i1, i2}), (next , i 7→ {i1})],skip-shadows = {(hasNext , i 7→ {i1}), (hasNext , i 7→ {i1, i3})}This shadow group is onsistent�it may lead to a math at runtime�beause thevariable bindings for i ould potentially point to the same objet, namely an objetreated at reation site i1. The shadow group holds two label shadows (labelledwith the non-skip labels next). If the label shadows had disjoint points-to sets, thenno exeution would bind the traemath variables to onsistent objets, and theshadow group would not orrespond to a possible runtime math. In addition, theshadow group holds all skip-shadows that have points-to sets that overlap with thelabel-shadows in the shadow group.Coneptually, a onsistent shadow group is the stati representation of a possiblyomplete math at runtime. Every onsistent shadow group may potentially auseits assoiated traemath to math, if the label shadows exeute in the proper order.Furthermore, only the skip shadows in the shadow group an prevent a math basedon the shadow group's label shadows.Our de�nition of a shadow group is quite well-suited to yielding sets of shadowsthat an be enabled or disabled in di�erent spatial partitions. We therefore de�nea probe to be the union of all label-shadows and skip-shadows of a given onsistentshadow group. (In onstruting probes from shadow groups, we disard the multi-setstruture of the label shadows and ombine the label-shadows and skip-shadows intoa single set). Probes �make sense� beause they ontain a set of shadows that anlead to a omplete math and they are sound beause they also ontain all of theskip-shadows that an prevent that math. (We will explain why skip-shadows areruial for probes in Setion 3.2). Note that di�erent probes may overlap; indeed, asSetion 4 shows, many similar probes share the same hot shadows.We an now present our algorithm for spatial partitioning.� Compute all probes (based on the �ow-insensitive analysis from [6℄).� Generate byteode with two arrays: one array mapping from probes to shadowsand one array with one entry per shadow.



� When emitting ode for shadows, guard eah shadow's exeution with appropri-ate array look-ups.The arrays, along with some glue ode in the AspetJ runtime, allow us to dy-namially enable and disable probes as desired. In the ontext of spatial partitioning,we hoose one probe to enable at the start of eah exeution; however, our infras-truture permits experimentation with more sophistiated partitioning shemes.3.2 Temporal partitioningWe found that spatial partitioning was e�etive in distributing the workload ofruntime veri�ation in many ases. However, in some ases, we found that a singleprobe ould still lead to large overheads for some unluky users. Two potentialreasons for large overheads are: 1) a shadow group may ontain a large number ofskip-shadows, if all those shadows have overlapping points-to sets, leading to largeprobes; or 2) if shadows belonging to a probe are repeatedly exeuted within a tightloop whih would otherwise be quite heap, any overhead due to suh shadows wouldquikly aumulate. The HasNext pattern is espeially prone to ase 2), as alls to
next() and hasNext() are heap operations and almost always ontained in loops.In suh situations, one way to further redue the runtime overhead is by sampling:instead of monitoring a given probe all the time, we monitor it from time to time andhope that the program is exeuted long enough that any violations eventually getaught. However, it is unsound to disable an entire probe and then naïvely re-enableit again on the same run: missing a skip shadow an lead to a false positive.Consider the following ode and the HasNext pattern:
for(Iterator i = c.iterator(); i.hasNext();)

Object o = i.next();If we disabled monitoring during the all to hasNext, we ould get a false positiveafter seeing two alls to next, sine the intermediate all to hasNext went unnotied.Beause false positives arise from disabling skip-shadows, one sound solution is tosimply not disable skip-shadows at all. Unfortunately, the exeution of skip-shadowsan be quite expensive; we found that leaving skip-shadows enabled also leaves a lotof overhead, defeating the purpose of temporal partitioning.However, we then observed that if a state s holds an empty onstraint (i.e.no disjunts), then skip-shadows originating at s no longer need to exeute1. Weimplemented this optimization for our temporal partitioning and found it to be quitee�etive: Setion 4 shows that our temporal partitioning, with this optimization,does not inur muh partitioning-related overhead; most of the overhead is due onlyto the exeuting monitors. Intuitively, this optimization works beause, while allnon-skip shadows are disabled, no new disjunts are being generated. Hene, theassoiated onstraint will beome empty after few�often, just one�iterations ofthe skip-shadow, pratially degenerating the skip-shadow to a no-op.1 This optimization is only safe if all variables are known to be bound at s. However, forall patterns we used in this work, and for almost all patterns we know, this is the asefor all states. Our implementation statially heks this property and only applies theoptimization if it holds.



We implemented the temporal partitioning as follows.� Generate a Boolean �ag per traemath.� When emitting ode for shadows, guard eah non-skip shadow with the appro-priate �ag.� Change the runtime to start up an additional instrumentation ontrol thread.The ontrol thread swithes the instrumentation on and o� at various time in-tervals. Figure 3 presents the parameters that the instrumentation ontrol threadaepts; non-skip edges are enabled and then disabled after ton milliseonds. Next,after another to� milliseonds, the non-skip edges are enabled again.Note that the Boolean �ag we generate is independent of the Boolean array weuse for spatial partitioning. If both spatial and temporal partitioning are used, a non-skip shadow is only enabled if both the Boolean array �ag (from spatial partitioning)for this partiular shadow and the Boolean �ag (from temporal partitioning) for itstraemath are enabled. A skip shadow will be enabled if the Boolean array �ag forits traemath is enabled.
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Figure 3. Parameters for temporal partitioning, with inrease period of n = 2The thread an also sale the ativation periods: every n periods, it an sale
ton by a fator ion and to� by io�. This tehnique�a well-known tehnique fromadaptive systems suh as just-in-time ompilers�allows us to keep non-skip edgesenabled for longer as the program runs longer, whih gives our temporal partitioninga better hane of athing traemathes that require a long exeution time to math.Beause we inrease the monitoring periods over time, the ost of monitoring saleswith the total exeution time of the program.4 BenhmarksTo demonstrate the feasibility of our approah, we applied our modi�ed traemathompiler to �ve of the hardest benhmark/traemath ombinations from previ-ous evaluations [6℄. These benhmarks ontinue to exhibit more than 10% of run-time overhead, even after we applied all available stati optimizations. They allonsist of traemathes that verify properties of frequently used data strutures,suh as iterators and streams, in the appliations of version 2006-10 of the Da-Capo benhmark suite [5℄. As usual, all our benhmarks are available on http:

//www.aspectbench.org/, along with a version of abc implementing our optimiza-tion. In the near future we also plan to integrate this implementation into the main
abc build stream. Table 1 explains the traemathes that we used.



pattern name desriptionFailSafeIter do not update a olletion while iterating over itHasNextElem always all hasNextElem before alling nextElement on an EnumerationHasNext always all hasNext before alling next on an IteratorReader don't use a Reader after its InputStream was losedTable 1. Traemathes applied to the DaCapo benhmarksbenhmark lasses methods omplete overhead # probesantlr/Reader 307 3517 471.45% 4hart/FailSafeIter 706 8972 25.08% 742luene/HasNextElem 309 3118 12.53% 6pmd/FailSafeIter 619 6163 44.36% 426pmd/HasNext 619 6163 66.53% 32Table 2. Number of lasses and methods per benhmark (taken from [5℄), plus overheadof the fully instrumented benhmark, and number of probes generated for eah benhmark4.1 Spatial partitioningWe evaluated spatial partitioning by applying the algorithm from Setion 3.1 to our�ve benhmark/traemath ombinations, after running the �ow-insensitive statianalysis desribed in [6℄. Table 2 shows the runtime overheads with full instrumen-tation. All of these overheads exeed 10%, and the overhead for antlr/Reader is almost500%. Table 2 also presents the number of probes generated for eah benhmark.
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eah probe individually by exeuting eah benhmark with one probe enabled at atime; this gave us 1210 benhmark on�gurations to test. For our experiments, weused the Sun Hotspot JVM version 1.4.2_12 with 2GB RAM on a mahine with anAMD Athlon 64 X2 Dual Core Proessor 3800+. We used the s large option ofthe DaCapo suite to provide extra-large inputs, whih made it easier for us to mea-sure hanges in runtimes. Figure 4 shows runtime overheads for the probes in ourbenhmarks. Dots indiate overheads for individual probes. For some benhmarks,many probes were almost idential, sharing the same hot shadows. These probestherefore also had almost idential overheads. We grouped these probes into lumpsand present them as a bar, labelled with the number of probes in the lump.Our results demonstrate that, in some ases, the di�erent probes manage tospatially distribute the overhead quite well. However, spatial partitioning does notalways su�e. For pmd/FailSafeIter, 9 probes out of 426 have overheads exeeding5%, while for hart/FailSafeIter, 56 suh ases exist, out of 742 probes in total. Onthe other hand, the luene/HasNextElem and pmd/HasNext benhmarks ontain onlyone hot probe eah; spatial partitioning is unlikely to help in these ases.Finally, antlr/Reader still shows high overheads, but these overheads are muhlower than the original overhead of 471.45%. Interestingly, the four di�erent over-heads do not add up to 471.45%. Upon further investigation, we found that twoprobes generate many more disjunts than others. In the fully instrumented pro-gram, eah shadow in eah probe has to look up all the disjunts, even if they aregenerated by other probes, whih might lead to overheads larger than the sum ofthe overheads for eah individual probe. We are urrently thinking about whetherthis observation ould lead to an optimization of the traemath implementation ingeneral. (Disjunt lookup is desribed in greater detail in [4℄.)We onlude that spatial partitioning an sometimes be e�etive in spreadingthe overhead among di�erent probes. However, in some ases, a small number ofprobes an aount for a large fration of the original total overhead. In those ases,spatial partitioning does not su�e for reduing overhead, and we next explore ourtemporal partitioning tehnique for improving runtime performane.4.2 Temporal partitioningTo evaluate the e�etiveness of temporal partitioning, we measured ten di�erenton�gurations for eah of the �ve benhmark/traemath ombinations. Figure 5presents runtimes for eah of these on�gurations. The DaCapo framework olletsthese runtimes by repeatedly running eah benhmark until the normalized standarddeviation of the most reent runs is suitably small.Diamond-shaped data points depit measurements of runtimes with no tempo-ral partitioning; the left data point inludes all probes (maximal overhead), whilethe right data point inludes no probes (no overhead). The gap between the rightdiamond data point and the gray baseline, whih denotes the runtime of the om-pletely un-instrumented program, shows the ost of runtime heks. Note that spatialpartitioning will always ost at least as muh as the right diamond.The irle-shaped data points present the e�et of temporal partitioning. Wemeasured the runtimes resulting from enabling non-skip edges 10, 30, 50, 70, 90
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and 100 perent of the time. Our �rst experiment sought to determine the e�et ofhanging the swapping interval for temporal partitioning.At �rst, we exeuted four di�erent runs for eah of those seven on�gurations,with four di�erent inrease periods n. We doubled the duration of the on/o� intervalsevery n = 10, 40, 160 and 640 periods. As expeted, n has no measurable e�et onruntime performane. We therefore plotted the arithmeti mean of the results overthe di�erent inrease periods. The full set of numbers is available on our website.Figure 5 (f) overlays the results from all of our benhmark/traemath ombi-nations. Note that the shape of the overhead urve is quite similar in all of theon�gurations. In all ases, temporal partitioning an properly sale down from100% overhead, when all non-skip edges are always enabled, to just above 0%, whennon-skip edges are never enabled. We were surprised to �nd that the derease inruntime overhead did not sale linearly with a derease in monitoring intervals. Thisdata suggest that there might exist a �sweet spot� where the overhead is onsistentlylowest ompared to the employed monitoring time.The relationship between �no temporal partitioning� with all probes enabled andthe 100% measurement with temporal partitioning enabled might seem surprisingat �rst: we added additional runtime heks for temporal partitioning, and yet, inthe ases of hart-FailSafeIter, luene-HasNextElem and pmd-FailSafeIter, the ode ex-eutes signi�antly faster. We believe that this speedup is due to the skip-loop opti-mization that we implemented for temporal partitioning: this optimization is appliedeven when non-skip edges are enabled, thereby improving overall performane.The far right end of the graphs shows that the overhead of the runtime heksfor spatial and temporal partitioning are virtually negligible. They are not zero butlose enough to the baseline to not hinder the appliability of the approah.5 Related workOur work on ollaborative runtime veri�ation is most losely related to the work ofLiblit et al. for automati bug isolation. The key insight in automati bug isolationis that a large user ommunity an help isolate bugs in deployed software usingstatistial methods. The key idea behind Cooperative Bug Isolation is to use sparserandom sampling of a large number of program exeutions to gather information.Hene, one an amortize the ost of exeuting assertion-dense ode by distributingit to many users, eah user only exeuting a small randomly seleted number ofassertions. This minimizes the overhead experiened by eah user. Although eahexeution report in isolation gives only very limited information, the aggregate ofall suh reports provides a wealth of debugging information for analysis and a highhane of �nding violations of an assertion, if they exist.Pavlopoulou et al. [12℄ desribe a residual test overage monitoring tool whihstarts o� by instrumenting all the ode. As di�erent parts of the program are ex-euted, the ode is periodially re-instrumented, with probes added only in plaeswhih have not been overed by the testing riteria. Probes from frequently exeutedregions are therefore removed in the �rst few re-instrumentation yles, reduing theoverhead in the long term sine the program spends more and more time in oderegions without any probes. Suh an adaptive instrumentation should be appliable



to our setting, too. To avoid false positives, one would have to disable entire shadowgroups at a time.Patil et al. [11℄ propose two di�erent approahes to minimize overhead due toruntime heking of pointer and array aesses in C programs. Customization usesprogram sliing to deouple the runtime heking from the original program exeu-tion. The seond approah, shadow proessing, uses idle proessors in multiproessorworkstations to perform runtime heking in the bakground. The shadow proess-ing approah uses two proesses: a main proess, whih exeutes the original userprogram, i.e. without any run-time heking, and a shadow proess whih followsthe main proess and performs the intended dynami analysis. The main proesshas minimal overhead (5%-10%), mostly arising from the need for synhronizationand sharing of values between the two proesses. Suh an approah would not workfor arbitrary traemathes, whih might arbitrarily modify the program state, butould work for the veri�ation-oriented traemathes we are investigating.Reently, Mirosoft, Mozilla, GNOME, KDE and others have all developed opt-inservies for reporting rash data. When a program rashes, reovery ode generatesand transmits a report summarizing the state of the program. Reently, Mirosoft'ssystem has been extended to gather data about abnormal program behaviour inthe bakground; reports are then automatially sent every few days (subjet touser permission). Reports from all users an then be aggregated and analyzed forinformation about auses of rashes.We brie�y mention a number of alternative approahes for speifying proper-ties for runtime veri�ation. The Program Query Language [10℄ is similar to trae-mathes in that it enables developers to speify properties of Java programs, whereeah property may bind free variables to runtime heap objets. PQL supports ariher spei�ation language than traemathes, sine it is based on stak automatarather than �nite state mahines. Monitoring-Oriented Programming [7℄ is a generiframework for speifying properties for runtime monitoring; developers use MOPlogi plugins to state properties of interest. PQL, MOP, and related approahes, anall bene�t from ollaborative runtime veri�ation tehniques.6 Conlusion and future workIn this paper we have presented two tehniques for implementing ollaborative run-time veri�ation with traemathes. The main idea is to share the instrumentationover many users, so that any one user pays only part of the ost of the runtime ver-i�ation. Our paper has desribed the spatial and temporal partitioning tehniquesand demonstrated their appliability to a olletion of benhmarks whih exhibithigh instrumentation overheads.Spatial partitioning alloates di�erent probes�onsistent subsets of instrumen-tation points�to di�erent users; probes generally have lower overheads than theentire instrumentation. Our experimental evaluation showed that spatial partition-ing works well when there are no partiularly hot probes.Temporal partitioning works by periodially enabling and disabling instrumenta-tion. We demonstrated a good orrespondene between the proportion of time thatprobes were enabled and the runtime overhead.
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