Implementation and Use of Data Structures in Java
Programs

Syed S. Albiz and Patrick Lam
University of Waterloo

ABSTRACT

Programs manipulate data. For many classes of programs, this data
is organized into data structures. Java’s standard libraries include
robust, general-purpose data structure implementations; however,
standard implementations may not meet developers’ needs, forc-
ing them to implement ad-hoc data structures. We investigate the
implementation and use of data structures in practice by develop-
ing a tool to statically analyze Java libraries and applications. Our
DSFinder tool reports 1) the number of likely and possible data
structure implementations in a program and 2) characteristics of the
program’s uses of data structures. We applied our tool to 62 open-
source Java programs and manually classified possible data struc-
tures. We found that 1) developers overwhelmingly used Java data
structures over ad-hoc data structures; 2) applications and libraries
confine data structure implementation code to small portions of a
software project; and 3) the number of ad-hoc data structures corre-
lates with the number of classes in both applications and libraries,
with approximately 0.020 data structures per class.

1. INTRODUCTION

“In fact, these days, if I catch a programmer writing
a linked list, that person had better have a very good
reason for doing so instead of using an implementation
provided by a system library.”

(Henning, [9])

Data structures are a fundamental building block for many soft-
ware systems: computers manipulate information, and this infor-
mation is often stored in data structures. Implementing linked
data structures invariably appears early in an undergraduate Com-
puter Science curriculum. Classically, programmers implement in-
memory data structures with pointers.

Modern programming environments, however, include rich stan-
dard libraries. Since version 1.0, Java has included data struc-
ture implementations in its library. Java 2’s Collections API [22]
defines standard interfaces for data structures and includes imple-
mentations of standard data structures. While the general contract
of a data structure is to implement a mutable set, general-purpose
data structure implementations might not meet developers’ specific
needs, forcing them to implement ad-hoc data structures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

The goal of our research is to empirically investigate data struc-
ture implementation and use in Java programs. We are particularly
interested in how programs organize information in the heap: do
they use system collections such as LinkedList and HashMap,
or do they implement their own ad-hoc lists, trees, graphs, and maps
using unbounded-size pointer structures, like C programmers? Our
results can help guide research in higher-level program understand-
ing and verification (e.g. [2, 11]) and the development of software
maintenance tools by identifying the code idioms that analysis tools
need to understand. For instance, linked-list data structure manip-
ulations require shape analysis techniques. Our operational defini-
tion of a data structure is therefore driven by static analysis consid-
erations: what types of analysis suffice to understand typical Java
applications? However, while our primary motivation is to inves-
tigate the necessity for shape analysis, we believe that our results
have broader implications to software engineering in general, espe-
cially in terms of understanding how programs are built.

In this paper, we present the results of our analysis of data
structure implementation and use in a corpus of 62 open-source
Java programs and libraries. We identified a number of key fea-
tures common to heap data structure implementations and imple-
mented the publicly-available DSFinder tool. Our tool accepts
a Java program as input and emits summary and detailed informa-
tion about data structure and array uses and implementations in that
program. We formulated and tested a number of hypotheses about
data structures on our corpus. We found that Java programs rarely
implement data structures—no benchmark implemented more than
24 linked data structures. As expected, our benchmarks extensively
used the Java Collections. The number of data structures was cor-
related with the size of the program for both Java applications and
libraries. We also found that data structure implementations were
confined to small portions of programs’ source code, as one might
expect for maintainability reasons.

Our analysis tool identifies data structure implementations by
searching for recursive type definitions and arrays, which signal
the possible presence of sets of unbounded size. A simple analy-
sis of a Java program’s class definitions (available in the program’s
bytecode) thus suffices to identify its potential data structures. Our
tool applies several automatic type- and name-based classification
steps to the set of potential data structures and outputs this set. We
manually investigated each potential data structure and classified it
as a graph, tree, or list. Our tool also emits information about static
counts of data structure usage, namely instantiations and field dec-
larations, as well as counts of array usage—arrays are an alternative
to collections.

Many classes of Java programs (such as web applications) are
tightly coupled to databases. Databases provide an alternative to
data structures, as they can store (persistent) data. However, since
database use is typically costly and often involves interprocess or
network communication, databases are typically used for persistent

storage, and commonly-accessed data remains in the heap.

Implications.

Beyond contributing to understanding how Java software sys-
tems are actually built in practice—a valuable contribution in
itself—our research has many implications to static analysis and
software engineering.

e Static Analysis. A substantial body of literature (for in-
stance, [3, 8, 16, 20]) contributes techniques for statically
understanding the behaviour of programs that manipulate
linked data structures. These shape analysis techniques can
verify linked list and other data structure manipulations, in-
cluding insertions, removals, and even list reversals. How-
ever, because shape analysis techniques are prohibitively ex-
pensive to apply to large programs, researchers have devel-
oped ways to mitigate the cost of these techniques.

If data structure implementations are rare, then it is reason-
able to expend significant effort (in terms of both annota-
tion burden and analysis time) to successfully analyze the
few data structure implementations. Analysis tools can then
proceed to the verification of higher-level program proper-
ties, assuming that the data structure implementations have
successfully been verified, using much more scalable static
analysis techniques for large sections of program code.

e Program understanding. Some program understanding
tools help developers understand how programs behave
around data structures. For instance, Lackwit [17] infers ex-
tended types for C programs that help developers understand
how programs manipulate abstract data types. Also, when
verifying software models (e.g. a Flash filesystem [10]), the
sets from the models must map to the data structures in the
software. The Unified Modelling Language contains collec-
tions as a primitive. These techniques all rely on understand-
ing a program’s data structures.

e Parallelization. Much of the existing pointer analysis
research sought to enable automatic parallellization: tree
traversals, in particular, are particularly easy to parallelize.
While our techniques do not automatically identify tree data
structures, our manual analysis of the data gives insight into
the question of how often trees occur in practice.

e Library sufficiency. Our analysis tool can identify areas in
which the standard library is lacking: if we find that develop-
ers often implement a particular kind of data structure, then
such a data structure ought to be added to the standard li-
brary. Note also that our analysis could identify instances
where a feature already exists in the standard library, but that
this feature is not sufficiently well-documented.

Our paper makes the following contributions:

e We propose the concepts of identifying possible data struc-
tures by type declarations and classifying probable data
structures using field and type information.

e We implement the DSFinder tool, which reads Java byte-
code and outputs information about data structure use.

e We collect a substantial corpus of open-source Java applica-
tions and apply our tool to this corpus.

e We formulate and empirically verify a number of hypotheses
about how programs implement and use data structures; our
corpus typically implements about 0.020 data structures per
benchmark class.

public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable

private transient Entry<E> header = new Entry<E>(null, null, null); // etc

private static class Entry<E> {
E element;
Entry<E> next;
Entry<E> previous; // etc

Figure 1: LinkedList implementation from openjdk-7.

2. CASE STUDY

Our case study sketches the capabilities of our data structure de-
tection tool, DSFinder, and will help understand the detailed ex-
perimental results of Section 4. Our tool produces summary and de-
tailed information about 1) probable implementations of data struc-
tures (both recursive data structures and arrays) and 2) uses of both
system-defined and ad-hoc data structures. This section presents
DSFinder’s output on a typical application, Apache tomcat,
and briefly interprets it. Section 3 provides more technical details.

We have released DSFinder as free software and implemented
a web interface to it. See

http://www.patricklam.ca/dsfinder

for more information on DSFinder and to try it out.

2.1 Data Structure Implementations

The main purpose of our tool is to count the number of data
structure implementations in applications and libraries. In partic-
ular, it identifies all potential linked data structures by analyzing
field structures. It then classifies these potential data structures us-
ing type and field name information.

Before describing our output on tomcat, we discuss the
LinkedList class from Sun’s openjdk-7 implementation of
the Java Collections libraries. Figure 1 presents an ex-
cerpt from LinkedList. This implementation uses an in-
ner class, LinkedList$Entry, which contains a recur-
sive type definition—a potential data structure. (HashMap
also uses an Entry inner class.) DSFinder finds that
LinkedList$Entry’s fields next and previous belong to
its whitelist and classifies Entry as a list. Our approach counts
data structure implementations by counting the number of recur-
sive type definitions (like Entry), and then counts data structure
uses by counting the number of fields and instantiation sites of the
containing classes (like LinkedList).

Figure 2 presents the summary results of our tool on ver-
sion 6.0.18 of Apache Tomcat. In tomcat, our tool iden-
tifies 2 (likely) linked lists and 1 tree-like data structure, as
well as 17 unidentified other potential (but unlikely) data struc-
tures, none of which are exact matches. (Figure 1 pre-
sented a typical exactly-matching linked list declaration, Entry.)
The full results (not shown) indicate that the linked lists are
OrderInterceptor$MessageOrder and LinkObject,
while the tree-like data structure is WebappClassLoader. We
found that, most of the time, “other” fields were not data struc-
tures, especially “other” fields that are not exact matches. Our tool
includes these counts to be comprehensive. (Section 3.1 further
explains our definition of data structures.)

Our classification of potential data structures into likely and un-
likely data structures could be confounded by a number of phe-
nomena, including different coding conventions and field names in
non-English languages. Section 6 discusses these threats at length.

To identify the extent of ad-hoc data structures in the code, our
tool also records the fact that 3 different classes (out of 656) con-
tain data structure implementations. This implies that data structure

COUNTS OF IMPLEMENTATIONS

Linked lists 2
Parents/outers
Others (12 java.lang.Object, 5 non-Object fields) 17

exact matching fields

Distinct classes containing linked lists and parents: 3
N-cycles 13
Arrays 39
read-only: 11
w/arraycopy: 25
hashtable-like: 6
(error bars:) [3] 20

DECLARED SYSTEM COLLECTION FIELDS, BY IMPLEMENTING CLASS

java.util.HashMap 62
java.util.ArrayList 20
java.util.Map 13
java.util.List 9
java.util.LinkedList 6
Others 18

DECLARED AD-HOC COLLECTION FIELDS, BY IMPLEMENTING CLASS

...apache.catalina.tribes.transport.bio.util.LinkObject 4

org.apache.catalina.loader.WebappClassLoader 3
...bes.group.interceptors.OrderInterceptor$MessageOrder 1
Others 0

INSTANTIATED SYSTEM COLLECTIONS (counts of ‘new’ statements)

java.util.ArrayList 230
java.util.HashMap 184
java.util.Hashtable 48
java.util.Vector 32
java.util.Properties 28
Others 88

INSTANTIATED AD-HOC COLLECTIONS

...apache.catalina.tribes.transport.bio.util.LinkObject 2
...bes.group.interceptors.OrderIinterceptor$MessageOrder 1
Others 0

DECLARED COLLECTION PARAMETER TYPES [1]

Collections are not data structures [2] 23
Collections are potential data structures 72
total org.apache.catalina.x 8
java.lang.String 20

java.lang.Object

org.apache.catalina.Session
org.apache.catalina.servlets.WebdavServlet$LockInfo
org.apache.catalina.realm.GenericPrincipal
org.apache.catalina.connector.Request
org.apache.catalina.Executor

Others

N S

java.lang.String
java.util.ArrayList
java.lang.Runnable
java.util.Vector
java.util.Locale
Others

)

TEMPLATE PARAMETERS 0
UNKNOWN 128

[1] sums to more than count of non-array collections: consider HashMap<a,B>.

[2] e.g. class Foo { List<String> NotDataStructure; }
[3] number of counted arrays in classes with multiple arrays.

Figure 2: Summary results for t omcat benchmark.

manipulation is limited to a tiny part of the tomcat code.

Our tool also reports the number of “/N-cycles”, i.e. mutually
recursive type declarations, in the program. An N-cycle occurs
when class C contains a field of type D, and D contains a field of
type C. In our experience, /N-cycles do not form data structures.

Finally, our tool summarizes array usage in the application.
Since arrays can be dynamically allocated, developers may use ar-
rays to implement data structures (particularly hash tables). We
counted the number of classes with array declarations in our bench-
marks and collected some statistics on the use of these arrays. We
found that many arrays are read-only: for instance, they might be
passed into a class’s constructor and stored as a field in that class.
To help identify arrays that are actually used as data structures,
we look for uses of System.arraycopy, which suggests list-
like use of an array, as well as uses of the % operator and calls to
hashCode, which suggest hashtable-like use of the array. We ex-
plain our array counts precisely, as well as the error bars data point,
in Section 3. The t omcat application contains 39 fields with array
type, of which approximately 11 are read-only arrays, 25 have calls
to arraycopy, and 6 are hashtable-like. The error bars data point
states that the reported counts may exceed actual counts by up to
20, due to approximations in our analysis.

2.2 Data Structure Uses

To better understand how programs use data structures, and in
particular which data structures programs use in practice, our tool
also collects two kinds of static counts about uses of data structures.
It lists (1) the number of fields with collection types and (2) the
number of new statements instantiating collections.

Field Counts.

To survey the use of persistent in-heap collections, we
count the number of fields with declared collection types.
We separate system collections (that is, subclasses of
java.util.Collection or Jjava.util.Map) from
ad-hoc collections (e.g. classes which declare next fields). Note
that our ad-hoc counts are approximate—they depend on the
accuracy of our data structure implementation counts, as described
above. We can see that in the tomcat benchmark, HashMap and
ArrayList are the most commonly-used system collection types
among fields, occurring respectively 62 and 20 times. Note that
ad-hoc collections rarely appear as fields, which is consistent with
their overall rarity in practice; the LinkObject type appears
4 times in field declarations, and there are only 4 other fields of
ad-hoc collection type in the whole benchmark.

Instantiation Site Counts.

Counting instantiation sites rather than field declarations gives
an alternate view of collection usage. Although we expect simi-
larities between the results, note that instantiation sites will always
use concrete types (e.g. ArrayList) while declarations can be of
abstract types or interfaces (e.g. List). Our tool lists the most-
frequently used instantiations of collection types. Again, we sep-
arate system collections from ad-hoc collections. In tomcat, the
system collection ArrayList is instantiated at 230 different sites
in the software, while HashMap is instantiated 184 times. (Note
the inversion in order between ArrayList and HashMap.) Ad-
hoc collections are instantiated 3 times. Interestingly, our tool does
not detect instantiations of WebappClassLoader; searching
through the code indicates that WebappClassLoader objects
are created (using Java Reflection) from newInstance calls.

2.3 Composite Data Structures

Developers can create data structures such as graphs or trees
using existing Java collections as building blocks. Our tool uses

parametric type information, when it is available, to identify po-
tential composite data structures. In tomcat, we can see that
we have 72 potential composite data structures and 23 collec-
tions that we can rule out as being data structures (for instance,
the 20 collections of Strings are never data structures, barring
some too-clever code on the part of the developer). We also print
out the system and user-defined classes that occur most often as
type parameters as well as the counts of formal template param-
eters appearing as parameter types. Observe that Session and
WebdavServlet$LockInfo appear most often as user type
parameters, while String appears most often as a system type
parameter (by far). Finally, we print the number of unparametrized
collections.

We manually inspected some benchmarks and found that most
potential composite data structures are not data structures. For
instance, in tomcat, we found that out of the 72 potential data
structures, only 1 is an actual data structure. We include below an
excerpt from the detailed DSFinder logs for that data structure,
which happens to be a tree:

org.apache.catalina.core.ContainerBase:
java.util.HashMap [protected] children

3. ANALYSIS

This section presents the static analyses behind our DSFinder
data structure detection tool. It first describes the rationale and gen-
eral methodology behind our approach, continues with a detailed
presentation of the static analysis for linked heap data structures,
and discusses our treatment of arrays. It also describes precisely
how DSFinder counts uses of data structures in programs.

3.1 Rationale and Methodology

Our technique for automatically identifying heap data structures
relies on the observation that data structures must be able to store
arbitrarily-large collections of objects. Most data structures imple-
ment mutable sets. To be able to store arbitrarily-large sets, pro-
grams must use recursive type definitions or arrays. Because Java
enforces type safety, we assume that a program’s type definitions
accurately reflect the program’s use of memory.

We skip local variables and synthetic fields when counting data
structure declarations. Java’s local variables are unsuitable for
defining data structures: local variable contents do not persist
across method invocations, so it is hard to define recursive struc-
tures with local variables. Our tool only lists user-defined data
structures in field declarations. We also skip synthetic fields as they
are generated by the compiler, not defined in the source code, and
thus cannot be used to implement data structures.

We briefly discuss “fixed-size data-structures”. We are aware
of two broad categories of such data structures: singletons provid-
ing data structure APIs, e.g. Java’s SingletonSet, and fixed-
universe data structures, e.g. bitvectors. We claim that singletons
are not data structures, even if they present a data structure-like in-
terface: their functionality differs significantly from mutable sets.
Fixed-universe data structures typically must be initialized with the
universe, and can then provide set operations based on this fixed
universe. Fixed-universe implementations do fit our definition of a
data structure, because the initialization phase can typically accept
arbitrarily-sized sets; our tool would then detect the arrays created
in the initialization phase.

DSFinder reads all class files belonging to specified Java pack-
ages and analyzes these class files using the ASM bytecode analysis
framework [5]. We chose to consider all classes in specified pack-
ages (rather than all statically reachable classes) to better support
dynamic class loading and reflection. Our results include all pack-
ages that an application’s source files contribute to. Our package-
based approach isolates the classes belonging to applications from
libraries, which we counted as separate benchmarks.

3.2 Field-based Data Structures

We next present the key definition behind our data structure de-
tection approach. Programs must use recursive type definitions or
arrays (see Section 3.3) to store unbounded data in memory.

DEFINITION 1. A class C' contains a recursive type definition
if it includes a field f with a type T, where T' is type-compatible
with C. Class C contains an exact recursive type definition if C'
contains a field f' with type C.

Note that for java.util.LinkedList, the inner class
LinkedList$Entry contains the recursive type definition, and
we count the Ent ry type in our counts of implementations. How-
ever, when we later count uses, we instead search for uses of the
containing LinkedList class.

While most data structures use exact recursive type definitions,
developers may choose to implement data structures using non-
exact recursive type definitions. Consider the following inner class
of the mxGraphModel class from the jgraph benchmark:

public static class mxChildChange
extends mxAtomicGraphModelChange {
protected Object parent, previous, child;
/]

Clearly, the mxChildChange class implements a linked data
structure; the containing class implements accessor methods which
handle the heterogeneous types, casting as appropriate.

However, our experimental results indicate that such strange pro-
gramming patterns are rare, and that developers usually use ex-
act recursive type definitions to implement lists. Out of the 147
lists that we detected, only 28 of the lists used non-exact recur-
sive type definitions, including 18 lists of java.lang.Objects.
The data structures consisting of Objects came from 6 bench-
marks: bloat, hibernate, jchem, jgraph, sandmark and
scala. Non-exact type definitions (of superclasses, not Ob ject)
are more common when developers implement trees: it is useful to
declare a Node class and populate the tree with Node subclasses.

Name-based Classification.

While type-based classification identifies all possible data struc-
tures!, it errs on the side of completeness. Recursive type def-
initions are a coarse-grained tool for finding data structures in a
large set of potential data structures. Understanding developer in-
tent helps identify actual data structures.

Field names are a rich source of information about developer
intent, and we implemented a simple set of heuristics that we found
to be effective in practice. Our heuristics include both blacklists
and whitelists: we (1) blacklist common false positives, (2) identify
linked lists and trees, and (3) match a number of other field names
that often denote data structures. DSFinder counts all remaining
fields as unclassified potential other data structures.

We found that blacklists based on field names helped us
to classify potential data structures. While (for completeness)
DSFinder outputs all recursive type definitions, our experience
with blacklists indicate that they work well in practice to classify
data structures. Here are the blacklist criteria; fields which meet
these criteria never form data structures in our benchmarks:

e Field type subclasses Throwable: Java programmers of-
ten subclass Throwable to declare custom exception types
which re-throw existing exceptions.

o Field type is AWT or Swing-related: We observed many false
positives with Swing and AWT. We found that this was due

"Developers could, of course, implement a virtual machine and
code for that virtual machine, a la Emacs.

to Swing and AWT programming practices. For instance,
many classes implement JPanel and themselves contain
JPanel fields, but do not constitute data structures in the
usual sense, because developers never used the JPanel hi-
erarchy to store program data. We therefore chose to black-
list AWT and Swing field declarations. (SWT does not seem
to lead to false positives.)

e Field type subclasses Properties: Java developers of-
ten create composite Properties classes which ex-
tend java.util.Properties yet themselves contain
Properties. We found such implementations com-
pletely delegate property manipulations to the containee
Properties objects, and therefore they do not constitute
data structures.

e Field name contains 1ock or key: Such fields contain lock
objects for synchronization.

e Field name contains value, arg, data, dir, param, or
target: Such fields implement a one-to-one mapping be-
tween a container object and a containee. Usually the de-
clared type is Object in such cases.

After the blacklist excludes fields, we run whitelists to explic-
itly include certain field names. These whitelists include entries for
linked lists, trees, and graphs. Any recursive type declaration with
field name containing next or prev counts as a linked list (only
counting one list if both next and prev occur in the same class).
Any recursive type declaration with a name containing parent or
outer constitutes a tree-like data structure. (In our benchmarks,
several containment hierarchies used fields named outer to im-
plement containment.) We also list any fields named child, edge
and vertex as probable data structures. Finally, we list any re-
maining fields which form recursive type declarations as “other”
potential data structures, and inspect them manually.

Our whitelists are, in principle, subject to both false positives—
where a developer names a field next but does not intend this
field to form a data structure—and false negatives—fields that are
not named next may also form lists. While false positives are
possible with whitelists, we did not encounter any false positives
in our data set (since the field must have both an appropriate type
and name). False negatives do occasionally occur in our data set,
since developers sometimes create linked lists using arbitrary field
names. However, our tool outputs all recursive type definitions in
its input, and our manual inspection identifies all false negatives.

One-to-many Relations.

Fields enable developers to implement one-to-one relations be-
tween objects. However, when implementing certain data struc-
tures such as trees or graphs, developers need to use one-to-many
relations. Such relations call for the use of a data structure. To
detect such (rare) composite data structures, our tool identifies
cases where collections are known to contain elements of recur-
sive type when parametric types are available. For instance, we list
jedit class InstallPanel$Entry’s field parents, of type
List<InstallPanel$SEntry>.

Graph Data Structures.

Developers sometimes implement graph-like data structures us-
ing recursive type definitions and composite data structures. In
the presence of parametric type parameters, DSFinder can iden-
tify potential composite data structures as graphs using type-based
classfication, but it is unable to automatically classify them specif-
ically as graphs, due to variations in graph implementations.

To estimate the frequency of graph implementations in programs
without parametric type information, we performed a manual clas-
sification on 6 randomly-selected benchmarks out of the 53 bench-
marks without template parameters (about 10% of the dataset).
These benchmarks were axion, bcel, xstream?, log4i, jag
and jfreechart, altogether containing 2594 classes. Four of
these benchmarks implemented 0 graphs, while xstream imple-
mented 2 graphs and axion 3. We also used Eclipse’s automatic
type annotation tool to help us infer all parametric types in our
jedit benchmark. The results in the part of jedit without para-
metric types were similar to the part with parametric types. We
therefore believe that ignoring graphs on raw types does not signif-
icantly skew our counts of graph types.

We continued by examining DSFinder results for the bench-
marks with parametric type information. We identified a number
of graphs by looking over field names for common graph-related
terminology. (When needed, we verified our conjectures by exam-
ining the code.) For example, sandmark declares this field:

public class CallGraphEdge
implements sandmark.util.newgraph.Edge {
private Object sourceNode, sinkNode; // etc.

The CallGraphEdge class clearly implements an edge in a
graph connecting two vertices. However, DSFinder cannot auto-
matically classify it as a graph: type-based classification can only
classify CallGraphEdge as a potential data structure, because
the fields are declared as java.lang.Objects. We believe that
name-based classification for graphs would be unreliable, as the
field names for graph nodes varied significantly in our dataset.

N-cycles.

Recursive type definitions capture immediate cycles in field dec-
larations, e.g. cases where class ListNode contains a field next
of type ListNode. Multiple classes may also participate in cy-
cles, and Melton and Tempero have performed an empirical study
of the incidence of cycles among classes [15]. Our notion of mu-
tual recursion is similar to their notion of cycles among classes, but
we are specifically looking for data structure implementations.

Figure 3 presents an instance of mutual recursion from the
artofillusion benchmark. Object 3D objects contain a ref-
erence to an object, natMapping, of type MaterialMapping,
and MaterialMapping objects contain a reference to the
Object3D which they are mapping. The Object3D and
MaterialMapping types could be used together to implement
linked structures in the heap, but the developers clearly intend to
maintain the object invariant [12] that for an Object 3D object x,

x.matMapping.object = x.

Note that this invariant, which states that the ob ject field depends
on the matMapping field, ensures that the mutual recursion does
not constitute a data structure.

Our tool identifies many N-cycles in our benchmark set. How-
ever, we found that they generally did not implement data struc-
tures. Quite often, /N-cycles relate a class and its inner classes, e.g.
Graph, Graph$NodeMap, and Graph$NodeList in bloat.
We believe that N-cycles generally do not implement data struc-
tures because it is individual classes (in conjunction with inner
classes) that implement interfaces for Abstract Data Types [13].

3.3 Arrays

While some data structures, such as linked lists, are often
implemented with recursive type definitions, other data struc-
tures, such as hashtables, are usually implemented using arrays.

Zxstream contains one parametrized potential composite data
structure which is not a data structure.

public abstract class Object3D {
protected MaterialMapping matMapping;
// ... other fields omitted ...

public Object3D() { }
public void setMaterial (Material mat, MaterialMapping map) { // ...
matMapping = map; } }
public abstract class MaterialMapping {
Object3D object; Material material;

protected MaterialMapping (Object3D obj, Material mat) ({
object = obj; material = mat; }

Figure 3: Non-data structure mutual recursion among
artofillusion classes.

private Item get (final Item key) {

Item tab[] = table;

int hashCode = key.hashCode;

int index = (hashCode & Ox7FFFFFFF) % tab.length;

for (Item i = tab[index]; i != null; i = i.next) {
if (i.hashCode == hashCode && key.isEqualTo(i)) {

return i; } }
return null; }

Figure 4: Use of hashCode and modulo operator in ASM
benchmark.

Lists can be implemented using either recursive type definitions
(LinkedList) or arrays (ArrayList). To study how programs
use arrays, we counted array-typed fields and classified these fields.

We decided to use the following two approximations for arrays:
1) we assume that code belonging to class C (and not subclasses)
only accesses fields of class C (and not subclasses); and 2) we con-
flate accesses for all arrays declared in a single class. We veri-
fied approximation 1 by implementing an analysis which detected
field accesses by objects of a different type (e.g. class C accesses
d. f, where d is of type D)°. Such field accesses only arose in 14
benchmarks from our set of 62. Only in a few cases, such as the
array-intensive benchmark artofillusion, did the number of
instances exceed 50. We can therefore assert that the approximation
is generally valid for our dataset. To understand approximation 2’s
effect, DSFinder counts how many arrays each class defines, and
reports, as “error bars”, the largest number of arrays in a class for
each application. Because the error bars were relatively small for
most applications (and nil for 26 of our benchmarks), we decided
not to implement more precise counts of arrays without writes or
arraycopy calls.

Preliminary investigations showed that many arrays were never
modified inside a class; such arrays are initialized once and then
never written to again. Immutable arrays are clearly not data struc-
ture implementations. Our tool therefore reports the number of ar-
rays with no writes.

Two data structures that developers often implement using ar-
rays are lists and hashtables. We use the following heuris-
tics to detect these data structures: to find list implementations
which are inserted to or removed from, we search for uses of
System.arraycopy, and to find hashtables, we search for
uses of modular arithmetic and calls to hashCode (). Figure 4
presents a hashtable from ClassWriter in the ASM library.

3.4 Data structure uses

To complement our work on implementations of data structures,
we wanted to understand how often developers used data structures
in their programs and which data structures they chose.

We survey two kinds of data structure uses: field decla-
rations and object instantiations. We separate each of these
uses into uses of Java collection types (implementers of the
java.util.Collection and java.util.Map interfaces)
and uses of instances of data structure implementations (as defined

3Full results from this analysis are available on our webpage.

in Section 3.2). To count field declarations, we enumerate all fields
of all classes in a benchmark and report fields with appropriate
types. For object instantiations, we count occurrences of the appro-
priate NEW Java bytecode. Dynamic counts of instantiated objects
are beyond the scope of this paper; Dufour et al. [7] investigated a
number of dynamic metrics for Java benchmarks.

4. EXPERIMENTAL RESULTS

We next explore how programs used data structures in practice.
We collected a suite of 62 open-source Java applications and li-
braries and applied our DSFinder tool (plus manual classifica-
tion) to understand how these programs implemented and used data
structures. In this section, we describe our experiments, and in-
clude remarks about our results. Next, in Section 5, we will propose
four hypotheses and formally evaluate them based on our data.

Summary of Quantitative Results.

Table 1 summarizes our core findings. Our benchmark set in-
cludes Java programs from a wide variety of domains, including
compiler compilers such as javacc and sablecc; integrated
development environments such as drjava; databases such as
(Apache) derby; and games such as megamek. Our benchmark
set also includes the Apache commons—collections and the
Java Runtime Environment itself (which contains 16 lists and 6
trees.) These benchmarks range in size from 3 classes (for Bean)
to 5651 classes (for azureus).

For each benchmark in our benchmark set, we include counts of
graphs, lists, and trees, as well as the total number of data struc-
tures (DS); we also include the number of classes in each program.
Recall that the number of graphs is an underestimate, as discussed
in Section 3. We also list the number of fields of data structure
type (“declarations”), separated into system (SYS) data structures
(which implement Collection or Map) and ad-hoc (AH) data
structures (as previously identified by DSFinder), plus the num-
ber of classes containing arrays (ARR). To provide another per-
spective on data structure use, we also provide the number of in-
stantiations of data structures and arrays, obtained by counting new
and newarray bytecode instructions. Note that we add one to the
“Instantiation AH” column for each instantiation of a class contain-
ing an ad-hoc data structure node (e.g. we count LinkedLists,
not LinkedList$Entrys). Finally, we include more informa-
tion on array usage in each of the benchmarks, including an es-
timate of the number of read-only arrays (RO), arrays which are
used with System.arraycopy (W/AC), and arrays which occur
along with calls to hashCode or mod operations (HS). (Note that
ARR counts the number of classes with array declarations, while
these counts estimate the number of arrays with the given proper-
ties.) The anticipated error for array measurements (ERR) is the
largest number of arrays declared in any class in that benchmark.

To enable reproducibility of our results, we have included ver-
sion numbers for each benchmark. Furthermore, we have also
made the benchmark sources and all of our classifications available
at the DSFinder website.

We used DSFinder along with manual classification to obtain
the counts in Table 1. The manual classification took one author 3
days to perform. Note that no benchmark contains more than 16
list-like data structures, nor more than 24 linked data structures in
all, and that the number of data structure definitions is tiny com-
pared to the number of classes. Most of the ad-hoc data structures
were lists. Programs declared fields of system data structures much
more often than ad-hoc data structures. jedit breaks the trend,
with extensive declarations of org.gjt.sp.jedit.View ob-
jects. These objects contain prev and next fields, so DSFinder
automatically classifies Views as data structures. Benchmarks

Benchmark Ver Classes Graphs Lists. Trees DS Declarations Instantiations Arrays

SYS AH SYS AH ARR RO w/AC HS ERR
aglets 202 413 0 3 0 3 59 11 135 18 10 6 1 0 2
antlr-gunit (1) 313 147 0 0 0 0 2 0 20 0 0 0 0 0 0
aoi 272 680 0 11 5 16 26 81 247 209 103 9 20 36 33
argoUML 0.28 2068 0 2 9 11 87 34 1118 29 19 3 1 1 2
asm (1) 32 176 0 10 0 10 49 7 92 0 10 1 7 5 4
axion rl.12 448 0 2 1 3 103 16 245 30 12 8 1 3 3
azureus rl1.97 5651 0 3 8 11 645 27 2077 15 169 53 41 41 47
beel (1) 52 382 0 1 0 1 55 18 101 1 24 6 5 12 11
Bean 0.1 3 0 0 0 0 0 0 0 0 0 0 0 0 0
bloat (1) 1.0 332 0 7 16 23 128 23 361 4 22 2 7 5 4
cglib (1) 22 226 0 0 0 0 11 0 58 0 16 17 4 0 10
colt (1) 1.2.0 554 0 0 0 0 0 0 9 0 12 0 4 3 0
columba 1.4 1850 0 0 4 3 101 24 429 129 59 26 1 4 4
commons-cli (1) 12 23 0 0 0 0 12 0 17 0 1 1 0 1 0
commons-collections (1) 3.2.1 513 0 8 8 16 122 25 367 1 31 12 3 18 18
commons-lang (1) 24 127 0 1 0 1 14 1 62 1 7 3 1 2 0
commons-logging (1) 111 28 0 0 0 0 2 0 9 0 2 0 0 0 0
DCM 0.1 27 0 2 0 2 0 0 0 0 2 0 0 0 0
derby 10.5.1.1 1812 0 8 14 22 282 45 585 594 151 74 39 13 74
domdj (1) 1.6.1 190 0 1 1 2 55 3 93 3 9 4 1 1 0
drjava 4932 3155 0 5 15 19 107 31 951 70 50 36 0 15 17
fit 1.1 41 0 0 1 1 3 0 13 0 4 3 0 0 0
fop 0.95 1314 0 4 9 12 302 45 911 41 30 5 5 4 2
galleon 25.6 837 0 0 0 0 102 0 344 0 12 1 1 2 0
gantt 209 32 0 0 0 0 9 0 19 0 7 5 0 0 0
hibernate (1) 312 1143 0 2 4 6 344 13 643 37 92 82 14 6 62
hsqldb 1.8.0 242 0 4 3 7 5 25 11 61 26 8 10 15 17
ireport 3.0.0 2451 0 0 3 3 179 20 490 17 33 6 0 2 0
jag 6.1 344 0 0 2 2 45 0 191 0 11 7 0 0 2
Jjasper (1) 351 1437 0 33 0 33 381 58 612 16 75 35 9 2 23
javace 42 155 0 5 2 7 31 47 206 42 9 4 2 1 0
jaxen (1) 111 213 0 0 4 4 17 2 53 10 0 0 0 0 0
jchem 1.0 914 0 3 0 3 212 9 567 13 43 3 11 17 8
jem ri33 353 0 0 2 2 10 1 175 1 18 1 0 8 7
jedit 4.3prel6 1109 0 15 4 19 71 188 370 97 44 17 7 3 0
jeppers 20050608 78 0 0 0 0 0 0 0 0 2 0 0 0 0
Jetty 6.1.17 331 0 5 3 8 97 25 187 39 29 8 2 18 12
jext 50 470 0 1 0 1 32 5 79 2 18 4 0 2 0
jfreechart (I) 1.0.13 819 0 0 3 3 144 8 326 2 34 7 12 14 19
jgraph (1) 0.99.0.7 177 0 4 4 8 28 6 108 10 7 4 1 1 2
jmeter 232 337 0 0 2 2 82 6 207 9 9 2 1 0 0
jre 1.5.0_18 712 0 16 9 25 92 116 284 251 33 10 10 9 6
jung (I) 2.0 487 12 0 0 12 131 0 404 1 3 4 0 0 3
junit 47 110 0 0 0 0 13 0 33 0 1 0 0 0 0
jython 221 953 0 4 3 7 66 12 284 154 71 47 18 25 36
LawOfDemeter 0.1 27 0 2 0 2 0 0 0 0 2 0 0 0 0
logdj (1) 1.2.15 259 0 2 1 3 40 9 67 0 15 4 1 1 0
lucene (1) 24.1 795 0 15 0 15 155 48 412 21 62 19 9 8 2
megamek 0.34.2 1799 0 0 0 0 23 0 978 0 82 11 8 15 8
NullCheck 0.1 139 0 2 0 2 0 0 0 0 2 0 0 0 0
pmd 425 720 0 6 5 11 21 43 269 34 17 7 1 0 2
poi (1) 32 1059 0 1 2 3 85 2 215 0 41 22 8 7 15
ProdLine 0.1 23 2 0 0 2 4 0 7 0 0 0 0 0 0
proxool (1) 0.9.1 105 0 1 0 1 24 3 52 1 5 0 1 0 0
regexp (1) 1.5 17 0 0 0 0 0 0 4 0 1 1 1 0 0
sablecc 32 285 0 0 1 1 129 1 792 0 13 6 0 3 0
sandmark 340 1087 4 10 22 36 272 27 996 18 86 49 10 20 34
StarJ-Pool 0.1 584 0 9 0 9 113 33 200 15 48 13 9 8 7
Tetris 0.1 31 0 0 0 0 1 0 1 0 1 0 0 0 0
tomeat 6.0.18 656 0 3 5 8 128 11 305 3 36 8 25 6 20
xerces 29.1 710 0 10 13 23 138 24 238 69 73 22 929 12 80
xstream (1) 1.3.1 342 0 0 2 2 71 4 154 1 8 2 3 1 2

Table 1: Array and data structure declaration and instantiation counts in benchmark set.

which we would expect to be numerically-intensive, such as
artofillusion, a raytracer, and jcm, a Java climate model,
indeed declare more arrays than collections. In terms of instanti-
ations, our benchmarks always instantiated overwhelmingly more
system collections than ad-hoc collections.

To summarize the array usage results, we see that many ap-
plications have lots of read-only arrays, up to three-quarters in
drjava’s case, and measurements up to half are common. A non-
trivial number of arrays appear to be used as data structures, but not
a plurality. The error bars are reasonably low, giving some validity
to our coarse analysis for understanding array usage.

Correlations between Size and Data Structure Count.
Figure 5 compares program size (measured in number of classes)
against data structure count (from DSFinder plus manual classi-
fication) on our benchmark set. Note that we are counting both ar-
rays and linked data structures in this figure: the reported number of
data structures is the sum of the “data structures” column with the
“hashtable-like” (HS) and “arraycopied” (w/AC) array columns.
Because the Pearson correlation coefficient is not robust to out-
liers, we chose to drop the aoi, argoUML, azureus, derby,
drjava, ireport, and xerces outliers from the following cal-
culations; for those benchmarks, either the number of classes or the
number of data structures fell outside an outlier border of 1.5 times

the inter-quartile range for that measurement. These data points
greatly distorted the correlation coefficient and affect the slope of
the line of best fit for applications by approximately 40%.

Our results indicate a medium linear correlation between a pro-
gram’s number of classes and its number of ad-hoc data structures;
the Pearson correlation coefficient is 0.58. The slope of the line of
best fit is 0.020 data structures per class.

We also computed separate lines of best fit for the sets of ap-
plications and libraries in our corpus. We found that our subcol-
lections of libraries and applications, considered separately, each
contain approximately 0.026 and 0.018 data structures per class re-
spectively. However, the correlation coefficient for the libraries, at
0.74, is higher than the coefficient for the applications, at 0.52.

Collections Library Sufficiency.

We manually inspected our benchmark set to understand when
developers implemented ad-hoc data structures instead of using
system data structures. Developers generally implemented ad-hoc
lists when they only needed limited functionality from the list struc-
ture; often, developers only add to and iterate over ad-hoc lists.
Many ad-hoc lists implement hash table chaining. We conjecture
that developers used ad-hoc lists for hash tables for perceived ef-
ficiency improvements. In our observations, ad-hoc list manipula-
tions were confined to at most one class besides the defining class.

100
|

80
|

Data Structures
60
!

. +
< 7 +
><><
¥
+ Applications
& 1 X Libraries
A A Outliers
y + R ® OQverall
p
o VAT *
T T T T T T T
0 1000 2000 3000 4000 5000 6000

Number of Classes

Figure 5: Benchmark size versus # of Data Structures

We also investigated the reason that developers implemented
their own hash tables. Usually, these hash tables provide additional
functionality that the system hash table does not provide; for in-
stance, JEdit implements a hash table which can perform both
case-sensitive and case-insensitive searches.

Based on their extensive usage, developers clearly use system
data structures. Furthermore, developers often explicitly document
their design decisions when implementing ad-hoc data structures.
Developers most often documented ad-hoc data structures visible
to external callers, and more rarely documented their decisions for
private data structures.

Qualitative Observations.

We conclude this section by presenting some qualitative observa-
tions on our benchmark set. We describe two ad-hoc data structures
which required manual classification and one declaration which
does not constitute a data structure.

As mentioned previously, tree declarations are always ad-hoc.
One tree occurs in ArithExpr from the bloat benchmark:

public class ArithExpr extends Expr {
Expr left, right; // etc.

Note that the child nodes are of supertype Expr, which does
not exactly match the ArithExpr type declaration. Other
benchmarks also contain trees of expressions, notably scala,
sandmark and xerces, and these trees also often do not contain
exact type matches. We also found that libraries were more likely
than applications to declare data structures based on interfaces (i.e.
Expr might be an interface rather than a class.)

The hsgldb benchmark also contains a tree-like data structure
of Expression nodes:

public class Expression {
Expression eArg, eArg2; // etc.

This tree requires manual classification: while the fact that there
are two Expression fields is suggestive of a doubly-linked list
or tree, it is difficult to imagine a name-based whitelist entry which
could understand the intent of this tree declaration.

Finally, we exhibit a recursive type declaration which does not
constitute a data structure. This type of declaration occurs reason-
ably often, and can sometimes be blacklisted by name. Consider
this example from the Apache commons primitives:

protected static class RandomAccessIntSubList
extends RandomAccessIntList
implements IntList {
private RandomAccessIntList _list = null;

//

In this case, the _1ist refers to a container object. However,
by inspection, we can determine that the container object does
not contain any further references to RandomAccessIntList
or RandomAccessIntSubList classes, so that the heap ref-
erences can form a chain of length at most 1. We there-
fore conclude that _1list does not form a data structure.
Sometimes such fields can form cycles, as seen in the earlier
Object3D/MaterialMapping example, but those do not con-
stitute data structures either.

5. DISCUSSION

Our experimental results allow us to test a number of hypotheses
about data structure implementation and use. We next formulate
four hypotheses and verify them against our experimental data.

HYPOTHESIS 1. The number of data structure implementations
varies linearly with the number of classes in a program.

Recall from Section 4 that, after dropping outliers, the correla-
tion coefficient between the number of classes and the number of
data structures is 0.58. While the coefficient is far from 0, it neither
strongly supports nor strongly rejects this hypothesis.

HYPOTHESIS 2. Libraries implement more data structures
than applications on a per-class basis.

We were expecting to find far more data structure implementa-
tions among libraries than applications. The slope of the line of best
fit was significantly higher for libraries, supporting this hypothesis.

HYPOTHESIS 3. Developers use Java data structures more of-
ten than ad-hoc implementations.

Our data certainly support this hypothesis. All but three of our
benchmarks declare more fields of system data structure type than
containers of ad-hoc data structure types, by at least a factor of two.
The results from instantiations are even more overwhelming: all of
the benchmarks instantiate more system data structures than ad-hoc
data structures, at least when counting statically.

HYPOTHESIS 4. Data structures are concentrated in a small
portion of applications and libraries.

Our data strongly support Hypothesis 4. The number of
classes containing recursive type declarations for linked data struc-
ture implementations never exceeds 24, even for benchmarks
with thousands of classes. Furthermore, data structures ma-
nipulations are well-encapsulated: Tempero [23] states that ex-
posed fields are generally accessed from only one other class.
This result is consistent with a commonly used model for ma-
nipulating data structures, in which a containing class (e.g.
java.util.LinkedList) holds areference to a “node” object
(e.g. jJava.util.LinkedList$Entry). The “node” object
contains the recursive type definition, while the containing class
directly accesses and modifies elements of the node containee to

perform standard data structure operations such as addition and re-
moval of elements. If Tempero’s conclusion applies to classes with
data structure implementations, we could then conclude—based on
our results—that data structure manipulations are confined to very
small subsets of typical applications. We have also performed our
own spot checks for data structure field reads, and our results are
consistent with Tempero’s results on our benchmark set.

6. THREATS TO VALIDITY

We survey threats to the validity of our hypotheses and discuss
how we mitigate these threats. Some relevant threats include con-
founding factor and the composition of our corpus.

One possible threat to internal validity is that confounding fac-
tors, besides the independent variable, may affect dependent vari-
ables. Our independent variable is program complexity, as mea-
sured in number of classes, and our dependent variable is the num-
ber of data structures. Possible confounding factors include appli-
cation domain; number and type of libraries used; and developer
characteristics. While the confounding factors may indeed affect
the observed number of classes, we believe that our large and varied
benchmark set helps to control for these factors: we have chosen
programs from many domains, and our applications have hetero-
geneous developer pools, so our results should not be skewed by
these confounding factors.

Also, the number of classes may not be an ideal measure of pro-
gram complexity; other software metrics might be better suited to
measuring complexity and could better correlate with the number
of data structures. However, we expect each class to implement at
most one Abstract Data Type and to therefore use a small number of
data structures. Note also that the number of classes is unambigu-
ous, particularly easy to measure, and provides a rough estimate of
the complexity of a software system.

Our system only analyses statically-available class files, not dy-
namically generated classes. We believe that dynamically gener-
ated classes would behave like the classes that we inspected.

One threat to construct validity is the accuracy of our manual
classification. We believe that our manual classifications of data
structures are fairly accurate; it is fairly straightforward to decide
by inspection whether a field constitutes a data structure or not.

We next discuss potential barriers to generalizations of our analy-
sis. Since our results are fairly conclusive on our corpus, the major
threat to external validity is the representativeness of our corpus,
which might not be representative of software projects in general.

Our corpus consists of over 60 open-source Java applications and
libraries. The size of the corpus and the fact that it contains pro-
grams with over 5000 classes ensures that it represents Java pro-
grams of many different sizes. Even though our corpus only in-
cludes open-source programs, our results should also apply to pro-
prietary applications. Melton and Tempero’s empirical study [15]
includes proprietary applications; these applications are generally
similar to the open-source applications (although they do contain
some outliers on some measurements).

Open-source applications might also be more likely to have un-
obfuscated English field names than applications in general. This
threat applies only to DSFinder’s automatic classification of data
structures. However, this threat should not affect our reported re-
sults, which are based on our manual classification of DSFinder’s
exhaustive set of potential data structures.

We explicitly restricted our focus to Java applications. Different
programming paradigms ought to yield different results. The im-
portant features of Java, for our purposes, are its object-oriented na-
ture and its comprehensive class library. A study of C# applications
should give similar results. On the other hand, C programs should
contain far more data structure definitions: C is neither object-

oriented nor endowed with collections in its standard libraries.

Scala [18] integrates the functional and object-oriented pro-
gramming paradigms and produces Java Virtual Machine bytecode.
Since our tool supports arbitrary Java bytecode, we examined ver-
sion 2.7.4 of the Scala core library and compiler, which are them-
selves almost completely written in Scala. We found that Scala im-
plemented 60 data structures over 7177 classes. Both the number
and ratio of data structures to classes were far larger than anything
in our input set, as we expected. Two possible reasons for this
measurement are: (1) the Scala runtime system supports a separate
language and therefore defines its own data structures, rather than
using the Java data structures; and (2) in the functional program-
ming paradigm, developers declare their own data structures more
often than in the object-oriented paradigm.

7. RELATED WORK

We survey three classes of related work. We first describe some
of the foundational work in abstract data types and encapsulation.
Next, we discuss related work in the area of static and dynamic em-
pirical studies of Java corpora. Finally, we explain how our work is
applicable to research on sophisticated pointer and shape analyses.

7.1 Abstract Data Types & Encapsulation

Data abstraction, as first proposed by Liskov and Zilles in the
context of operation clusters [13], is now a generally accepted pro-
gram construction technique. Operation clusters are one ancestor
of today’s object-oriented programming languages. Data abstrac-
tion enables encapsulation of abstract data types into classes; Sny-
der [21] discusses some of the relationships between data abstrac-
tion, encapsulation, and design of object-oriented languages. Our
work makes the assumption that data will be well-encapsulated,
since it identifies and counts the classes which programs use to
encapsulate data structures. In this study, we have manually exam-
ined some of our benchmark applications and found that data struc-
ture implementations are often (but not always) well-encapsulated®.
Tempero’s study of field use in Java [23] supports our belief: fields
are rarely accessed by many outside classes.

Even if developers tend to respect encapsulation in practice, re-
searchers have studied techniques for statically enforcing encap-
sulation. One example is work by Boyapati et al. [4] on the use
of ownership types to enforce encapsulation. The problem is that
some data structure fields cannot be declared “private”: helper
classes, such as iterators, or owner classes of “node” classes, legiti-
mately need access to data structure fields. Ownership types enable
designers to control such legitimate accesses. Work on ownership
types would complement our research, since it would provide static
guarantees that our surveys are exhaustive.

7.2 Empirical Studies

Researchers have recently conducted a number of studies of Java
programs as-built. Collberg et al [6] presented quantitative infor-
mation about the most-commonly-used classes and field types, as
well as bytecode instruction profiles; our work overlaps theirs in
that we also study most-commonly-used collection classes in appli-
cations, but our work also includes measurements of data structure
implementations. Baxter et al [1] also present a quantitative study
of software metrics for a large corpus of Java applications, but they
instead attempt to determine whether these metrics fit a power-law
distribution. Our research contributes to this growing body of em-
pirical studies. We believe that our contribution will be particularly

*One flagrant counterexample occurs in the hsqldb benchmark,
where five external classes access org.hsgldb.Record ob-
jects’ next field, including three that insert records into the list.

useful for static analysis researchers, as it can help guide develop-
ment of pointer and shape analysis techniques and tools.

Tempero [23] has investigated field visibilities and accesses on
a substantial corpus of open-source Java programs. He finds that a
surprisingly large proportion of applications include classes which
expose instance fields to other classes, but few exposed fields are
actually accessed by other classes. (We used this result earlier to
support Hypothesis 4). Melton and Tempero also performed a re-
lated study [15] on cyclic dependencies between classes.

Malayeri and Aldrich [14] have empirically examined the uses
of Java Collections in the context of structural subtyping to better
understand which subset of Java Collections operations developers
typically use. Our work studies a different aspect of Java Collec-
tions use: instead of trying to understand which parts of the Col-
lections interfaces programs use, we study which Collections pro-
grams use, and which collections programs implement when they
do not use Java Collections.

So far, we have discussed purely static, or compile-time, mea-
surements of Java programs. Static measurements are a rich source
of information about Java implementations and designs; in partic-
ular, they can identify the extent of data structure implementations
and uses throughout Java programs. However, it is difficult to glean
certain types of information about program behaviours from purely
static counts. There is much work on profiling for Java. A par-
ticularly relevant example is the work of Dufour et al. [7], who
present a set of dynamic metrics for Java programs. These metrics
allow them to classify programs based on their behaviours. As in
our work, some of their metrics concern arrays and data structures;
however, their metrics—unlike ours—do not investigate the distri-
bution of data structure manipulation code in programs, which is
particularly valuable for software understanding and maintenance.

7.3 Sophisticated Pointer and Shape Analyses

Pointer and shape analyses have long been an active area of
research, and many techniques and tools can successfully under-
stand pointer manipulation code. The goal of shape analysis is to
verify effects of sequences of heap-manipulating imperative state-
ments; some examples include list insertion, concatenation, re-
moval, sorting, and reversal code. The Pointer Analysis Logic En-
gine, PALE [16], and the Three-Valued-Logic Analyzer, TVLA [3]
can successfully analyze properties of heap-manipulating code; for
instance, these analyses can verify that the code maintains neces-
sary invariants and always have the specified effects.

Due to their sophistication and precision, shape analysis algo-
rithms are always computationally expensive, and traditional shape
analyses do not scale up to entire programs. If one could limit
the necessity for shape analysis to carefully-delimited fragments
of software systems, then shape analysis would be a much more
usable technique for verification tools and compilers. Our work
contributes to this goal. Unfortunately, software does not yet come
with modularity or encapsulation guarantees. Two approaches to
enabling local reasoning are the use of Separation Logic [19] and
modular verification, as seen for instance in the Hob and Jahob
analysis frameworks [11,24].

8. CONCLUSION

In this empirical study, we investigated the implementation and
use of data structures in Java programs. We first defined recursive
type definitions, which developers must use to implement ad-hoc
data structures. We then presented our DSFinder tool, which
identifies likely data structure implementations and prints out in-
formation about such implementations, field declarations of system
and ad-hoc data structures, and instantiations of data structures, as
well as array usage information. With our tool, we classified data

10

structures in 62 open-source Java applications and libraries, and
concluded that Java programs make extensive use of Java collec-
tions and limited use of ad-hoc data structures. No benchmark de-
fined more than 24 ad-hoc data structures, and the number of data
structures increased slowly in proportion to the number of classes.

We have established that most of the implementation of a Java
program does not consist of manipulating arrays or linked data
structures in the heap. A related question remains open: what
makes up Java programs? What proportion of a Java program’s im-
plementation is simply boilerplate code, generated by an Integrated
Development Environment?

9. REFERENCES

[1] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser, M. Melton,
and E. Tempero. Understanding the shape of Java software. In Proceedings of
the 21st OOPSLA, pages 397-412, Portland, Oregon, October 2006.

[2] E.Bodden, P. Lam, and L. Hendren. Finding programming errors earlier by
evaluating runtime monitors ahead-of-time. In Proceedings of the 16th ACM
SIGSOFT International Symposium on the Foundations of Software
Engineering, pages 3647, Atlanta, Georgia, November 2008.

[3] I Bogudluv, T. Lev-Ami, T. W. Reps, and M. Sagiv. Revamping TVLA:
Making parametric shape analysis competitive. In Proceedings of
Computer-Aided Verification, pages 221-225, 2007.

[4] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object
encapsulation. In Principles of Programming Languages (POPL), pages
213-223. ACM Press, 2003.

E. Bruneton, R. Lenglet, and T. Coupaye. ASM: a code manipulation tool to
implement adaptable systems. Adaptable and extensible component systems,
November 2002.

C. Collberg, G. Myles, and M. Stepp. An empirical study of Java bytecode
programs. Software—Practice & Experience, 37(6):581-641, May 2007.

[7]1 B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic metrics for
Java. In Proceedings of OOPSLA "03, pages 149-168, Anaheim, California,
October 2003.

R. Ghiya and L. Hendren. Is it a tree, a DAG, or a cyclic graph? In Proceedings
of the 23rd POPL, 1996.

[9]1 M. Henning. API design matters. Communications of the ACM, 52(5):46-56,
May 2009.

E. Kang and D. Jackson. Formal modeling and analysis of a flash filesystem in
Alloy. In E. Borger, M. J. Butler, J. P. Bowen, and P. Boca, editors, ABZ, volume
5238 of Lecture Notes in Computer Science, pages 294-308. Springer, 2008.

V. Kuncak, P. Lam, K. Zee, and M. Rinard. Modular pluggable analyses for data
structure consistency. Transactions on Software Engineering, 32(12):988-1005,
December 2006.

K. R. M. Leino and A. Wallenburg. Class-local object invariants. In P. Jalote
and S. Rajamani, editors, Proceedings of the Ist India Software Engineering
Conference, pages 57-66, February 2008.

B. Liskov and S. Zilles. Programming with abstract data types. In Proceedings
of the ACM Symposium on Very High Level Languages, pages 50-59, Santa
Monica, California, 1974.

D. Malayeri and J. Aldrich. Is structural subtyping useful? an empirical study.
In G. Castagna, editor, Proceedings of the European Symposium on
Programming, number 5502 in LNCS, pages 95-111, York, UK, March 2009.
H. Melton and E. D. Tempero. An empirical study of cycles among classes in
java. Empirical Software Engineering, 12(4):389-415, 2007.

A. Mgller and M. I. Schwartzbach. The Pointer Assertion Logic Engine. In
Programming Language Design and Implementation, 2001.

R. O’Callahan and D. Jackson. Lackwit: a program understanding tool based on
type inference. In Proceedings of the 19th ICSE, pages 338-348, 1997.

M. Odersky. The Scala Language Specification, Version 2.7.
www.scala-lang.org/docu/files/ScalaReference.pdf, 2009.

J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science, pages 55-71, Copenhagen, Denmark, July 2002.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM TOPLAS, 24(3):217-298, 2002.

A. Snyder. Encapsulation and inheritance in object-oriented programming
languages. In N. Meyrowitz, editor, Proc. Ist Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 1986, pages 38—45, Portland, Oregon, October 1986.
Sun Microsystems Inc. Collections framework overview.
http://java.sun.com/j2se/1.4.2/docs/guide/collections/overview.html, 1999. Last
accessed on 16 July 2009.

E. Tempero. How fields are used in Java: An empirical study. In Proceedings of
the Australian Software Engineering Conference, pages 91-100, Gold Coast,
Australia, April 2009.

K. Zee, V. Kuncak, and M. Rinard. Full functional verification of linked data
structures. In Proc. PLDI, 2008.

[5

[6

[8

[10]

(1]

[12]

[13]

[14]

[15]
[16]
[17]
(18]

[19]

[20]

[21]

[22]

(23]

[24]

