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Abstract—Software instrumentation is a key technique in many
stages of the development process. It is of particular importance
for debugging embedded systems. Instrumented programs pro-
duce data traces which enable the developer to locate the origins
of misbehaviours in the system under test. However, producing
data traces incurs runtime overhead in the form of additional
computation resources for capturing and copying the data. The
instrumentation may therefore interfere with the system’s timing
and perturb its behavior. In the worst case, this perturbation
leads to new system behaviours that prevent the developer from
locating the original misbehaviours.

In this work, we propose an instrumentation technique for
applications with temporal constraints, specifically targetting
background/foreground systems. Our framework permits rea-
soning about space and time for software instrumentations. In
particular, we propose a definition for trace reliability, which
enables us to instrument real-time applications which aggressively
push their time budgets. Using the framework, we present a
method with low perturbation by optimizing the number of
insertion points and trace buffer size for code size and time
budgets. Finally, we apply the theory to a concrete case study
and instrument the OpenEC firmware for the keyboard controller
of the One Laptop Per Child project.

Index Terms—Instrumentation, tracing, debugging, real-time
systems.

I. INTRODUCTION

Instrumentation and tracing are a key activity in debugging
microcontroller-based embedded systems. The instrumented
program produces data traces which the developer uses to
locate the origin of a misbehavior in the system under test.
For example, if the trace shows incorrect control flow at a
conditional branch, then the branching conditions or the input
values will most likely contain the bug.

However, instrumentation and tracing incur runtime over-
head. The consequences of the instrumentation overhead range
from negligible to devastating: while some systems tolerate
changes in code timing, heavily-loaded real-time applications
often do not tolerate such changes. In the worst case, the
instrumentation overhead introduces Heisenbugs [1]. Experi-
enced systems developers know that sometimes a nop instruc-
tion at the right place magically solves problems. In time-
related Heisenbugs, the instrumentation overhead performs this
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magical transformation, so that the developer cannot locate a
misbehavior in the instrumented program which clearly exists
in the original. To minimize the chances of producing a timing-
related Heisenbug, the instrumentation should consider time
budgets and have minimal overhead.

Related works on instrumentation have not considered time
budgets. Current software instrumentation frameworks—built
for monitoring executions of programs for non-embedded
systems—typically insert code immediately after each occur-
rence of a traceable event. For instance, the AspectJ [2] and
Etch [3] instrumentation and monitoring frameworks enable
developers to monitor every write to a heap variable, but do
not have any provision for monitoring subject to constraints
on overhead.

This work concentrates on time-aware instrumentations of
background/foreground systems. This structure dominates mi-
crocontroller systems due to its structure and efficient resource
utilization [4], [5]. Technically, background/foreground sys-
tems are preemptive multi-tasking systems with exactly two
tasks. The background task always executes and consists of
a single endless loop, sometimes called a super loop, which
invokes a collection of functions in sequence. The foreground
task preempts the background task whenever a serviceable
interrupt line becomes asserted. The background task never
preempts the foreground task. We assume no nested interrupts
and one interrupt priority level, yet our results still hold for
the target class of systems.

II. RATIONALE

The key idea behind time-aware instrumentation of a system
is to transform the execution-time distribution, maximizing
the reliability of the trace while always staying within the
time budget. With reliability we mean that the instrumentation
provides useful data over a longer period time of tracing. A
time-aware instrumentation injects code, potentially extending
the execution time on all paths, and ensures that no path
takes longer than the specified time budget. For a hard real-
time system, there may be no slack and therefore this time
budget may be zero, yet the developer may still trace the
execution in paths other than the one with the worst-case
timing. Figure 1 shows the expected consequences of time-
aware instrumentation on the probability density function of
a loop’s execution time. The x-axis specifies the required
execution time of the loop. The y-axis indicates the frequency



of the particular execution time. The original uninstrumented
code has some arbitrary density function. We have chosen the
Gaussian distribution for this example for illustrative purposes;
Li et al. provide details from empirical observations of dis-
tribution functions [6]. The distribution for the instrumented
version differs from the original one. It is shifted towards the
right, but still never passes the deadline. This shift occurs
because the algorithm instruments paths and increases their
running times, but instruments them so their execution times
never pass the deadline. Note that this model concentrates on
acquiring data from the functions. Another problem is how to
transport the data from the chip to an external analysis unit.
While that problem requires detailed study, a simple solution
commonly found is piggy packing the buffer information on
serial or network communication.
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Fig. 1. Execution-time distribution before and after time-aware instrumen-
tation showing the shift in the expected execution time.

So, what do we need to perform time-aware instrumenta-
tion? First, we need an underlying model to abstract prop-
erties from the source code. Since we concentrate on timed
systems, this model should include the temporal behavior
and the control flow, together with what data needs to be
logged. This model allows us to calculate the impact and
effectiveness of various instrumentations. For example, we
can use the model to calculate how the execution time will
change on each control-flow path. Our goal, however, is to
use the model to determine the optimal instrumentation for
runtime traces. Optimal means that, given a time budget for
the instrumentation overhead, the system provides the best
instrumentation possible in terms of trace reliability.

The contributions of this paper include:
• a definition for instrumentation reliability;
• a definition of “time-aware instrumentation”, which in-

struments optimizing for code space and reliability while
meeting specified time bounds;

• strategies for computing time-aware instrumentations
with and without temporal bounds;

• an implementation of a research framework that enables
experiments on the impact of time-aware instrumentation;
and

• results exploring the impact of time-aware instrumenta-
tion on the OpenEC keyboard controller code.

III. METHODOLOGY

We propose the following instrumentation stages:
• Source analysis: The source-code analyzer breaks the

functions into basic blocks and generates a call graph.
The analyzer also presents a list of variables which are
assigned in these basic blocks and the developer can
choose a subset of these variables to trace. For hard real-
time applications, the analyzer annotates the call graph
using execution time information obtained through static
analysis or measurements [7].

• Naive instrumentation: Using the control-flow graph,
the execution times of the basic blocks, and the input
variables for the trace, we inject code into the selected
function at all instrumentation points.

• Enforce time budget: If the naive instrumentation ex-
ceeds the time budget, we use the technique in Sec-
tion VII-D to compute an instrumentation which does
respect the time budget while maximizing the reliability
of the instrumentation.

• Minimize code size: If the instrumentation is reliable
enough, then we apply semantics-preserving, decreasing
transformations (Section VIII) to reduce the size of the
instrumented code.

• Collect traces: The developer finally recompiles and
executes the instrumented program.

Figure 2 shows the workflow that results from the steps.
To instrument a function, we start by picking the function
of interest. We then use the assembly analyzer to extract the
control flow graph and break the function into execution paths.
In a first try, we use a tool to instrument all variables of
interest and then check whether the execution time on the
worst-case path has changed. If it has changed, then we will
use integer linear programming to lower the reliability of the
instrumentation so that it meets the timing requirements. If
the instrumentation is too low, then we either will have to
give up, if we cannot extend the time budget available for the
function and the instrumentation, or we can extend the time
budget and thereby increase the reliability. If the optimized
instrumentation meets the required reliability or if the initial
naive instrumentation does not extend the worst-case path, then
we will proceed and use the execution paths to minimize the
required code size. Afterwards we can recompile the program
and collect traces from the instrumentation.

IV. MOTIVATING EXAMPLE

We illustrate the contributions of this work by applying
them to the OpenEC source code. OpenEC [8] is an effort
to implement an open firmware for the embedded controller
of the XO platform (from the One Laptop per Child project).
OpenEC is currently development-stage code; as of October
2008, the source consists of 8090 lines of C code with inline
assembler.

The OpenEC code conforms to the background/foreground
structure. Listing 1 shows the main loop of the OpenEC
source. In this loop, the program sequentially calls the main
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Fig. 2. Workflow of applying time-aware instrumentation.

function blocks. At the end of the loop, the controller will
suspend itself for the amount of time remaining in its budget.
The typical loop frequency is 100Hz. Thus, the time budget for
the main loop is 10ms. The function sleep if allowed suspends
the keyboard controller until 10ms have elapsed since the start
of loop.

1 whi le ( 1 )
{

3 STATES_TIMESTAMP ( ) ;

5 busy = handle_command ( ) ;
busy |= handle_cursors ( ) ;

7 handle_leds ( ) ;
handle_power ( ) ;

9 handle_ds2756_requests ( ) ;
handle_ds2756_readout ( ) ;

11 busy |= handle_battery_charging_table ( ) ;

13 watchdog_all_up_and_well |= WATCHDOG_MAIN_LOOP_IS_FINE ;

15 print_states ( ) ;
monitor ( ) ;

17 handle_debug ( ) ;
sleep_if_allowed ( ) ;

19 }

Listing 1. Main loop of the OpenEC source.

The One-Wire bus and the debugging UART generate
incoming interrupts for the foreground tasks. We bound their
effect by considering the bit rates of the bus and UART;
Section VI discusses this issue in more detail.

A subtask of the background task handles the power button.
This subtask switches the main XO machine on and off as
appropriate (and also handles, for instance, various LEDs and
the wireless networking subsystem). Listing 2 presents part of
the code for handling the power button. We will demonstrate
the instrumentation process for this procedure.

1 void handle_power ( void ) {

i f (power_private .my_tick == ( unsigned char )tick )
3 re turn ;

power_private .my_tick = ( unsigned char )tick ;
5

sw i t ch (power_private .state ) {
7 case 0 :

i f ( POWER_BUTTON_PRESSED ) {
9 power_private .timer++;

i f ( power_private .timer == HZ / 1 0 ) {
11 LED_PWR_ON ( ) ;

power_private .state = 1 ; } }
13 e l s e power_private .timer = 0 ;

break ;
15 case 1 :

SWITCH_WLAN_ON ( ) ;
17 power_private .state = 2 ;

break ;
19 /∗ . . . ∗ /

STATES_UPDATE (power , power_private .state ) ;

Listing 2. Source excerpt: button handler.

Listing 3 presents case 1 of the switch statement in 8051
assembler. We propose the instrumentation of the assembler
code; it suffices to add a snippet of instrumentation code after
movx r0, a. With time-aware instrumentation, we compute
the cost of the procedure and instrument it, if our budget
allows. If the budget does not allow for complete instru-
mentation, we instrument a subset of the writes to memory,
maximizing reliability and optimizing for code size, and then
report on the reliability of our instrumentation.

; p o w er . c : 2 1 9 : case 1 :
2 00112$ :

; p o w er . c : 2 2 0 : SWITCH WLAN ON ( ) ;
4 mov dptr , #_GPIOD00

movx a ,@dptr
6 mov r2 ,a

orl a , # 0x02
8 movx @dptr ,a

; p o w er . c : 2 2 1 : p o w e r p r i v a t e . s t a t e = 2;
10 mov r0 , # (_power_private + 0x0002 )

mov a , # 0x02
12 movx @r0 ,a

; ∗∗ i n s t r u m e n t p o w e r p r i v a t e . s t a t e here ∗∗
14 ; p o w er . c : 2 2 2 : break ;

ljmp 00172$

Listing 3. Compiled power button code.

V. MODEL DEFINITION

We abstract the source program as a directed graph G =
〈V,E〉, representing the program’s interprocedural control
flow, and use functions c : V → R and p : E → [0, 1] to
model the program’s behaviour. For background/foreground
implementations, G contains a large cycle (“super loop”),
representing the forever-running background task, with back-
ground subtasks on the spine of the large cycle.

An instrumentation of a software program is the insertion
of custom code at specific insertion points into a program. An
instrumentation operation is the piece of code that realizes
the desired function at the insertion point. A uniform instru-
mentation inserts the same instrumentation operation at each
insertion point. A complete instrumentation inserts code at ev-
ery insertion point, while a partial instrumentation only inserts
code at some insertion points. Finally, an instrumentation is
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stateless if it decides whether to instrument an insertion point
deterministically and solely based on the code immediately
before that insertion point.

In our use case, we always instrument the program for
assignment tracing. That is, our instrumentation operation
copies a variable’s value into a buffer, to be read once the
program terminates or at the bottom of the super loop.

A. Static Analysis Approach

We have built a static analysis tool which accepts back-
ground/foreground implementations and extracts relevant data,
including the control-flow graph, basic blocks, and a cost
model. Figure 3 presents the structure of our static analysis
tool; we next summarize the structure and discuss our key
design decisions.

parse

compute
callgraph

compute
basic

blocks,
costs

compute
interpro-
cedural
basic
block
CFG

enumerate
paths

Fig. 3. The source analysis step preceding the instrumentation step in the
workflow.

We chose to analyze assembler code directly. Our case
study was written for an 8051-family microcontroller, which
is simple to model: it is sufficient to count the (constant)
number of cycles each instruction takes to execute. We had
considered analyzing the C source code instead. While the
control structure of the program is immediately visible in the
C source code, it is generally possible to reconstruct a pro-
gram’s structure from assembler code [9], especially compiler-
generated assembler code. We decided that the benefits of
having an exact cost model and the ease of parsing assembler
outweighed the benefits of getting structured programs.

Our tool first parses the assembler code emitted by
SDCC [10], the C compiler for the OpenEC project. We
used a heuristic to estimate the extent of each procedure,
since this information is not explicit in the assembler code:
while the start of each procedure is labelled, the end is not.
We define the contents of a procedure to be the instructions
between the start of a procedure and the start of the subsequent
procedure. We also ignore all instructions that do not belong
to a “CSEG” code segment (for instance, initialization code
belongs to a “GSINIT” global initialization segment). It is
straightforward to transform and unparse the assembler code
to produce instrumented applications.

Next, we compute the call graph and basic blocks. Our
target class of embedded programs generally is free of func-
tion pointers or dynamic dispatch, we were able to use a
straightforward callgraph construction algorithm. We also used
standard algorithms to divide procedures into basic blocks,
starting a new block whenever a statement has more than

one predecessor or successor, or is a call statement. We
then computed an interprocedural control-flow graph for the
program, based on the call graph and individual control-
flow graphs for each procedure. Our interprocedural analysis
is context-insensitive: it matches up a procedure p’s return
statement with all callers to p.

Our abstraction enables us to enumerate the set of paths
between two program points and to compute the cost of
each path. Recall that background/foreground implementations
consist of a main “super loop” which executes forever; our
approach allows us to enumerate the paths between the be-
ginning and the end of the super loop, as well as between
other arbitrary program points. Our approach can also simulate
the effect of finite loop unrolling while enumerating paths,
by allowing a bounded number of visits to the loop decision
points. In general, microcontroller systems’ loops execute a
fixed number of times: loops are most often used to copy data
from one (fixed-size) array buffer to another during input and
output.

B. Abstraction Definition and Timing

Each vertex in G represents a basic block in the program.
We abstract a vertex v ∈ V by 〈A,L〉, with assignments A
and logged variables L. The function c : V → R specifies
the required computation time c, or cost, for vertex v. So,
c(v0) = 12.2t means that the basic block at vertex v0 requires
12.2 time units for its execution. Edges e := 〈vs, vd〉 specify
transitions from source vertex vs to destination vertex vd. The
function p : E → [0, 1] computes the probability p(e) that the
execution will use edge e to leave vertex vs. So, p(〈v0, v1〉) =
0.5 means that on average every other execution will continue
at vertex v1 after executing v0.

In general, it is the developer’s responsibility to estimate
the functions c and p. Microcontroller vendors typically pro-
vide cycle accurate simulators which allow the developer to
measure the execution time of the executed code. Small mi-
crocontrollers use simple structures, so the problems inherent
in measuring the worst-case execution time are manageable,
unlike with pipelined architectures or systems with caches
which require sophisticated tools [7]. Our analysis framework
helps developers compute c by providing the cycle counts for
each basic block. We expect that the developer will estimate
p by collecting profiling data.

VI. ACCOMMODATING INTERRUPTS

The foreground part of a background/foreground system
consists of interrupt service routines. The computation time
required by the foreground part can be modelled as over-
head over the normal execution time of the background part.
We assume that interrupts occur as sporadic events with a
known minimal inter-arrival time. We furthermore assume the
interrupt service routine to be bounded and always eventually
terminate. We can then adjust the execution time of any
measurement c to:
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c′(x) = c(x) +
∑
irq

(dc(x)f(irqi)ec(irqi)) (1)

with c(irqi) as the execution time of the interrupt and f(irqi)
as its minimal inter-arrival rate frequency. Accounting for
interrupts is critical: otherwise, our model of the instrumented
system may meet the deadline, since there are no interrupts in
the model, while the real system could miss the deadline due
to interrupts.

The following equation computes the worst-case instrumen-
tation overhead o. If o is less or equal to the specified time
budget, then instrumentation will be viable.

o = max(
∑
v∈p

c′(v.L)) for all p ∈ P (2)

As an example of overhead adjustment, consider the
OpenEC’s UART interrupt, which we use to retrieve generated
traces. The interrupt service routine executes, in the worst case,
20 assembly instructions. Running at 32MHz and with five
cycles per instruction, the interrupt service routine requires an
execution time of 3 125ns. The UART interrupt arrives with
a frequency of 11 520Hz, resulting in a worst-case overhead
for the interrupt of 36ms/s of execution time. Thus, for a
basic block with an execution time of 10ms, we compute
c′(x) = 10.3125ms.

VII. INSTRUMENTATION AND RELIABILITY

Using our refined timing model, we can calculate time
budgets for systems with instrumentation. The instrumentation
overhead is the sum of the computation time of the instru-
mentation operations at the insertion points. The calculation
proceeds as follows: 1) extract the control flow path with the
variable assignments for the specified function; then, 2) check
whether the instrumentation stays within the time budget. If it
does not, 3) compute the maximum-reliability instrumentation
which respects the time budget and 4) optimize this instru-
mentation for code size.

In the first step, we create the set P of all paths p between
the start and the end control-flow graph vertices of the selected
function. A path is a sequence of vertices p = vi → vj →
· · · → vk with i ≤ j ≤ k on G.

Some instrumentation properties are impossible to monitor
while respecting the system’s given time budgets. The two
possible solutions are either to increase the time budget or to
resort to partial instrumentations:

• Extend the time budget: Some systems tolerate in-
creases in their time budgets. For example, soft real-
time systems [11] rely on best-effort methods to meet
deadlines; no direct harm results from the occasionally
missed deadline. Therefore, if some paths cause deadline
misses, then we can calculate the probability that system
follows deadline-missing paths, and the developer can
decide whether the system tolerates this instrumentation.

• Lower instrumentation reliability: Alternatively, the
developer can reduce the instrumentation’s reliability so

that all execution paths obey the time budget. By relia-
bility, we mean the probability that the instrumentation
fails to serve the predefined purpose over a longer period
of tracing. In such cases, the best we can do is to
create partial instrumentations. For runtime tracing, the
resulting trace may miss some variable assignments. In
terms reliability, this means as we trace the system for
longer periods of time chances increase that we observe
a path that lacks the instrumentation.

The concept of partial instrumentations raises the following
question: What is the maximal reliability of the instrumen-
tation for a given time budget? To explore this question,
we define the notion of instrumentation reliability for partial
instrumentations in the context of runtime tracing.

A. Reliability For An Insertion Point

Algorithm 1 calculates the instrumentation reliability for
a runtime-tracing insertion point using a depth-first search
algorithm. Recall that v.A represents the set of all assignments
(and hence all insertion points) at v, while v.L represents the
set of monitored assignments at v. In the recursive function
hit(), the algorithm traverses along a branch until (a) it detects
that a vertex logs the assignment or (b) the variable gets
reassigned. If the branch results in monitoring (case (a)), the
algorithm will add to the computed reliability the probability
of the program taking that particular path. If the branch misses
(case (b)), the algorithm will add zero to the probability for
the recursive case’s return value. This algorithm essentially
implements a depth-first search and all standard complexity
analysis results apply to it.

Algorithm 1 Calculate reliability for a single assignment.
Require: starting v : v.A⇐ v.A \ x, start with p = 1

procedure hit(v, x, p)
if x ∈ v.A then return 0 end if
if x ∈ v.L then return p end if
a⇐ 0
for all e such that e.vs = v do

a⇐ a + hit(e.vd, x, p · t.p)
end for
return a

end procedure

B. Reliability For A Path

The instrumentation reliability of a path p, denoted r(p),
equals the ratio of monitored to missed variables along path
p. Unfortunately, the intuitive approach that the reliability is
simply |

S
vi.L|

|
S

vi.A| , using multisets, is incorrect: a vertex v can
be part of many paths, so that its set v.L can contain entries
that are only relevant to other paths.

Algorithm 2 shows how we calculate the reliability for a
path in a single pass. Essentially, as the algorithm visits a
path, it remembers the variables and then adjusts one counter
for misses and one for hits accordingly. The operator “next”
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will point to the next element in the path, if there exists such an
element; otherwise, it will point to “nil”. We use variable p to
iterate over the path’s vertices. The set l contains all variables
that need to be monitored.

Algorithm 2 Calculate the reliability of logging for a path.
p⇐ v0

l⇐ ∅
while p 6= nil do

for all x ∈ p.A do
if x ∈ l then

miss ⇐ miss + 1
end if

end for
for all x ∈ p.L do

if x ∈ l then
hit ⇐ hit + 1
l⇐ l \ x

end if
end for
l← l ∪ p.A
p⇐ cur .next

end while
miss ⇐ miss + |l|

C. Reliability For Instrumentations

The instrumentation reliability of a partial instrumentation,
r(P ), is the sum of the weighted reliability of all possi-
ble paths using the path probabilities as weights. p(p) =∏

e∈p p(ei) gives the probability of taking a specific path.
(In multiplying the probabilities together, we assume that they
are independent. Many systems, including SPIN [12], assume
independent probabilities at different choice points, as we do
here.)

r(P ) =
∑
pi∈P

r(pi)p(pi) (3)

D. Maximal Reliability for Constrained Time Budgets

Using the notions of reliability and time budgets, we can
now address the problem of instrumenting applications which
aggressively push their constrained time budgets (e.g., hard
real-time applications with zero time budget). If the time
budget is insufficient for a complete instrumentation, then we
need to address the question: Which insertion points should we
intentionally omit to maximize the information gained about
the system without exceeding the time budget? Unfortunately,
this problem cannot be reduced to a knapsack problem, which
admits known approximation solutions, because multiple paths
may share vertices, so that pruning a vertex in one path might
affect the value (=path reliability r(p)) of another path.

We formulate the problem as a linear programming problem.
Equation (4) shows the function to be maximized. Variables
xi store the value of the insertion point (i.e., the number of
trace variables in the basic block vi). If paths share basic

blocks (vertices), then the optimization function adds up the
coefficients of the xis to obtain path costs that respect sharing.
The function p(pi, vj) gives the probability that path pi will
eventually hit basic block vj . For soft real-time systems, the
values can be obtained by run-time analysis. Safety-critical
systems require static analysis and reduce the problem to a
binary linear programming problem. Inequalities (5) and below
represent the problem constraints: the total instrumentation
overhead (probability of reaching the basic block multiplied
with whether that variable is of interest [0 or 1] multiplied
with the instrumentation overhead for the variable in that
basic block) must be less than the time budget tb. The term
tb−

∑
v∈pj

c′(vi) computes the available time budget for the
instrumentation (in real-time systems tb is known as slack
time). Increasing the number of insertion points (i.e., setting
xi non-zero) can increase the execution time on each path.
Finally, constraints (6) list the boundary conditions and limit
the number of variables per basic block.

max
∑
p∈P

∑
v∈pi

p(pi, vi)xi (4)∑
v∈p0

p(p0, vi) · xi · c(xi) ≤ tb−
∑
v∈p0

c′(vi) (5)

. . .∑
v∈pn

p(pn, vi) · xi · c(xi) ≤ tb−
∑
v∈pn

c′(vi)

x0 ≤ |v0.A| (6)
. . .

xn ≤ |vn.A|

Note that in a safety-critical system with zero time budget
for overhead, to calculate the worst case, the function p(pi, v)
will always return one if the block is reachable and otherwise
zero regardless of the probability of reaching the value.
Furthermore, in hard real-time systems, the time budget tb
is usually a task’s maximal response time.

VIII. MINIMIZING INSERTION POINTS

Once we compute the maximal possible reliability for our
instrumentation property, we wish to create the instrumentation
which uses the minimal number of insertion points. We will
use the control-flow graph G, along with the costs c and
transition probabilities p, to compute such an instrumentation.
Note that naive instrumentations, as seen in [13], [3], [2], do
not use the minimal number of insertion points in general.

Unfortunately, finding the minimal number of insertion
points is NP-complete. We can show this by reducing the
instrumentation problem to the NP-complete hitting set prob-
lem [14]. First, we extract the control flow graph with the
variable assignments and then convert it into static single
assignment form. The left part of Figure 4 shows the control
flow graph (CFG) with four assignments to variable x. To
calculate the minimal number of necessary insertion points, we
compute the hitting set shown in the right part of Figure 4. A
line between an assignment x and a basic block b means that
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the assignment can be captured in this basic block. Essentially,
we need to compute the minimal subset of basic blocks on the
right that covers all variables on the left.

Basic block

x3b3 x4 b5

b6

x2b2 b4

x1 b1

b1

b3

b4

b5

b6

b2

x1

x2

x3

x4

Assignment

Fig. 4. Minimizing instrumentation points.

Proposition 1: In a uniform, complete, stateless instrumen-
tation of a non-concurrent function, an instrumentation with
minimal insertion points also has a minimal increase in code
size.

Informally: instrumenting a program can only increase the
code size. Therefore, the program with the fewest insertion
points also has the smallest code size.

a) Towards the minimal instrumentation.: Our goal is
to transform the naive instrumentation with maximal relia-
bility so as to preserve reliability and reduce the size of
the instrumentation. However, we also must ensure that the
minimization does not change the time budget of the non-
optimized instrumentation. Therefore, we propose the use of
semantics-preserving and decreasing transformations on an
instrumentation to minimize code size.

A semantics-preserving transformation of an instrumenta-
tion is one that has the same set of executions as the original
instrumentation. Clearly, it is necessary for transformations
to be semantics-preserving if they are to preserve reliability.
An example of a semantics-preserving transformation is one
that delays recording a variable, but not beyond a subsequent
write of that variable. A decreasing transformation does not
increase the number of insertion points in an instrumentation.
Being decreasing is a sufficient condition for a transformation
to ensure that the transformed instrumentation does not exceed
its time budget if the original instrumentation did not exceed
its time budget. An example of a decreasing transformation is
one that combines two insertion points after a branch into one
insertion point before the branch.

IX. MINIMAL TRACE BUFFER SIZE

Another problem in tracing embedded programs is deter-
mining adequate sizes for trace buffers: how much data does
the program need to store before the next flush at the end of the
loop? The developer usually makes an ad-hoc educated guess
or uses trial and error to determine whether the buffer size
is sufficiently large for the given instrumentation. Our model
enables developers to compute the precise size required for the
trace buffer, which ensures that the trace buffer will contain
all data computed during the execution.

To compute the minimal trace buffer size (which is the
maximal buffer size required at run time), we extend Algo-
rithm 2. Instead of calculating the hit and miss ratio, the
modified version of the algorithm sums the storage size of
the logged assignments. Specifically, instead of increasing hit
by one in Line 11, we increase it by the storage size of the
logged variable. If we call the modified algorithm s(p), then
the maximal buffer size is bmax = max(s(pi)) for all pi ∈ P .
The expected buffer size is bexp =

∑
pi∈P s(pi)p(pi).

X. OPENEC CASE STUDY

To demonstrate the effectiveness of our approach, we trace
the handle power function of the OpenEC. We want to trace
all 20 active variables (local and global) in the function.
Note that our function works similarly for tracing individ-
ual variables or flags for debugging purposes. The function
handle power consists of 42 basic blocks, with 20 different
control-flow paths through these blocks. The mean execution
time is 75 cycles and the worst-case execution time is 132
cycles. Monitoring a variable costs one cycle.

In the experiment, we will investigate the following two
questions:

• Tolerating zero overhead, with what reliability can we
monitor variables in this function without breaking the
temporal bound? Furthermore, what is the minimal re-
quired buffer size?

• How does the monitoring reliability change when we
provide a time budget for monitoring?

To answer these question, we implemented (a) a static
analysis tool outlined in Section V-A in OCaml and (b) the
ILP problem from Section VII-D in Matlab.

A. Trace Reliability for OpenEC

Figure 5 presents the trace reliabilities along the different
paths using a zero overhead time budget. The x-axis displays
each of the individual 20 paths. The y-axis shows the moni-
toring reliability along each path. Since we provision for no
overhead, some paths cannot be instrumented. Although the
function handle power has exactly one path using the worst-
case execution time, four other paths share its control flow
sufficiently that they cannot be instrumented either. Using
the equations from Section VII-C and our abstraction, the
monitoring reliability of the handle power is 35.83% for this
scenario.

B. Execution Time

Figure 6 shows the fitted density function for both pro-
grams. Note that this figure is only for illustrative purposes,
because the execution time is a discrete function and so
are all expected values. This figure illustrates what happens
during instrumentation and suggests that our core idea outlined
Section II is correct. Although the instrumentation causes only
minor changes around the peak, the instrumented program
still requires more execution time than the original program
as one can see for example around values 120 to 140. The
extent of this shift is primarily influenced by the number of
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Fig. 5. Monitoring reliability of function handle power in the ’all out’
scenario.

assignments to heap variables outside the worst-case path.
More assignments per basic block imply a more prominent
shift in the density function.
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Fig. 6. Shift in the density function of the execution time of in the function
handle power.

C. Minimal Buffer Size

To calculate the minimal buffer size, we use Algorithm 2
with the modifications described in Section IX. The minimal-
required buffer size is independent of any particular path’s
tracing reliability, because even if the path has a low relia-
bility and low execution frequency, it may still eventually be
executed and then the system must provide sufficient storage
capacity for the trace.

The analyzed function handle power updates only the state
of the controller and sets hardware registers. All updates
to the state affect variables of type unsigned char, and
these variables include for example power private.my tick and
power private.timer. All updates to the registers are of the
same type. Using our static analysis tool, we discover that
Path 8 monitors the most variables of all paths with 16 assign-
ments. Thus a sufficient buffer size for this instrumentation is
16 · sizeof(unsigned char).

D. Increasing the Time Budget

In some applications, the developer can devote a time
budget to the tracing effort; consider a heavily-loaded system
that drives a motor. The motor may tolerate jitter in its
duty cycle, however, reliable operation demands as little jitter
as possible. During the monitoring effort, the system might
drive motors with functions that introduce jitter but allow
for instrumentation. How much reliability can we gain by
increasing our deadline by a few cycles?

The surprising result is that adding a few extra cycles to the
deadline significantly increases the trace reliability. Figure 7
shows the result for the handle power function in which we
changed the deadline from 132 cycles to 137 cycles. The x-
axis lists the cycles that we add to the execution time of the
worst-case path. The y-axis shows the tracing reliability in the
function handle power. The reason for the surprising result is
that about 25% of the paths share critical parts with the worst-
case path. Thus, the algorithm cannot use the insertion points.
However, relaxing the deadline provides more flexibility and
the algorithm then also instruments these highly-frequented
basic blocks.
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Fig. 7. Effect of increasing time budget for logging in handle power.

XI. RELATED WORK

Debugging embedded systems is typically achieved through
capture and replay approaches; such approaches include trac-
ing. In such approaches, the program is instrumented to
generate traces which are then replayed offline, potentially in a
simulator. Capture and replay [15] is a well-established method
for debugging concurrent and distributed systems going back
to early publications in 1987 [16]. Thane et al. [17], [18], [17]
propose a software-based approach for monitoring and replay
in distributed real-time systems. Other approaches concentrate
on the problem of debugging concurrent programs [19], [20].
However, the mechanisms used for instrumentation in these
systems do not consider their impact on the timing of the
application, which is the main aim of this work.

Tsai et al. [21] propose a monitoring approach that min-
imizes the probe effect by using additional hardware. Our
proposed approach relies only on software mechanisms. Dodd
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et al. [22] propose a software-based approach targeted for mul-
tiprocessor machines which uses software instruction counters.
In this approach, the program execution is cleverly distributed
to two processors to minimize the probe effect. Our approach
aims for microprocessor systems which only have a single
execution unit.

Other monitoring approaches include AspectJ [2], Etch [3]
and Valgrind [23]. AspectJ is an implementation of aspect-
oriented programming, which enables developers to execute
given code when certain events occur. AspectJ supports instru-
mentation since potential events include memory writes; how-
ever, AspectJ will instrument these events indiscriminately,
without respect to resource bounds. Etch is a static monitoring
and instrumentation framework for instrumenting Win32/Intel
executables; it could support a time-aware instrumentation
plugin. Valgrind is a dynamic monitoring framework which
has been successfully used for detecting problematic memory
accesses. All of these monitoring approaches are for non-
real-time applications running on desktop computers; to our
knowledge, there are no proposed instrumentation approaches
for embedded systems.

XII. CONCLUSION

We have proposed time-aware instrumentation, a novel
approach to program instrumentation. The idea of time-aware
instrumentation applies to a variety of properties and in this
work we showed how it can be used to maximize trace
reliability and computing the minimal trace buffer size. Our
approach enables developers to, among other applications,
follow the evolution of program variables over the course of
a program’s execution.

We have evaluated our time-aware instrumentation approach
by automatically extracting models of the OpenEC keyboard
controller code and running simulations on our model; we
observed that it successfully shifts the distribution of runtimes
so as to more effectively use the available time budget without
exceeding it, and calculated the additional logging reliability
which can be obtained by small violations of the time budgets.
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