
A

Views: Synthesizing Fine-Grained Concurrency Control

BRIAN DEMSKY, University of California, Irvine
PATRICK LAM, University of Waterloo

Fine-grained locking is often necessary to increase concurrency. Correctly implementing fine-grained lock-

ing with today’s concurrency primitives can be challenging—race conditions often plague programs with

sophisticated locking schemes.
We present views, a new approach to concurrency control. Views ease the task of implementing sophis-

ticated locking schemes and provide static checks to automatically detect many data races. A view of an

object declares a partial interface, consisting of fields and methods, to the object that the view protects.
A view also contains an incompatibility declaration, which lists views that may not be simultaneously held

by other threads. A set of view annotations specify which code regions hold a view of an object. Our view
compiler performs simple static checks which identify many data races. We pair the basic approach with an

inference algorithm that can infer view incompatibility specifications for many applications.

We have ported four benchmark applications to use views: portions of Vuze, a BitTorrent client; Mailpuc-
cino, a graphical e-mail client; jphonelite, a VoIP softphone implementation; and TupleSoup, a database.

Our experience indicates that views are easy to use, make implementing sophisticated locking schemes sim-

ple, and can help eliminate concurrency bugs. We have evaluated the performance of a view implementation
of a red-black tree and found that views can significantly improve performance over that of the lock-based

implementation.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Concurrent programming structures; D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming; D.2.4 [Software Engineering]: Software/Program Verification—Reliability

General Terms: Languages, Design, Reliability

Additional Key Words and Phrases: concurrency, language design, static verification

ACM Reference Format:
Demsky, B., Lam, P. 2012. Views: Synthesizing fine-grained concurrency control. ACM Trans. Softw. Eng.
Methodol. V, N, Article A (January YYYY), 36 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

The increasing availability of multi-core processors has prompted a resurgence of in-
terest in parallel software. To work properly, parallel software must use concurrency
control mechanisms to ensure that multiple threads of execution do not interfere with
each other. Without sufficient concurrency control, race conditions occur, causing un-
desired and potentially incorrect program behaviors.

The dominant concurrency control mechanism today is the lock. Developers must
manually acquire an appropriate lock before accessing a shared resource and release

This is a revised and extended version of a paper presented at ICSE 2010 in Cape Town, South Africa.
This research was partially supported by the National Science Foundation under grants CCF-0846195 and
CCF-0725350.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 B. Demsky and P. Lam

the lock when they are done with the resource. Locks, however, specify implementa-
tions, not the underlying policies which motivated the developer’s use of locks. The
compiler therefore does not get any information about the locking policy, and must
simply compile the code as-is. Furthermore, subsequent maintainers of the code must
somehow understand the locking policy before implementing changes to the code. Ide-
ally, the policy would be well-documented in comments and kept up-to-date as the code
evolves. Our work helps maintainers in both the ideal case, by enabling policies to be
explicitly encoded and compiled into locking implementations, and in less-than-ideal
cases, by ensuring that the automatically-generated implementation always conforms
to the policy.

We therefore introduce the notion of views. In our system, developers may specify
that certain parts of an object’s interface and state (a subset of its fields and methods)
are protected by views. A thread may only access a protected part of an object interface
after it obtains an appropriate view. Views therefore raise the abstraction level of con-
currency control: instead of explicitly acquiring a lock (which may protect anything),
the developer requests a view, which documents the parts of program state that it pro-
tects. To ensure the absence of races, views which access conflicting parts of program
state are declared or inferred to be incompatible. A thread which attempts to obtain
a view which is incompatible with some other currently-held view must wait until the
view becomes available.

Views have two primary benefits. First, views enable developers to specify concur-
rency control at a higher level than traditional Java locks do, since views allow devel-
opers to enumerate state that needs to be protected (in terms of fields and methods).
The compiler can use this higher-level information to implement locking; when appro-
priate, it can automatically use advanced concurrency primitives like read-write locks.
Second, the compiler can detect concurrency control problems using information in the
view specifications: it can warn about possible race conditions, unprotected field and
method accesses, and view specifications that are likely to be wrong.

1.1. Contributions

We present the following contributions in this paper:

— View Concept: We introduce a new concurrency primitive which formulates concur-
rency control in terms of partial object interfaces, or views. This higher-level abstrac-
tion enables developers to specify the underlying concurrency policy, which explicitly
identifies the relevant parts of the implementation that need to be protected.

— Automatic Lock Synthesis: We present a technique for compiling views into lock-
ing primitives. Our technique currently supports both standard Java locks and read-
write locks. It uses a greedy algorithm to synthesize implementations of view policies
from their specifications.

— Static Checking: We describe several static checks for automatically detecting con-
currency errors. Our checks find view specifications that are likely to erroneously
allow race conditions, as well as unprotected accesses to view-protected data.

— Inferring View Incompatibility: We present an extension that can automatically
infer view incompatibility for many applications. This extension infers incompatibil-
ity by analyzing the field access descriptions of a pair of views.

— Experience with Views: We summarize our experience porting four significant
benchmarks to use views, and present performance results from microbenchmarks.
Our experience indicates that it is relatively simple to use views; that views have ac-
ceptable performance on microbenchmarks; that views can support advanced locking
primitives; and that views can statically detect potential concurrency bugs.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:3

We have made our compiler (under the GNU General Public License) and benchmark
suite publicly available at the following address: http://demsky.eecs.uci.edu/
views/.

The remainder of the paper is structured as follows. Section 2 presents an example
to illustrate our approach. Section 3 presents the view extensions to Java. Section 4 de-
scribes how we compile views. Section 5 presents our experience using views with four
existing applications. Section 6 discusses related work. Finally, Section 7 concludes.

2. EXAMPLE

We present an example that illustrates the use of views. Figure 1 presents an im-
plementation of the Vector appropriate for use in single-threaded programs. This
Vector class contains a set() method to set elements of the vector, a get() method
which returns the current value of an element, and a resize() method which re-
sizes the Vector. We omit remove(), as its implementation is quite similar to that of
resize().

Views consist of two parts: view declarations, which identify the members of each
view, and view annotations to Java source code, whereby threads acquire views as
needed throughout the implementation. Figure 2 presents modifications to lines 28
through 31 of the existing Vector code: they add view acquisitions to the code, thereby
enabling its safe use in multi-threaded programs. Figure 3 presents view declarations
for Vector.

2.1. View Annotations

Our system allows threads to acquire views in two ways: 1) a thread may explicitly
acquire a view using the acquire statement, and 2) a thread may implicitly acquire a
view by calling a method declared to be “preferred”.

The statement acquire(this@resize) in Figure 2 causes the thread to ac-
quire the resize view of the object referenced by this before executing lines 29–
30 and then to release this view in line 31. Note how acquire generalizes Java’s
synchronized construct. The relevant view declaration (see below) explains what
the view protects.

When a thread makes a call to a method that is declared to be “preferred”, such as
get() for the read view, without already holding a view that provides access to that
method, then the thread will automatically acquire the appropriate view and execute
the method. A non-preferred method is only callable by threads that already hold a
view that contains the method.

2.2. View Declarations

Figure 3 declares five views: read, write, xclRead, resize, and capacity. The
read, write, and capacity views correspond to methods of Vector, and state the
fields and methods required to execute that method. The views xclRead and resize
support the resize() operation’s two phases—an exclusive-read phase, in which
resize() copies the Vector’s contents, followed by the resize phase, which atom-
ically updates the Vector. It would be possible to implement a one-phase resize
operation, where we would add the resize() method to the resize view, but the
two-phase design we present enables more concurrency, since other threads may read
from the Vector during the xclRead phase.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 B. Demsky and P. Lam

1 public class Vector {
2 int size;
3 int capacity;
4 Object[] array;
5

6 public Vector() {
7 size = 0; capacity = 10;
8 array = new Object[capacity];
9 }

10

11 public Object get(int i) {
12 if (i < size) return array[i];
13 else return null;
14 }
15

16 public void set(int i, Object o) {
17 if (i < capacity()) {
18 array[i] = o;
19 size = ((i+1)>size) ? (i+1) : size;
20 }
21 }
22

23 public void resize(int newcapacity) {
24 Object[] newarray = new Object[newcapacity];
25 for(int i=0; i < newcapacity && i < size; i++) {
26 newarray[i] = array[i];
27 }
28

29 array = newarray; capacity = newcapacity;
30 size = (size<newcapacity) ? size : newcapacity;
31

32 }
33

34 public int capacity() {
35 return capacity;
36 }
37 }

Fig. 1. Sequential Vector Example.

28 acquire (this@resize) {
29 array = newarray; capacity = newcapacity;
30 size = (size<newcapacity) ? size : newcapacity;
31 }

Fig. 2. Changes to Vector to support views.

View declarations include a view’s name and its body. Figure 3 begins with the read
view. A view body may optionally list views that are incompatible with the current
view; two threads may not simultaneously hold incompatible views on the same ob-
ject. Our view compiler can either infer incompatibility declarations or use developer-
provided incompatibility declarations. In the example, line 2 declares that the read
view is incompatible with the write and resize views: no thread may acquire an
object’s read view while any other thread holds the write or resize views of that
object.

The view’s body also contains the view’s field and method declarations. A field dec-
laration begins with a comma-separated list of fields followed by an access descrip-
tion. Access descriptions for scalar (non-array) fields are one of none, readonly,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:5

1 view read {
2 incompatible write, resize;
3 size, capacity, array: readonly;
4 get(int i) preferred;
5 capacity();
6 }
7

8 view write {
9 incompatible read, write, resize, xclRead;

10 size, array: readwrite;
11 capacity: readonly
12 set(int i, Object o) preferred;
13 capacity();
14 }
15

16 view xclRead {
17 incompatible write, resize, xclRead;
18 size, capacity, array: readonly;
19 capacity();
20 resize(int i) preferred;
21 }
22

23 view resize {
24 incompatible read, write, resize, capacity, xclRead;
25 size, capacity: readwrite
26 array: arraywrite;
27 }
28

29 view capacity {
30 incompatible resize;
31 capacity: readonly;
32 capacity() preferred;
33 }

Fig. 3. View Declarations for Vector Example.

or readwrite, while access descriptions for array fields may additionally be
arraywrite, fieldreadonly, and fieldreadwrite. Line 3 declares that threads
holding the read view of a Vector object may read its size and capacity fields.
Declaring array to be readonly implies that any thread holding the read view may
read elements of the array stored at array; it may neither write to the array, nor break
encapsulation of the array in its containing Vector object. (Without array encapsu-
lation, a method could acquire the read view and copy the reference to the array to
another field, which would permit any other method with access to that field to per-
form arbitrary accesses to the array.) Line 10 indicates that a thread holding the write
view has full access to the size field and may write to elements of the array. Contrast
line 10 with line 26, which declares that a thread holding the resize view may modify
the array reference held in the field array (as well as the array elements). Section 3
explains access descriptions, including the array access descriptions, in greater detail.

A method declaration identifies a method as belonging to a view by giving the
method’s name and the types of its parameters, optionally followed by the keyword
preferred. Line 4 declares that the read view contains the get() method with an
integer parameter as a preferred member.

All classes contain a base view, which is usually implicit. The base view contains
the methods and fields of a class which may be accessed without holding any views.
When the base view is implicit, it collects all methods and fields not declared in other
views. However, developers may also explicitly declare a base view, in which case the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 B. Demsky and P. Lam

base view only contains the fields and methods declared to belong to it. The base view
also behaves differently from other views in the context of object inheritance (see the
discussion of the Method Inheritance Check in Section 4.1 for details).

2.3. Checking Views

We have implemented an extension to the Polyglot extensible compiler frame-
work [Nystrom et al. 2003] to support view annotations, prevent incorrect accesses
to view-protected object interfaces, and generate executable code from the view-
annotated sources. The compilation process proceeds in three steps. First, the com-
piler verifies that a program properly uses view declarations, as described below. Next,
it uses the view declarations to synthesize a lock allocation: the acquisition of each
view corresponds to the acquisition of a set of locks. Finally, it uses the lock allocation
to generate code.

We next describe how our view compiler works on our Vector example on a method-
by-method basis. The compiler grants each constructor full access to the object under
construction. We expect developers to follow the standard practice of not exposing the
object being constructed in the constructor.

The compiler next verifies that the get() and set() methods respect the view dec-
laration. The compiler observes that the get() method accesses the size field and
reads from the array stored in the array field of the this object. Both of these fields
have readonly access in the read view, which permits reads and array accesses. Be-
cause the get() method belongs only to the read view, this must have the read view
inside get(), so the compiler accepts these reads of size and array. The fact that
get() is a preferred method is irrelevant to checking the implementation of get()—it
only affects callers to get(), which will automatically acquire the read view if they
do not already possess it. The verification of set() proceeds similarly. However, the
compiler also checks that the write view possesses write permissions for the size
field and the array’s elements. (Note that set() is not allowed to expose the array
object, which is encapsulated by the Vector. Section 4.3 describes how we guarantee
encapsulation of arrays.) Additionally, because set() calls the capacity() method,
the compiler checks that the write view contains the capacity() method. All checks
succeed in our example.

We finally discuss how the compiler verifies the resize() method. Note that we
chose not to add the resize method to the resize view. Because resize() belongs
to the xclRead view, the compiler permits the read of element i of array on line 261.
The method then explicitly acquires the resize view on line 28 of the modified version
of Vector, granting it permission to write to the capacity and size fields and to
reassign the value of the array field (due to the arraywrite access permission). No
other thread may execute any method of Vector in parallel with the resize view—a
thread attempting to access the Vector must wait until the resize completes.

2.4. Code Generation

To generate code, the compiler must be able to reason about relationships between
views, since these relationships determine the set of locks that it must create. It there-
fore starts by generating a view incompatibility graph. Figure 4 presents the incom-
patibility graph G for our running example. Graph vertices represent views, while
edges between two views indicate that they are incompatible. Enclosing lines repre-

1The compiler correctly displays an error message if resize() does not belong to any view granting access
to array.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:7

read

write resize

xclRead capacity

Fig. 4. Incompatibility Graph G for Vector.

sent cliques. The edge in G between the read vertex and the write vertex implies
incompatibility of the read and write views.

Given an incompatibility graph, the lock synthesis algorithm allocates locks by find-
ing a clique edge covering of the graph: we will associate a lock with each clique. To
acquire a view, a thread must acquire locks for all cliques that the view belongs to. The
compiler selects different types of locks depending on cliques’ contents. When a clique
has exactly one view v which is compatible with itself, the compiler uses a read-write
lock2. Such a situation indicates that view v allows concurrent access to the resource
being protected (corresponding to the read mode of the read-write lock), while any
views v′ in the same clique require exclusive access to the resource (write mode). If
no views in a clique are compatible with themselves, then two threads may never si-
multaneously hold the same view on the same object instance. This corresponds to the
mutual exclusion provided by ordinary (exclusive) locks, so our compiler simply uses
an ordinary (exclusive) lock in this case.

While one might expect that multiple self-conflicting views represent an opportu-
nity to simplify a program’s views without loss of concurrency, this is not necessarily
the case. In our example, merging views write, resize and resize would prevent the
resize method from running concurrently with the get method.

Returning to code generation for our example, the three cliques C1 =
{read, write, resize}, C2 = {write, resize, xclRead}, and C3 = {capacity, resize}
cover the graph G. The compiler therefore generates three locks, `1, `2, and `3, one
per clique. Figure 5 shows excerpts from the generated code for Vector; note that the
three locks are named lock1, lock2, and lock3 in Java. Cliques C1 and C3 each con-
tain exactly one self-compatible view, so the compiler uses read-write locks for them.
A thread may acquire the capacity view by acquiring `3 in read mode, as capacity
is compatible with itself; similarly, it may acquire read by acquiring `1 in read mode.
A thread may acquire write by acquiring `1 in write mode (since write is incompat-
ible with itself) and the ordinary lock `2. To acquire the resize view, a thread must
acquire write locks on both `1 and `3, as well as the ordinary lock `2.

Figure 5 also presents the compiler-generated code for acquiring and releasing the
capacity view, as well as for releasing the resize view. The code for acquiring the
resize view is significantly longer. It follows the description in Section 4.6 and will
not introduce compiler-generated deadlocks while acquiring the view; we omit it here
for space reasons, but it follows the template from Figure 10.

2A read-write lock [Lev et al. 2009] can be held by any number of threads in read mode but by only one
thread in write mode.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 B. Demsky and P. Lam

1 public class Vector
2 {
3 private viewruntime.readwritelock lock1 =
4 new viewruntime.readwritelock ();
5 private java.util.concurrent.locks.ReentrantLock lock2 =
6 new java.util.concurrent.locks.ReentrantLock ();
7 private viewruntime.readwritelock lock3 =
8 new viewruntime.readwritelock ();
9

10 public void realacquireViewcapacity ()
11 {
12 lock1.readlock ();
13 }
14 public void realreleaseViewcapacity ()
15 {
16 lock1.readunlock ();
17 }
18

19 public static vector.MyVector acquireViewcapacity_vector_MyVector
20 (vector.MyVector viewobject)
21 {
22 if (viewobject == null)
23 return viewobject;
24 viewobject.realacquireViewcapacity ();
25 return viewobject;
26 }
27

28 public static vector.MyVector releaseViewcapacity_vector_MyVector
29 (vector.MyVector viewobject, vector.MyVector retvalue)
30 {
31 if (viewobject == null)
32 return retvalue;
33 viewobject.realreleaseViewcapacity ();
34 return retvalue;
35 }
36

37 /* ... */
38 public void realreleaseViewresize ()
39 {
40 lock1.writeunlock ();
41 lock2.unlock ();
42 lock3.writeunlock ();
43 }

Fig. 5. Generated Code for Vector Example (part 1).

The compiler generates code by applying the lock allocation to the view ac-
quisition statements. Intuitively, the compiler will translate a statement like
acquire(this@resize) by inserting a virtual call to a method on this which ac-
quires the resize view by requesting the proper locks as per the lock allocation; the
virtual call ensures that the thread gets the appropriate locks for the run-time type of
this, in the presence of inheritance.

To handle preferred methods, the compiler generates a wrapper for the method
which requests the view and delegates to the original implementation. In our exam-
ple, the compiler renames the preferred method resize() to resize$view() and
generates a new wrapper resize(), which will hold the xclRead view for the du-
ration of the call to resize$view(). Should a caller to resize() already hold the
xclRead view, the compiler simply generates a call to the (now-renamed) original
method resize$view() instead of calling the wrapper.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:9

44 public void resize (int newcapacity)
45 {
46 /*acquire (this@xclRead) */
47 {
48 final MyVector view$0 =
49 vector.MyVector.acquireViewxclRead_vector_MyVector
50 ((vector.MyVector)this);
51 view$0.resize$view (newcapacity);
52 vector.MyVector.releaseViewxclRead_vector_MyVector
53 (view$0, null);
54 }
55 }
56

57 public void resize$view (int newcapacity)
58 {
59 Object[] newarray = new Object[newcapacity];
60 for (int i = 0; i < newcapacity && i < size; i++) {
61 newarray[i] = array[i];
62 }
63 MyVector t = this;
64 /*acquire (t@resize) */
65 {
66 final MyVector t$0 =
67 vector.MyVector.acquireViewresize_vector_MyVector ((MyVector) t);
68 {
69 t$0.array = newarray;
70 t$0.capacity = newcapacity;
71 t$0.size = ((t$0.size < newcapacity) ? (t$0.size) : (newcapacity));
72 }
73 vector.MyVector.releaseViewresize_vector_MyVector (t$0, null);
74 }
75 }
76 }

Fig. 6. Generated Code for Vector Example (part 2).

Figure 6 presents the generated wrapper resize() method as well as the renamed
method resize$view(), with the lock acquisition statements translated into calls to
the relevant acquire() and release() methods.

3. VIEW LANGUAGE EXTENSIONS

Figure 7 presents the grammar for view declarations, while Figure 8 presents the
syntax extensions to Java for view annotations. As seen in Section 2, view declarations
contain an optional list of incompatible views followed by a list of view members, which
may be fields or methods. Field members have associated access descriptions. Develop-
ers must unambiguously identify methods which belong to a view, and may optionally
specify that a method is preferred for a view.

The compiler infers incompatibility specifications if the developer omits the incom-
patibility declaration; an empty list of incompatible views indicates a view which is
compatible with all other views. The compiler also infers a base view if it is not pro-
vided by the developer; this view includes all fields and methods that do not belong to
other views.

We support two kinds of view annotations in Java code: 1) types may be decorated
with views (i.e. Vector@get); and 2) our new acquire statement generalizes Java’s
synchronized statement.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 B. Demsky and P. Lam

3.1. Access descriptions

Access descriptions for scalar, or non-array, fields control access to those fields; holding
a view to field f with access description readwrite permits full access to f, while
readonly permits the holder only to read f, and none allows no access. Note that if
field f holds an object reference, the access description protects the reference f itself,
not the referenced object.

Array fields, however, complicate the picture. Objects often use arrays to store data.
Such arrays generally ought to be encapsulated: no references to such arrays should
ever become visible. An escaping array reference could permit arbitrary parts of the
program to have uncontrolled access to array elements. Our view language extensions
therefore enable developers to identify encapsulated arrays, and our view compiler en-
sures that such arrays never escape their containing objects. The implication of this
guarantee is that the view system, as a whole, properly controls access to reads and
writes of values in encapsulated arrays: the only way to access an encapsulated ar-
ray is by reading the reference to the array from the containing object’s field, and the
access only succeeds if the executing thread holds the necessary view. Out of the five
access descriptions, the fieldreadonly and fieldreadwrite descriptions denote
unencapsulated arrays, while the usual readonly and readwrite descriptions spec-
ify encapsulated arrays, and arraywrite permits mutation of an encapsulated array
reference.

We first discuss the descriptions for unencapsulated arrays. Any array f which ap-
pears in some view with access description fieldreadonly or fieldreadwrite is
treated as if it were a scalar field. The fieldreadwrite description grants the holder
unlimited read and write access to f. The fieldreadonly description grants a holder
unlimited read access to the field f. (Note that, in particular, the holder may expose
the reference to field f; any recipient of this reference will have complete access to
the array elements). Both of these access descriptions permit reads and writes to the
elements of the array stored in f. These access descriptions are incompatible with the
other three access descriptions, readonly, readwrite, and arraywrite. That is, no
field may be declared as fieldreadonly or fieldreadwrite in some view and as
readonly, readwrite, or arraywrite in any other view.

The three remaining descriptions ensure encapsulation of arrays. The access de-
scription readonly permits reads from elements of an array f, e.g. o.f[3]3. It does
not, however, permit the reference to f to escape, e.g. return o.f, nor does it per-
mit reassignment of field f, e.g. o.f = a. Any read of such a field o.f must either
occur in the context of an array access, o.f[3], or be stored to a fresh local variable,
Object r = o.f. Values may be read through dereferences of r, and r may be passed
as the source parameter to System.arraycopy. However, r must not escape: it must
not be passed to any other function, nor returned. Similarly, the access description
readwrite permits both reads and writes of elements of f, but maintains prohibi-
tions on copies w of the field f itself. That is, w admits array reads and writes, and
may be passed as either the source or target parameter to System.arraycopy, but w
may not escape. To enable mutation and unlimited reads of the array reference, a view
must declare field f with access description arraywrite. Such a description permits
statements like o.f = a. Section 4.3 presents the compile-time static analysis which
we use to ensure that encapsulated arrays do not escape.

3We have changed the semantics of the readonly and readwrite access description for arrays from our
earlier work on views [Demsky and Lam 2010]; the fieldreadonly and fieldreadwrite access descrip-
tions correspond to the earlier semantics of readonly and readwrite, while the new semantics ensure
array encapsulation. Our earlier work did not consider arrays, and therefore overlooked the possibility of
escaping references to arrays granting unintended access to data.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:11

viewDecl := view name { incompDecl fieldMethodFieldDecls }
incompDecl := ε | incompatible optViewList;
optViewList := ε | viewList

viewList := viewList, name | name
fieldMethodFieldDecls := fieldMethodFieldDecls, fieldMethodFieldDecl |

fieldMethodFieldDecl
fieldMethodFieldDecl := fieldDecl | methodDecl

fieldDecl := fieldList : accessDesc;
fieldList := fieldList, field | field

accessDesc := none | readonly | readwrite | arraywrite |
fieldreadonly | fieldreadwrite

methodDecl := name(formallist) optPreferred;
optPreferred := ε | preferred

Fig. 7. View Declaration.

viewtype := typename@viewname
formal := . . . | viewtype varname

varDecl := . . . | viewtype varname
statement := . . . | acquire(varname@viewname) block

Fig. 8. View Annotations.

3.2. Default access for constructors and the base view

We have carefully designed the defaults for views to minimize instrumentation over-
head. We next discuss our special rules for constructors and the default contents of the
base view.

Object constructors often write to many object fields that would be protected by views
and call methods that require access to views. If treated like other methods, object con-
structors would have to acquire a number of views to access these fields. However, it
is relatively rare for object constructors to make the object being constructed acces-
sible to other threads before the constructor exits. Constructors may therefore access
fields and methods of the object being constructed without holding the necessary views.
We believe that this is a reasonable tradeoff between usability and detecting possible
races.

The view language automatically defines a base view if the developer does not ex-
plicitly declare a base view, according to the following rules:

(1) A field is present in the base view with readwrite access if no other view declares
that field.

(2) A method is present in the base view if no other view declares that method.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 B. Demsky and P. Lam

4. COMPILING VIEWS

We next describe in detail the static checks and compilation techniques that we use to
compile views. The static checks ensure that view declarations are consistent with each
other and that programs respect the constraints stated in view declarations. First, we
describe the general rules that views statically enforce. We also present a type system
which formalizes these rules. Recall the necessity for ensuring array encapsulation
(as seen in our example from Section 2); we therefore also present the relevant static
analysis in this section.

In the second part of this section, we describe compilation techniques for views,
including the lock synthesis algorithm (which automatically generates a locking strat-
egy that enforces view incompatibility constraints), view incompatibility inference, and
how we generate code to acquire and release views.

4.1. Static Checks

The compiler performs a suite of static checks on the view specifications, field accesses,
and method calls. The type system in Section 4.2 formalizes all of these checks ex-
cept for the checks on view specifications (“read-write hazards”). Together, our static
checks guarantee that view declarations are consistent with each other and that the
program does not access class members without obtaining required views. Once a pro-
gram passes these checks, our compiler can apply its source-to-source transformation
techniques to generate standard Java code from programs that use views.

— Read-Write Hazards on Fields and Arrays: Generally, writes to a field or array
should be serialized, so that only one thread can write to a particular field or array at
any time, and no other thread should simultaneously be reading the same member.
To ensure that view declarations enforce this constraint, the view compiler carries
out the following static check.
For each pair of compatible views (v1, v2) and each field f , the compiler flags (as a
hazard) the field f if v1 has write access to the field f and v2 has read or write access
to f . An identical check applies to field writes to, and field reads from, fields that
reference arrays. For each array reference g, the compiler flags the array g if v1 has
array write or write access and v2 has array write, write, or read access to g. If a
view is compatible with itself, this check flags all fields that are declared readwrite.
Uncontrolled access to flagged fields may lead to race conditions. However, we an-
ticipate that developers may choose to use external locks or other mechanisms to
protect such fields. The compiler therefore only produces warning messages for the
read-write hazards that it flags.

— Field Read Checks: To ensure that the program always holds an appropriate view
before reading from a field, for each field read x.f, the compiler checks that all
possible views of the receiver expression x allow reads of field f.

— Field Write Checks: To ensure that the program always holds an appropriate view
before writing to a field, for each field write x.f = y, the compiler checks that all
possible views of the receiver expression x allow writes to field f.

— Method Call Checks: To ensure that the program always holds appropriate views
for the receiver object and the method arguments before invoking a method, for
each method call site x.m(a1, ..., aN) to method m(f1, ..., fN), the com-
piler checks that each argument ai at the call site matches the view type of the
corresponding method formal parameter fi, if fi has a view type. The compiler also
checks that the view of the reference to the receiver object x contains m or that m has
a preferred view.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:13

— Assignments: To ensure that a program’s view annotations properly reflect the
views that the program has acquired, the compiler checks that the program does
not make assignments to local variables or method formal parameters with view
types other than at their initial declarations.

— Field Inheritance Check: To ensure that the program never accesses an object’s
fields through upcasts, in violation of view constraints, the compiler checks that if
a field f is declared in a super class of C and is a member of a view v in the super
class, then field f must be a member of view v in class C, with at least as permissive
access.

— Method Inheritance Check: To ensure that the program never invokes a method
through upcasts, in violation of view constraints, the compiler checks that if a
method m is declared in a super class of C and is a member of a view v in the
super class, then method m must also be a member of view v in class C, with at
least as permissive access.
We make an exception to this check when v is the base view, if m has a preferred
view in class C. Note that if a method m is declared in an interface that class C
implements, the method m must either be in the base view of class C or have a
preferred view in class C.
A program may call a method o.m() such that the declared type of o would require
acquiring a preferred view to call m(), but the run-time type of o indicates that the
executing thread must already hold the appropriate view. In this case, a compiler
could insert a dynamic check which would avoid needlessly acquiring the preferred
view. Our compiler does not currently insert this check.

4.2. View Types

To formalize the checks from Section 4.1, we have extended the Java type system to add
view information to types for method parameters and local variable declarations. The
Appendix presents formal type rules for the core of our system; we briefly summarize
them here. The existence of the type rules imply that our compiler only needs to carry
out type checking to verify that a program satisfies the constraints specified in its
view declarations. Programs which type-check successfully are guaranteed to be free of
uncontrolled accesses to fields and methods; as we described above, our checks ensure
that accesses to a field or method can only occur while the program is holding an
appropriate view.

A view type consists of a pair of a reference type and a view, as shown in the [VIEW-
TYPE C] type rule, which we include below.

[VIEWTYPE C]

P ;E ` v ∈ τ
P ;E ` τ@v

This rule states that τ@v is a valid view type as long as v is declared in type τ (per rule
[VIEW DECL], which is defined in the appendix).

As an example, the view type Vector@write denotes a reference to a Vector object
for which the executing thread holds the write view.

Assignments and Copies.
To prevent the developer from surreptitiously changing the view type of an object,

only initializing assignments (as found in [METHOD]/[INVOKE]) may copy variables
with view types. [INVOKE] passes actual parameters to [METHOD], which initializes
the corresponding formal parameters with the same view type. [METHOD] also allows

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 B. Demsky and P. Lam

initializing assignments to local variables declared in that method, as long as the left-
hand side and the right-hand side have the same type. Otherwise, the type checker
does not allow a local variable or a method parameter with a non-base view type to be
re-assigned to reference a different object.

This constraint prevents programmers from acquiring views without using the
acquire statement. In particular, the constraint prevents programmers from writing
the following:

{ T@y o; acquire (T@x o1) { o1 = o; } }
The type rule [STMT READ/COPY] enforces this constraint on copying by forcing

the type τ to be a bare class (τ = cn), not a view type:

[STMT READ/COPY]

E = E1, finaloptτ x,E2 τ = cn P ;E ` e:τ
P ;E ` x = e

This rule also requires that both the variable x on the left-hand side and the expression
e on the right-hand side carry the same type τ .

Acquiring Views.
New views of an object can only be acquired through an explicit acquire or through

an implicit acquisition via a call to a preferred method of a view. This constraint is
reflected in the type rules: the [STMT ACQUIRE] rule and the [METHOD] rule are
the only rules that add a view type to the environment.

[STMT ACQUIRE]

E = E1, τ lv, E2 ∀i ∈ [1..t]. P ;E1, τ@v lv, E2 ` si
P ;E ` acquire(lv@v){s1..t}

The [STMT ACQUIRE] rule states that, if variable lv has type τ , and all of the state-
ments si type-check assuming that lv has type τ and view v, then an acquire statement
requesting view v for lv and executing the statements si will type-check. (At runtime,
the thread will block until it obtains the requested view.)

Field Reads and Writes.
Any access to a field must be through a reference with the appropriate view, as

enforced by the type rules for [EXP FIELD READ] and [STMT FIELD WRITE]. These
rules ensure that the program may only read from a field fd through a view type with
ro or rw access to fd, and that it may only write to fd through a view with rw access.

[EXP FIELD READ]
E = E1, τx x,E2 τx = cx@vx

∃v ∈ vx. fd : {ro ∨ rw} ∈ v
τf = cf@vf P ` (τf fd) ∈ cx

P ;E ` x.fd:τf

[STMT FIELD WRITE]
E = E1, τx x,E2 E = E′

1, τy y,E
′
2

τx = cx@vx τy = cy@vy
∃v ∈ vx. fd : {rw} ∈ v
P ;E ` (τy fd) ∈ τx
P ;E ` x.fd = y

Both of these rules extract a type τx for x from the environment, and break down τx into
cx@vx. The [STMT FIELD WRITE] rule also extracts a type τy for the right-hand side y,
which consists of the bare type cy and the view vy. In the [EXP FIELD READ] case, the
type rule checks that vx gives either read-only permission ro or read-write permission
rw, while [STMT FIELD WRITE] requires read-write permission. Finally, [EXP FIELD
READ] states that the type of x.fd is the type τf of the field fd, as declared in class cx;

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:15

[STMT FIELD WRITE] verifies compatibility of the type τy of the right-hand side y
with the type τf of the field x.fd.

Method Calls.
Our [METHOD] rule enforces constraints on views of parameters (including this)

in methods:

[METHOD]

P ` class cn {methmn . . .} Vmn = {vs | P ;E ` mn ∈ vs }
argi = cni@vi vni P ;E0 ` ej : τj τj = cnj@vj lvj = τjlnj ldj = [lj=ej]

P ;E0 ` wf E = E0,arg0..n, lvn+1..n+l

∀v ∈ Vmn. ∀i ∈ [1..t]. P ;E, cn@v this ` si
P ;E ` mn(arg1..n) {ldn+1..n+l s1..t}

This rule type-checks a method mn with formal parameters argi belonging to class cn
and views vs, as seen in the first three premises. The next three premises set the types
of local variables lnj to τj and check that their initial values ej have the same type.
This rule also checks that environment E0 with the arguments and local variables is a
well-formed environment.

Finally, for each statement si in mn, the rule ensures that si type-checks in its en-
vironment. However, the environment also must include a view type for this. The
view type for this is initially equal to the set of views that contain the method m.
The type checker must therefore ensure that fields and methods accessed through the
this variable are permitted by each view v ∈ vs that declares the method: a caller only
needs to hold one of the views to call m. The statements in the method must therefore
type-check with each possible view that this may hold.

Our compiler additionally ensures that methods may not have view types as return
types, and that fields or arrays do not have view types; these constraints are not shown
in the type rules.

Views and Inheritance.
Our type rules permit developers to include views in subclasses with more permis-

sive access to methods and fields than in an object’s superclass. This design decision
enables developers to extend the behaviour of a subclass without being constrained by
the superclass’s implementation. Allowing more permissive access in subclasses is safe
because the compiler allocates locks based on the actual type, rather than the declared
type, of an object. For instance, if class C extends class SC, the compiler will generate
a lock allocation for a C object consistent with the views for C, no matter whether the
object is accessed as a C or a SC.

Summary of Type Rules.
Collectively, our type rules ensure that threads always acquire and hold the appro-

priate view while accessing a field or method which requires a view. They also guaran-
tee that threads cannot hold a view reference to an object after the release of a view
acquired through an acquire statement or a preferred method.

However, these constraints cannot guarantee encapsulation of array references,
which is required to properly enforce the array behaviours that we allow developers
to specify. We therefore chose to design a simple static analysis which can verify that
array references are confined to their containing fields, and we describe this analysis
below.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 B. Demsky and P. Lam

4.3. Static Analysis for Array Encapsulation

We verify the array access descriptions from Section 3 using an intraprocedural
dataflow analysis. Our analysis guarantees that references to arrays are never stored
in fields nor passed to other methods. It therefore prevents references to array fields
declared with view readonly or readwrite from escaping; essentially, it is a variant
of escape analysis [Blanchet 1999] specialized to our particular application domain.
Without enforcement of array encapsulation, an exposed array could be subject to un-
controlled changes, notably racy modifications by concurrently-executing threads. We
next describe our analysis, which allows common idioms to safely access arrays stored
in fields, yet prohibits the exposure of field references.

Our analysis abstraction associates three flags with each array-typed variable x at
each program point:

— NO ESCAPE: variable x may not escape the current scope;
— NO STORE: variable x may not be stored into a field; and
— NO WRITE THRU: variable x may not be written to array elements.

Each flag records the constraints on variable x arising from its past history; for in-
stance, if x was read from a view-protected field, then it must not escape, and we mark
it with NO ESCAPE.

Our analysis contains two phases: a propagation phase and a verification phase. In
the propagation phase, a dataflow analysis computes the constraints which apply to
each of the program statements based on their predecessors. There are four sources
of constraints for array-typed variables. (1) After a field write o.f=x, the referenced
value x may no longer escape nor be stored to any other field. (2) Field reads x =
o.f constrain the recipient x to no longer be stored nor escape; if the active views
of f only grant read-only access, then the reference x may not be used for writes. (3)
Any statement which allows x to escape the method scope (e.g. a method call m(x) or
a return statement return x) requires that the method not subsequently store the
exposed value x to an encapsulated field. (4) After a copy y = x, neither x nor y may
not be stored to any encapsulated field.

In the verification phase, the analysis ensures that the program respects the con-
straints created in the propagation phase, using seven verification rules. At a field
write o.f = x, it verifies that, if f is an encapsulated array field, then x has not been
marked as ineligible for stores into fields. Furthermore, the field write constitutes an
escape, so x must not have been marked as non-escaping. Field reads of array ref-
erences x = o.f must read variables x which are newly introduced into their scope
(Object[] x = o.f), to prevent x outliving its scope and hence from being accessed
without the necessary view on o. Furthermore, a field read of field f can only succeed
with at least readonly access to f. At any program point which allows x to potentially
escape the method, e.g. method calls with x as a parameter, x must have permission to
escape. Any write to an element of an array x must have write permission for the array.
Similarly, any call to System.arraycopy requires write permission for the destina-
tion array. Finally, for a copy statement y = x, we require that variable x must have
permission to escape. (We could also have required, alternatively, that y be prohibited
from escaping.)

Figure 9 summarizes the rules for both the propagation and verification phases. The
propagation rules appear as “create” clauses, while the verification rules appear as
“verify” clauses.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:17

o.f = x; create: x.NO ESCAPE, x.NO STORE
verify: !x.NO STORE (if f is readwrite)
verify: !x.NO ESCAPE

Object[] x = o.f; create: x.NO ESCAPE, x.NO STORE
create: if f has only readonly access,

x.NO WRITE THRU
verify: at least readonly access on f

x escapes create: x.NO STORE
(e.g. return x) verify: !x.NO ESCAPE
x[i] = ...; verify: !x.NO WRITE THRU
System.arraycopy verify: !x.NO WRITE THRU on target x
y = x; create: x.NO STORE, y.NO STORE

verify: !x.NO ESCAPE

Fig. 9. Rules for ensuring array encapsulation.

4.4. Lock Synthesis

We next describe how we synthesize a locking strategy that enforces the view incom-
patibility specification. For each class, the lock synthesis algorithm begins by con-
structing an undirected view incompatibility graph G. The graph G contains a vertex
v for each view in c. For each pair of views vi and vj , if vi lists vj as incompatible, or vj
lists vi as incompatible, G contains an edge between vi and vj .

Consider a subgraph GC of G that is a clique—that is, GC contains edges between
every pair of vertices in GC . One lock can enforce all of the view incompatibility con-
straints between views in GC . Because views can be incompatible with themselves,
self-edges may occur in the view incompatibility graph. We handle self-edges by us-
ing different kinds of locks. If all views but one in the clique have self-edges, we use
an implementation of a reentrant read-write lock for the clique; we identify the read
mode of the read-write lock with the view with no self-edges, and the write mode with
all other views in the clique. This corresponds to the situation where any number
of threads may hold view v with no self-edges, but only one thread may hold a view
v′ with self-edges or any of the views v′′ that are incompatible with v′. If all views
in the clique contain self-edges, then we use the normal reentrant lock class from
java.util.concurrent.locks. If more than one view in the same clique lacks a
self-edge (which we expect to be rare in practice—views without self-edges typically
only read data, so two views without self-edges should typically not conflict with each
other), we would use a generalized implementation of a read-write lock which would
permit multiple mutually-incompatible read locks and a single write lock; however,
such cases did not arise in our benchmark set, so we have not yet implemented such a
lock.

The lock synthesis algorithm computes a clique edge cover of G. Minimizing the
number of cliques minimizes the number of locks we must generate and the number of
locks that must be acquired in a view. However, finding a minimum clique edge cover-
ing for a graph is an NP-complete problem [Orlin 1977]. We therefore use a greedy al-
gorithm to compute a (possibly non-minimal) clique edge covering in polynomial time.
Our greedy algorithm selects an uncovered edge to cover to start the clique and adds
vertices that will cover other uncovered edges. We expect that, in practice, many view
incompatibility specifications will be simple enough that our greedy algorithm will
generate a minimal covering. All clique edge coverings admit the same parallelism—a
minimal covering optimizes the number of locks to achieve that parallelism.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 B. Demsky and P. Lam

4.5. Inferring View Incompatibility

While view incompatibility declarations can be used to capture higher-level abstract
hazards, they often capture straightforward read-write or write-write hazards on field
accesses. Our view compiler can automatically infer view incompatibility declarations
in the case of simple conflicting field accesses. The developer indicates that the com-
piler should infer view incompatibility for a given view by omitting the view’s incom-
patibility declaration. To infer such a view’s incompatibility specification, the compiler
compares the view with every other view from the same class. If another view in the
same class contains a field access that may conflict with the field accesses in the cur-
rent view, the inferred specification will declare the views to be incompatible. To detect
conflicting field accesses, the compiler uses the same criteria it uses to generate the
read-write hazard warnings presented in Section 4.1.

4.6. Acquiring Views

We next describe how the compiled application acquires and releases views at run-
time. For each view, the compiler generates three view acquisition methods: the
tryacquireView method tries to acquire the view, the acquireView method ac-
quires the view, and the releaseView method releases the view.

To acquire view v, a thread must acquire all of the locks for v. If v has a self edge in
the incompatibility graph, the thread must acquire all readwrite locks in write mode
and lock the normal reentrant locks. If v does not have a self edge, the thread must
acquire all locks, which will be readwrite locks, in read mode. The tryacquireView
method tries to acquire each lock. If it successfully acquires all locks, it returns true.
If it fails to acquire any of the locks, it releases the locks it has already acquired, and
returns false.

The acquireView method must block until it can acquire a view. To avoid the po-
tential for internal deadlocks, the thread cannot hold any of the component locks while
blocking. Figure 10 presents an example of an acquire method that our compiler gen-
erates for n component locks. Conceptually, the acquireView method arranges the
locks in a circular list. It locks the first component lock in the list, waiting until this
lock becomes available. It then tries to lock the remaining component locks without
blocking. If it fails to acquire any of these locks, it releases all of the locks and then
repeats the process starting with the lock it failed on. Once it acquires all of the locks,
it has acquired the view and returns to the caller. Of course, our compiler generates
optimized methods for the single-lock case.

Releasing views is straightforward: the releaseView methods simply releases all
locks corresponding to a view.

Simultaneously Acquiring Multiple Views.
Our language supports simultaneously acquiring multiple views. We expect that

developers will find this mechanism useful for locking multiple shared data structures
while avoiding the possibility of deadlock. The generated code for acquiring multiple
views would use the same basic strategy as the code in Figure 10 does on component
locks, but instead uses this strategy on views.

5. EXPERIENCE

We next discuss results from performance testing of views on red-black tree and con-
current hash map microbenchmarks, as well as from applying views to several appli-
cations: Vuze, a file-sharing (BitTorrent) client; Mailpuccino, a graphical e-mail client;

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:19

1 public void acquireView() {
2 int startindex = 0;
3 while (true) {
4 // Block on the first lock
5 switch (startindex) {
6 case 0:
7 lock0.lock(); break;
8 ...
9 case n-1:

10 lock(n-1).lock(); break;
11 }
12 // Try to acquire the rest of the locks
13 int i;
14 loop:
15 for (i=1; i<n; i++) {
16 if ((++startindex) == n) startindex = 0;
17 switch (startindex) {
18 case 0:
19 if (!lock0.trylock()) break loop;
20 break;
21 ...
22 case n-1:
23 if (!lock(n-1).trylock()) break loop;
24 break;
25 }
26 }
27 // Return if we hold all locks
28 if (i == n) return;
29 // Release locks if we failed to get one
30 int unlockindex = startindex;
31 for(; i>0; i--) {
32 if ((--unlockindex) < 0) unlockindex = n-1;
33 switch (unlockindex) {
34 case 0:
35 lock0.unlock(); break;
36 ...
37 case n-1:
38 lock(n-1).unlock(); break;
39 }
40 }
41 // Repeat, trying to first blocking-acquire the lock that we
42 // failed to acquire.
43 }
44 }

Fig. 10. Locking Code to Acquire A View.

jPhoneLite, a VoIP softphone client; and TupleSoup, a database. Note that these appli-
cations are concurrent, not parallel, and that their interactive nature makes it quite
difficult to measure improvements in performance due to increased parallelism. Our
changes do provide the potential for increased parallelism in the applications.

5.1. Methodology

We have developed a prototype implementation of views as an extension to the Poly-
glot extensible compiler infrastructure [Nystrom et al. 2003]. The source code for our
extension is available at http://demsky.eecs.uci.edu/views/.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 B. Demsky and P. Lam

5.2. Performance Microbenchmarks

To verify that fine-grained locking provided by views increases the potential for con-
currency, we investigated two microbenchmarks: a red-black tree, implemented us-
ing views, standard locks, and read-write locks; and a concurrent hash map, where
we compared the java.util.concurrent.ConcurrentHashMap hand-tuned imple-
mentation with views, naive locks, and the standard Java java.util.Hashtable
implementation with a single lock. We measured the performance of our microbench-
marks using various concurrency control schemes and we present our performance
results below.

Red-black Tree Implementation.
We created three thread-safe versions of the TreeMap red-black tree implementation

from the Java class library. One of these versions uses views, while the other two
versions use explicit locks (either standard Java locks or Java’s read-write locks).

% Writes

T
im

e
(m

s)

2000

4000

6000

8000

10000

0 5 10 15 20

Java Locks
Read-Write Locks
Views

Fig. 11. Time to execute a synthetic workload of red-black tree operations versus percentage of writes in
the workload. Lower is better.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:21

The view-based version of the TreeMap class declares two views: a read view and a
write view. The read view is incompatible with the write view, and the write view
is incompatible with both the read view and itself. We declared the get method as a
preferred method for the read view and the put method a preferred method for the
write view. The compiler implemented these views with a single read-write lock.

We also developed two versions which use locks. The Java locks version
of the TreeMap class simply declares both the get and put methods syn-
chronized, while the read-write lock version uses reentrant read-write locks
(java.util.concurrent.ReentrantReadWriteLock) to allow multiple lookups to
proceed in parallel.

We developed a workload for our thread-safe TreeMap implementations. Our work-
load initializes a TreeMap object by adding all integers between 0 and 100,000 to the
map in a random order. This random order is the same for all executions. It then starts
a worker thread on 8 cores. Each worker thread performs 1,000,000 operations on the
TreeMap. The operations are randomly split between reads (calls to get) and writes
(calls to put) and the write percentage is an adjustable parameter. The workload ran-
domly selects keys to either look up or update the mapping.

We executed the microbenchmark on a dual processor quad-core Intel Xeon E5520
2.27 GHz processor with 12 GB of RAM running 64-bit Linux and kernel version
2.6.38-2. We used workloads with 0%, 5%, 10%, 15%, and 20% writes. We executed
each workload on each version 100 times. Figure 11 presents a box plot of the results
of this experiment. The bottom and top of each box are the 25th (lower quartile) and
75th (upper quartile) percentiles, respectively, of the distribution. The middle bands
are the medians. The crosses (or diamonds) are the means. The difference between the
lower and upper quartiles is referred to as the interquartile range (IQR). The whisker
above the bar is the lowest data point within 1.5 of the IQR of the lower quartile and
the whisker below the bar is the highest data point within 1.5 of the IQR of the upper
quartile. We show data points that fall outside of this range explicitly.

Our results show that views provide speedups for our red-black tree microbench-
mark of 5.68× faster than standard Java locks for read-only workloads, and 2.50×
faster than Java locks for workloads with 5% writes. We note that this microbenchmark
is relatively synchronization-heavy—the get and put methods perform relatively lit-
tle work compared to the cost of acquiring a lock. Applications that perform more work
while holding the locks should see larger speedups. All versions of the benchmark se-
rialize the writes to the red-black tree, so the time to execute the benchmark should
increase as the percentage of writes increase. We see this behavior in our experiments
with the microbenchmark. Views perform significantly better than the manual Reen-
trantReadWrite locks due to cache line contention: views use specialized read-write
locks that are designed to minimize cache contention in the read case. The locks are
built using multiple AtomicInteger objects. To acquire a read lock, a thread grabs a
read lock on one of the AtomicIntegers. To acquire a write lock, a thread must acquire
a write lock on all of the AtomicIntegers. The standard Java read-write lock uses a sin-
gle memory location (instead of multiple AtomicIntegers) to implement the lock, and
cache contention causes read-write locks to achieve lower performance for read locks.
We also note that at higher write percentages, the performance of the Java lock version
exceeds that of the read-write lock. The reason is that read-write lock inherently in-
curs larger overheads and larger write percentages prevent amortizing this overhead
with parallelism.

Concurrent Hashmap Implementation. To explore the expressive power
of views, we ported Java’s concurrent hashmap implementation,
java.util.concurrent.ConcurrentHashMap, to views. The original Concur-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 B. Demsky and P. Lam

% Writes

T
im

e
(m

s)

1000

2000

3000

4000

5000

6000

0 5 10 15 20

java.util.Hashtable (built-in synchronization)
ConcurrentHashMap with manual locks
ConcurrentHashMap with views
java.util.concurrent.ConcurrentHashMap

Fig. 12. Time to execute a synthetic workload of hash map operations versus percentage of writes in the
workload (8 cores). Lower is better.

rentHashMap implementation was carefully designed by concurrent data structure
experts to only require locking when actually adding a new item to the table—lookup
operations proceed with no locks in the typical case. The update operations on the
ConcurrentHashMap have been carefully implemented such that updates occur
atomically with a single write operation. ConcurrentHashMap divides the table
into segments, and updates to the entries in each segment are protected by that
segment’s lock, to prevent two updates from conflicting. This allows multiple threads
to simultaneously update disjoint parts of the table.

Reasoning about the correctness of unprotected reads typically requires the careful
attention of experts and is beyond the scope of views. We instead developed a version
of ConcurrentHashMap using views to protect both updates and lookups to hashmap
entries in each segment. We also developed a manually-locked version of the Concur-
rentHashMap that simply uses the existing segment locks to protect both reads and
writes. Finally, we include results for java.util.Hashtable, which uses a single

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:23

Cores

T
im

e
(m

s)

1000

2000

3000

4000

5000

1 2 4 8

java.util.Hashtable (built-in synchronization)
ConcurrentHashMap with manual locks
ConcurrentHashMap with views
java.util.concurrent.ConcurrentHashMap

Fig. 13. Time to execute a synthetic workload of hash map operations versus number of cores; write per-
centage 5%. Lower is better.

lock to protect the entire table. The compiler implemented the views for this class
using one read-write lock.

Figure 12 presents the performance results for the ConcurrentHashMap mi-
crobenchmark when varying the percentage of writes. The results show that the view
version is 1.98× to 3.54× slower than the original ConcurrentHashMap, which is a
great improvement over the 2.35× to 8.52× (at 0% writes) slowdown for the manually-
inserted locks; recall also that manually inserting locks carries no guarantee of sound-
ness. The view-based ConcurrentHashMap is significantly faster than the manual
lock-based ConcurrentHashMap for small write percentages. All versions are signif-
icantly faster than the version that simply uses the java.util.Hashtable imple-
mentation.

To explore the scalability of the approach, we held the total workload constant for the
5% write configuration and scaled the number of cores from 1 to 8. Figure 13 presents
the results for the experiment.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 B. Demsky and P. Lam

5.3. Vuze Buddy Plugin

Our first substantive benchmark is a subsystem of the open-source Vuze file-
sharing client. The source distribution of Vuze is available at http://azureus.
sourceforge.net. While Vuze contains 194,000 lines of code in all, we chose to con-
centrate on the buddy plugin of Vuze, which consists of 13,500 lines of code. This plugin
is implemented in the com.aelitis.azureus.plugins.net.buddy package.

Parts of the buddy plugin contain a rich locking structure. After inspecting the code,
we chose to annotate the BuddyPluginTracker and BuddyPlugin classes, as shown
in Figure 14. The other classes in the plugin use locking solely to protect data structure
accesses: before an access to a non-thread-safe data structure (typically a Map or List),
Vuze acquires the lock on that data structure. Views interoperate smoothly with ordi-
nary Java synchronized statements implementing such simple locking strategies.

BuddyPlugin annotations. We added 4 views to BuddyPlugin: general read and write
views read state and write state, for mutable fields previously protected by the
lock on the BuddyPlugin object itself (i.e. synchronized(this)), as well as views
to protect the pd queue and publish write contacts data structures (previously
protected by two locks). The compiler implemented these views with two normal locks
and a read-write lock. While compiling the annotated source, it also found a few field
reads that were inconsistently unprotected in the original code.

1 view read_state {
2 incompatible write_state;
3 current_publish, latest_publish, buddies, buddies_map,
4 config_dirty, republish_delay_event, last_publish_start,
5 unauth_bloom, ygm_unauth_bloom, bogus_ygm_written,
6 write_bogus_ygm: readonly;
7 }
8

9 view write_state {
10 incompatible read_state, write_state;
11 current_publish, latest_publish, buddies, buddies_map,
12 republish_delay_event, last_publish_start, unauth_bloom,
13 ygm_unauth_bloom, config_dirty, bogus_ygm_written,
14 write_bogus_ygm: readwrite;
15 }
16

17 view pd_queue {
18 incompatible pd_queue;
19 pd_queue: readwrite;
20 }
21

22 view publish_write_contacts {
23 incompatible publish_write_contacts;
24 publish_write_contacts: readwrite;
25 }

Fig. 14. Views for BuddyPlugin class.

Our change preserves the existing lock structure and also provides static guarantees
that the program doesn’t attempt to access protected state without the protecting lock.

BuddyPluginTracker annotations. We found that the
tracker.BuddyPluginTracker class contained the most interesting locking
structure in the buddy plugin. This class contains 5 different locks: online buddies,
actively tracking, tracked downloads, buddy peers, and on the this object.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:25

We carefully studied the fields that the class accessed under each lock and encoded
this information in our view declarations.

Figure 15 presents the view declarations for the tracker.BuddyPluginTracker
class. We converted the 5 locks into 6 views, splitting accesses to this into read-only
and read-write views read internal state and write internal state, respec-
tively, and changing the other locks into views. The compiler then implemented the
views using 3 normal locks and 2 read-write locks.

The actively tracking view protects accesses to the actively tracking Set.
Its access pattern is similar to that of the other data structures in the buddy plugin.

The online buddies view protects two correlated data structures: the
online buddies Set and the online buddy ips Map. Our view annotations there-
fore express the formerly-implicit connection between the online buddies lock and
the online buddy ips data structure and statically ensure that the program always
follows the proper locking discipline.

The tracked downloads view protects six related fields, including two sets and two
maps. In the original version of the BuddyPluginTracker, the application always
acquired the tracked downloads lock before accessing any of these fields.

Finally, the three views read internal state, write internal state, and
buddy peers all protect miscellaneous internal state of the BuddyPluginTracker.
Both the write internal state and buddy peers views provide write access to dif-
ferent parts of the tracker. The read internal state view is not incompatible with
itself, so multiple threads may simultaneously read internal state. Each of the write
views is incompatible with itself and with the read internal state view.

We found that views enable developers to confidently use fine-grained concurrency
patterns. Using the view declarations, our compiler statically verifies that the code
always acquires the appropriate locks.

5.4. Mailpuccino

Mailpuccino is an open-source graphical mail client written in Java that supports
the POP3 and IMAP protocols. Mailpuccino is available at http://www.kingkongs.
org/mailpuccino/. It contains over 14,000 lines of code.

Mailpuccino maintains separate cache data structures for the message headers, mes-
sage flags, message parts, and the message structure. The locking for the original cache
objects used synchronized methods. The original coarse-grained locking structure only
allowed one thread to read from the message cache at a time.

Figure 16 presents the views that we wrote for Mailpuccino’s Cache object. We cre-
ated four views in all, belonging to two sets of two views each.

The first set of views includes the lookup view and modify view for the Mailpuccino
cache. The lookup view provides read-only access, enabling methods to safely read the
cache, while the modify view provides read-write access, allowing methods to safely
modify the cache. Multiple threads may simultaneously read from Cache objects, so
the lookup view is compatible with itself. However, while any thread is modifying the
Cache object, no other threads can safely access that Cache object at the same time.
Therefore, the modify view is incompatible with both itself and the lookup view.
Note that our use of views enables the Cache object to potentially support multiple
simultaneous lookup operations.

The second set of views includes the file and indexfile views. Each cache is
backed by two files: the DataFile file and its index, IndexFile. Cache misses are
served from these files. While the lookup view conceptually protects these accesses
and prevents simultaneous writes, Java’s RandomAccessFile object does not support
atomic reads from a specific file offset, so Mailpuccino performs a seek followed by a

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 B. Demsky and P. Lam

1 view actively_tracking {
2 incompatible actively_tracking;
3 actively_tracking: readwrite;
4 }
5

6 view online_buddies {
7 incompatible online_buddies;
8 online_buddies, online_buddy_ips: readwrite;
9 }

10

11 view tracked_downloads {
12 incompatible tracked_downloads;
13 tracked_downloads, last_processed_download_set_id,
14 last_processed_download_set, download_set_id, full_id_map,
15 short_id_map: readwrite;
16 }
17

18 view read_internal_state {
19 incompatible write_internal_state, buddy_peers;
20 online_enabled, old_plugin_enabled, plugin_enabled,
21 old_tracker_enabled, tracker_enabled, old_seeding_only,
22 seeding_only, consecutive_fails, last_fail, network_status,
23 buddy_send_speed, buddy_receive_speed: readonly;
24 }
25

26 view write_internal_state {
27 incompatible read_internal_state, write_internal_state,
28 buddy_peers;
29 online_enabled, old_plugin_enabled, plugin_enabled,
30 old_tracker_enabled, tracker_enabled, old_seeding_only,
31 seeding_only, consecutive_fails, last_fail: readwrite;
32 }
33

34 view buddy_peers {
35 incompatible read_internal_state, buddy_peers,
36 write_internal_state;
37 seeding_only: readonly;
38 buddy_peers, buddy_stats_timer, network_status, buddy_send_speed,
39 buddy_receive_speed: readwrite;
40 }

Fig. 15. Views for BuddyPluginTracker class.

read. We must therefore ensure that no other thread accesses the file object between
the seek and the read operations. To do so, we created two more views to protect the file
objects. Only threads which have acquired these self-incompatible views may access
the fields that reference the corresponding files. This ensures that only one thread may
seek and read from a file at a time. While we have described our changes to Cache, we
also modified the MsgPartsCache class in a similar fashion. The compiler synthesized
the views for the cache objects into 3 locks—two normal locks and one read-write lock.

We next modified the synchronized methods in the MonitoredInputStream class
to use views. This class contained two synchronized methods: the mark method and
the reset method. The “synchronized” annotations led us to believe, at first, that
the class was designed to be safely shared between threads. The mark and reset
methods access only two fields: MarkedBytesRead and BytesRead. We wrote a view
that allowed access to these fields and added the mark and reset methods to the view.

At this point, we believed that we had distilled MonitorInputStream’s old synchro-
nization pattern into views. We therefore attempted to compile the modified class. Sur-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:27

1 view lookup {
2 incompatible modify;
3 KeyValues: readonly;
4 getAsByteArray(Object Key) preferred;
5 get(Object key) preferred;
6 flush() preferred;
7 getKeys() preferred;
8 close() preferred;
9 }

10

11 view modify {
12 incompatible modify, lookup;
13 KeyValues: readwrite;
14 put(Object Key, Object Value) preferred;
15 remove(Object Key) preferred;
16 keepOnlyThese(Vector Keys) preferred;
17 compact() preferred;
18 getAsByteArray(Object Key);
19 }
20

21 view file {
22 incompatible file;
23 Data: readwrite;
24 DataFile: readonly;
25 }
26

27 view indexfile {
28 incompatible indexfile;
29 IndexFile: readonly;
30 }

Fig. 16. Mailpuccino Cache Views

prisingly, the compiler threw error messages warning that MonitorInputStream’s
read method accesses the ByteRead field without holding an appropriate view. How-
ever, the read method contained no synchronization!

Closer examination revealed that the MonitoredInputStream class is not thread
safe and its mark and reset methods are never called. We modified the class to remove
these methods and added comments to make it clear that the class is not thread safe.

5.5. jPhoneLite

jPhoneLite is an open-source VoIP softphone written in Java. jPhoneLite is available
at http://sourceforge.net/projects/jphonelite/, and contains 20,000 lines
of code. We annotated the core library of version 0.13.1 beta of jPhoneLite.

The class with the most sophisticated locking structure in jPhoneLite is RTP, which
handles the transmission and reception of real-time content. This class contains two
locks, lockBuffers and lockHostPort, in addition to the built-in lock on this.

Figure 17 presents the views that we created to replace the locks in RTP and
RTPChannel. These views control access to the input buffer, bufs, and its helper fields;
the destination port information, remoteip and remoteport; and, in RTPChannel,
the random number generator r. The original code also uses the built-in lock on the
RTP object to protect various remaining parts of RTP’s state. Because views interoper-
ate smoothly with Java locks, we decided to keep the original lock on RTP. The compiler
implements the views in RTP using two locks—one read-write lock and one normal
lock—and uses one normal lock to implement the view in RTPChannel.

The readSamples and writeSamples views protect a circular buffer which con-
tains incoming data. While the readSamples view only reads from the buffer bufs, it

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 B. Demsky and P. Lam

must update the auxiliary pointers to the buffer, so it has read-write access to bufFull
and bufTail. It must therefore be declared as being incompatible with itself. The
writeSamples view writes to the buffer bufs as well as other associated state; it is
incompatible with both readSamples and writeSamples. Unfortunately, since both
of these views write to related state, the compiler must use a traditional Java lock
covering all of the state. However, views still enable a developer to describe the locking
policy and the anticipated access patterns to the protected state, and our view compiler
computes the optimal locking implementation for this case.

The readHostPort and writeHostPort views protect the destination information,
which may change during a connection. The RTP class only writes this information,
while the related RTPChannel class reads this information. The primary advantage of
views in this case is to enable the compiler to ensure that all reads from and writes
to the remoteip and remoteport fields are protected by a lock. Our compiler’s use
of read-write locks could, in principle, lead to performance improvements in similar
usage patterns, but the potential for performance improvements on network access
from improving the locking scheme is limited.

1 public class RTP {
2 view readSamples {
3 incompatible readSamples;
4 bufFull, bufTail: readwrite;
5 bufs: readonly;
6

7 getSamples(short data[]) preferred;
8 }
9

10 view writeSamples {
11 incompatible readSamples, writeSamples;
12 bufFull, bufTail: readwrite;
13 bufs, bufHead: readwrite;
14 }
15

16 view readHostPort {
17 incompatible writeHostPort;
18 remoteip, remoteport: readonly;
19 }
20

21 view writeHostPort {
22 incompatible readHostPort, writeHostPort;
23 remoteip, remoteport: readwrite;
24

25 change (String remote, int remoteport) preferred;
26 }
27 // ...
28 }
29

30 public class RTPChannel {
31 view rlock {
32 incompatible rlock;
33 r: readonly;
34 }
35 // ...
36 }

Fig. 17. Views for RTP and RTPChannel classes.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:29

5.6. TupleSoup

TupleSoup is an open-source database library written in Java, containing over 6,600
lines of code. TupleSoup is available at http://sourceforge.net/projects/
tuplesoup/. We rewrote all of the synchronization in TupleSoup to use views.

TupleSoup contains three index classes: a MemoryIndex class, a PageIndex class,
and a FlatIndex class. The original index classes only permitted one thread to search
the index at a time and implemented concurrency control using a single lock. Figure 18
presents our view declarations for TupleSoup. We created two views per index class:
an access view and a modifying view (the FlatIndex class only uses one view).
Multiple threads can simultaneously hold the access view. If one thread holds the
modifying view of an index, no other thread can hold the modifying or access views
of the index. The compiler implemented these views using a single lock (a read-write
lock for the MemoryIndex and PageIndex views and a normal lock for the FlatIndex
case).

The DualFileTable class implements a cached table backed by two separate files.
The original version of DualFileTable contained five separate locks: one lock for
each of the two data files, a lock for the cache, and a lock for the statistics counters.
Upon closer inspection, we found that one of the locks in the DualFileTable class was
unnecessary. While it would have been possible to detect this manually, encoding the
locking scheme with views made the redundant lock very obvious.

We also examined the code to see if we could modify the class to allow multiple
simultaneous calls to the getCacheEntry cache lookup method. Unfortunately, this
method actually mutates a list of least-recently-used cache entries that is used to de-
termine which entries to evict. Therefore, it is not safe to allow multiple threads to
simultaneously call the getCacheEntry method.

We therefore decided on a straightforward translation to views, shown in Figure 18,
which replaces each lock with a corresponding view, and replaces synchronized meth-
ods with preferred views for methods. Such a translation is quite straightforward to
carry out and enables developers to explicitly express the correlations between fields
that the locking structure implicitly encoded. In other words, the views explicitly la-
bel the data that each lock protects, and our view compiler provides static assurances
that the code never accesses protected fields without holding an appropriate view. The
compiler implemented these views with four normal locks.

5.7. Discussion

We used the following process for annotating an existing class with views. First, we
studied an existing class’s locking structure. Next, we proposed a view structure which
would protect a related group of fields and methods, typically with a read-only view for
accessing state and a read-write view for updating state. We fed this view structure
to our compiler, which guaranteed that accesses to protected fields and methods only
occur when holding appropriate views.

We found that it was straightforward to replace the traditional Java locking
structure with view acquisitions; it sufficed to replace synchronized(x) with
acquire(x@v) and synchronized methods with preferred view methods. Each bench-
mark took a couple of hours to annotate; the crux was in understanding the existing
locking structures.

Our process typically results in an application with increased potential for concur-
rency. Many of our annotated benchmarks allow multiple threads to simultaneously
read state, while ensuring that only one thread can write state.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 B. Demsky and P. Lam

1 view filea {
2 incompatible filea;
3 fileastream, filearandom, fca, fileaposition: readwrite;
4 updateRowA(Row row) preferred;
5 addRowA(Row row) preferred;
6 }
7 view fileb {
8 incompatible fileb;
9 filebstream, filebrandom, fcb, filebposition: readwrite;

10 updateRowB(Row row) preferred;
11 addRowB(Row row) preferred;
12 }
13

14 view indexcache {
15 incompatible indexcache;
16 indexcache, indexcacheusage, indexcachefirst, indexcachelast:
17 readwrite;
18 addCacheEntry(TableIndexEntry entry) preferred;
19 updateCacheEntry(TableIndexEntry entry) preferred;
20 removeCacheEntry(String id) preferred;
21 getCacheEntry(String id) preferred;
22 }
23

24 view stat {
25 incompatible stat;
26 stat_add, stat_update, stat_delete, stat_add_size,
27 stat_update_size, state_read, stat_read_size, stat_cache_hit,
28 stat_cache_miss, stat_cache_drop: readwrite;
29 readStatistics();
30 }

Fig. 18. TupleSoup DualFileTable Views

After we manually developed complete view specifications, we removed the incom-
patibility declarations and used the incompatibility inference algorithm to automati-
cally infer the incompatibility declarations. We found that the heuristic successfully
inferred all view incompatibility declarations for Vuze, TupleSoup, and jPhoneLite.
The inference algorithm was able to infer incompatibility declarations for all views
in Mailpuccino except the indexfile view. The indexfile view only allows reads
from the IndexFile field, and therefore it would appear to be safe to allow multiple
threads to simultaneously hold this view. However, the view is held while performing
file operations on the index file, and serves to protect state changes that occur inside
the operating system. Developers should therefore verify inferred incompatibility dec-
larations before using them.

6. RELATED WORK

We discuss three threads of work related to concurrency control. First, we describe
systems to prevent or detect races. Next, we discuss other systems for specifying and
verifying concurrency control policies in Java. Finally, we compare views to alternate
concurrency control mechanisms which go beyond Java lock-based concurrency control.

Ensuring Race-Freedom. Many teams have developed different type systems which
ensure that well-typed programs are free of data races. Boyapati, Lee, and Rinard de-
veloped type systems which ensure the absence of data races by tracking object owner-
ship [Boyapati and Rinard 2001; Boyapati et al. 2002]. Abadi, Flanagan, and Freund
have developed RaceFreeJava [Abadi et al. 2006], where developers associate a lock

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:31

with each shared field and express this information via the type system; the compiler
infers additional type annotations and verifies that programs conform to the specified
type-based discipline. Bacon, Strom, and Tarafdar propose the Guava race-free dialect
of Java [Bacon et al. 2000], which forces all members of shared objects to synchronized.
Views generalize RaceFreeJava by allowing developers to specify the locking policy for
a set of related fields and methods, not just for one field at a time as in the Race-
FreeJava case. That is, views allow developers to explicitly express, in one place, the
state and methods protected by each lock. Moreover, unlike previous approaches, views
are not limited to using simple Java locks to guarantee race-freedom; they can lever-
age read-write locks and other more sophisticated approaches to concurrency control.
Views provide developers with a flexible mechanism that can be used to implement
sophisticated approaches to concurrency control.

An alternative to statically ensuring that programs are free of races is to detect
these races, either statically or dynamically. The Eraser dynamic race detection tool
computes lock sets for memory locations and warns if a memory location is not pro-
tected by a lock [Savage et al. 1997]. Choi et al. have developed a runtime approach
that records access events and uses several optimizations to minimize overheads [Choi
et al. 2002]. Marino et al’s LiteRace tool uses sampling to minimize overheads [Marino
et al. 2009]. Other dynamic approaches use static analysis to lower the instrumenta-
tion overhead [von Praun and Gross 2001]. While dynamic race detection is useful,
it requires adequate test suites to detect bugs. RacerX instead uses interprocedural
static analysis to detect race conditions and deadlocks [Engler and Ashcraft 2003].
More recently, Chord [Naik et al. 2006; Naik and Aiken 2007; Naik 2008] imple-
ments static race detection using a staged approach; stages incorporate increasingly
sophisticated pointer analyses, culminating with conditional must-not alias analysis.
Note that Chord can successfully analyze implementations of many fine-grained lock-
ing schemes. Other static analysis approaches include Warlock [Sterling 1993] and
Sema [Korty 1989]. Race detection tools are, in general, useful for detecting bugs in
programs. However, they provide developers with little guidance about which fields
need to be protected by locks. Any solution requires developers to formulate a suitable
concurrency control policy for their system. Views enable developers to express con-
currency control policies; the compiler then automatically computes a mechanism for
implementing the policy. Views therefore differ from race detection and race-free type
systems approaches because those approaches only verify that implemented solutions
are free of races.

Another technique related to ours is that of automatically generating locking
schemes for critical regions [Halpert et al. 2007; Emmi et al. 2007; Hicks et al. 2006].
Typically, such approaches allow developers to specify critical or atomic sections of
their programs. Zhang et al. state a minimal lock assignment problem that is similar
to the problem of lock synthesis for views, but differs in that it contains information
about non-conflicting critical sections that are never executed concurrently and there-
fore can share locks without limiting concurrency [Zhang et al. 2007]. This body of
work must rely on static analysis to generate locks and therefore may generate overly
conservative locking schemes. Furthermore, this work does not attempt to detect pos-
sible data races arising from accessing shared state outside of critical regions. Views
instead start with a data-centric approach: developers declare certain fields (and meth-
ods) as belonging to a view, and specify when threads acquire views; the compiler then
ensures that the program always acquires appropriate views, and synthesizes a lock-
ing strategy which respects the view annotations.

Atomic sets [Vaziri et al. 2006; Vaziri et al. 2010] are a related data-centric synchro-
nization approach. In this approach, the developer declares which fields are related,
and the system automatically inserts synchronization. Relative to this work, views pro-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 B. Demsky and P. Lam

vide programmers with more control over fine-grained locking strategies and support
read-write locks. Views also nicely support incremental refinement of the specifica-
tions. Views are fully compatible with locks—developers can incrementally convert a
program from using locks to views.

Specifying and verifying design intent. Composable thread coloring [Sutherland and
Scherlis 2010] constrains which threads may execute at specific periods of program
executions: one way of avoiding the need to lock shared state is to ensure that it is not
shared. For instance, AWT and Swing programs require that only one thread may di-
rectly interact with the user interface. We see the work on composable thread coloring
as orthogonal to our work on views.

The Fluid project developed techniques for verifying concurrency-related design in-
tent. Part of the work on Fluid [Greenhouse 2003] enables developers to declare re-
gions and locking policies. Each region controls access to a collection of object fields.
It is then the responsibility of the developer to implement a locking policy which sat-
isfies the specification; Fluid can verify locking implementations, as long as they are
implemented using standard Java locks, but it cannot implement the locking policy
itself. Views compile locking policies into executable code. Because the views compiler
understands the underlying policy, it can use advanced concurrency primitives like
read-write locks when appropriate.

Other concurrency control mechanisms. We discuss a number of concurrency control
mechanisms, including full/empty bits, accept sets and atomic sections.

Another solution for fine-grained concurrency is full/empty bits [Yeung and Agar-
wal 1993]. Full/empty bits generally enable programs to control access to one mem-
ory word, or data item, at a time, and typically apply to matrix computations. They
are therefore quite different from views: developers must generally implement a fine-
grained concurrency policy for full/empty bits by hand, explicitly indicating when
words are available for reading (possibly with compiler support), while views enable
developers to specify high-level concurrency policies. Furthermore, policies for views
can be expressed in terms of object-oriented abstractions, namely fields and methods,
rather than on a per-data-item basis, as with full/empty bits. Note also that one view
can protect several fields and methods, while each full/empty bit protects one word.

Moving beyond Java concurrency, the language-level mechanisms of accept sets and
member guards [Buhr and Harji 2005] enable developers to implement sophisticated
concurrency control mechanisms. Like views, accept sets allow a developer to control
access to parts of a method interface. However, accept sets are a dynamic mechanism
which temporarily grant and revoke parts of an object’s interface. Views differ from
accept sets in two main ways. The first difference arises when trying to use an un-
available resource. When using views, it is a compile-time error to attempt to invoke
part of the interface that is unavailable (because the thread has not yet acquired the
appropriate lock). With accept sets, a caller instead waits until a desired part of an ob-
ject interface becomes available before invoking that part of the interface. The second
difference is in the level of abstraction: views specify which parts of an object need pro-
tection, whereas accept sets allow developers to implement a particular locking policy.
In particular, accept sets do not explain why certain methods are available or not. Be-
cause views describe what is being protected, the compiler can identify potential race
conditions at compile-time, and the developer can then correct these race conditions
before deploying the software.

Member guards enable developers to specify preconditions which must be met before
a method may execute. Because member guards can contain arbitrary expressions,
they are potentially more expressive than even views; for example, a consumer might

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:33

only start running when its queue is nonempty. Member guards can therefore express
higher-level requirements on methods. Like accept sets, member guards are a dynamic
approach which delay method executions until they are safe. However, unlike views,
member guards still do not enable developers to state which parts of an object’s state
need to be protected.

Kulkarni et al introduced a systematic approach for checking semantic commutiv-
ity of method invocations [Kulkarni et al. 2011]. Their approach solves a similar lock
synthesis problem, but in a simper context.

Researchers have proposed transactional memory [Harris et al. 2010] as another
concurrency control mechanism. The idea is that programmers specify transactions,
atomic regions of code, and the runtime automatically provides atomicity either
through optimistic concurrency or pessimistic locking. Efficiently implementing trans-
actional memory and handling side-effects remain open research problems. Moreover,
transactional memory does not provide any guarantee against data races for accesses
which occur outside of transactions.

Atomic sections are another high-level concurrency construct. A thread executing
an atomic section must not see updates from concurrent threads until the end of its
atomic section. Cherem et al. describe a technique for inferring locks from atomic sec-
tion declarations [Cherem et al. 2008]. Their work shares the goals of views: it en-
ables programmers to use higher-level concurrency constructs, leaving the compiler
to automatically generate lock-based code based on the constructs. Their approach
also generates fine-grained locks whenever possible. Views, however, always use fine-
grained locking by giving the developer more control over the locking scheme: instead
of simply specifying that a region is atomic, the developer tells the compiler about the
actual data access patterns inside the region. Under our approach, the compiler does
not need to understand the access patterns of the protected code; it simply needs to
enforce developer-specified policies.

7. CONCLUSION

In this paper, we have described views, a language extension which enables developers
to specify concurrency control policies. Our prototype compiler implements these poli-
cies using sophisticated locks, while statically detecting possible concurrency bugs.
Views promise to ease the difficult task of implementing locking schemes for fine-
grained concurrency.

To use views, a developer writes a set of view declarations and annotates code with
view acquisition statements. A view declaration describes which views of an object may
be simultaneously held by different threads and the parts of the object interface that
the view controls. The partial object interface grants read and write access to fields
and permission to call methods, while holding the view.

Our compiler performs static checks of the view specifications and the program’s
view acquisitions to detect concurrency bugs. Our compiler automatically synthesizes
a locking scheme that enforces the necessary constraints between views.

Implications. Our compiler uses view annotations to guarantee that fields and methods
that appear in some view will not be accessed without holding any view that provides

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 B. Demsky and P. Lam

access to those fields. For programs which do not trigger compiler warnings, our com-
piler guarantees race-freedom for view-protected fields4.

Experience. Views support most common locking patterns. While views do not support
concurrency patterns that allow optimistic reading of fields without holding a lock (e.g.
as found in ConcurrentHashMap), we were able to express all of the lock-based pat-
terns we explored in our benchmark applications, which included part of a BitTorrent
client, a graphical e-email client, a VoIP softphone implementation, and a database.

Our experience indicates that views are simple to program with, support sophisti-
cated fine-grained access control, and can detect concurrency bugs.

REFERENCES
ABADI, M., FLANAGAN, C., AND FREUND, S. N. 2006. Types for safe locking: Static race detection for Java.

ACM Transactions on Programming Languages and Systems (TOPLAS) 28, 2 (March), 207–255.
BACON, D. F., STROM, R. E., AND TARAFDAR, A. 2000. Guava: A dialect of Java without data races. In

Proceedings of the International Conference on Object-Oriented Programming, Systems, Languages, and
Applications.

BLANCHET, B. 1999. Escape analysis for object-oriented languages: application to Java. In Proceedings of the
14th ACM SIGPLAN conference on Object-oriented programming, systems, languages and applications
(OOPSLA). 20–34.

BOYAPATI, C., LEE, R., AND RINARD, M. 2002. Ownership types for safe programming: Preventing data
races and deadlocks. In Proceedings of the ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications.

BOYAPATI, C. AND RINARD, M. 2001. A parameterized type system for race-free Java programs. In Proceed-
ings of the ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications.

BUHR, P. A. AND HARJI, A. S. 2005. Concurrent urban legends. Concurrency and Computation: Practice
and experience 17, 9, 1133–1172.

CHEREM, S., CHILIMBI, T., AND GULWANI, S. 2008. Inferring locks for atomic sections. In Proceedings of
the 2008 ACM SIGPLAN conference on Programming Language Design and Implementation. Tucson,
Arizona, 304–315.

CHOI, J., LEE, K., LOGINOV, A., O’CALLAHAN, R., SARKAR, V., AND SRIDHARAN, M. 2002. Efficient and
precise datarace detection for multithreaded object-oriented programs. In Proceedings of the ACM Con-
ference on Programming Language Design and Implementation.

DEMSKY, B. AND LAM, P. 2010. Views: Object-inspired concurrency control. In Proceedings of ICSE 2010.
EMMI, M., FISCHERY, J. S., JHALA, R., AND MAJUMDAR, R. 2007. Lock allocation. In Proceedings of the

34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ENGLER, D. AND ASHCRAFT, K. 2003. RacerX: Effective, static detection of race conditions and deadlocks.

In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles.
FLATT, M., KRISHNAMURTHI, S., AND FELLEISEN, M. 1998. Classes and mixins. In Proceedings of the 25th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages. POPL ’98. ACM, New
York, NY, USA, 171–183.

GREENHOUSE, A. 2003. A programmer-oriented approach to safe concurrency. Ph.D. thesis, Carnegie Mellon
University, Pittsburgh, PA.

HALPERT, R. L., PICKETT, C. J., AND VERBRUGGE, C. 2007. Component-based lock allocation. In Proceed-
ings of the 16th International Conference on Parallel Architecture and Compilation Techniques.

HARRIS, T., LARUS, J., AND RAJWAR, R. 2010. Transactional Memory, 2 ed. Vol. 5. Morgan and Claypool
Publishers.

HICKS, M., FOSTER, J. S., AND PRATIKAKIS, P. 2006. Lock inference for atomic sections. In TRANSACT.
KORTY, J. A. 1989. Sema: A lint-like tool for analyzing semaphore usage in a multithreaded UNIX kernel.

In Proceedings of the USENIX Winter Technical Conference.
KULKARNI, M., NGUYEN, D., PROUNTZOS, D., SUI, X., AND PINGALI, K. 2011. Exploiting the commuta-

tivity lattice. In Proceedings of the 2011 ACM SIGPLAN conference on Programming Language Design
and Implementation.

4We make an exception for constructors: for convenience, we provide defaults that allow constructors to
access any field of the object being constructed.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:35

LEV, Y., LUCHANGCO, V., AND OLSZEWSKI, M. 2009. Scalable reader-writer locks. In Proceedings of the
Twenty-First Annual Symposium on Parallelism in Algorithms and Architectures. ACM, New York, NY,
USA, 101–110.

MARINO, D., MUSUVATHI, M., AND NARAYANASAMY, S. 2009. LiteRace: Effective sampling for lightweight
data-race detection. In Proceedings of the 2009 ACM SIGPLAN conference on Programming Language
Design and Implementation.

NAIK, M. 2008. Effective static race detection for java. Ph.D. thesis, Stanford University.
NAIK, M. AND AIKEN, A. 2007. Conditional must not aliasing for static race detection. In Proceedings of

the 2007 ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages. Nice, France,
327–338.

NAIK, M., AIKEN, A., AND WHALEY, J. 2006. Effective static race detection for Java. In Proceedings of
the 2006 ACM SIGPLAN conference on Programming Language Design and Implementation. Ottawa,
Canada, 308–319.

NYSTROM, N., CLARKSON, M. R., AND MYERS, A. C. 2003. Polyglot: An extensible compiler framework for
Java. In Proceedings of the 12th International Conference on Compiler Construction.

ORLIN, J. 1977. Contentment in graph theory: Covering graphs with cliques. Indagationes Mathemati-
cae 80, 5, 406–424.

SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P., AND ANDERSON, T. 1997. Eraser: A dynamic
data race detector for multi-threaded programs. In Proceedings of the Symposium on Operating Systems
Principles.

STERLING, N. 1993. Warlock: A static data race analysis tool. In Proceedings of the USENIX Winter Techni-
cal Conference.

SUTHERLAND, D. F. AND SCHERLIS, W. L. 2010. Composable thread coloring. In Proceedings of PPoPP ’10.
233–244.

VAZIRI, M., TIP, F., AND DOLBY, J. 2006. Associating synchronization constraints with data in an object-
oriented language. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages.

VAZIRI, M., TIP, F., DOLBY, J., HAMMER, C., AND VITEK, J. 2010. A type system for data-centric synchro-
nization. In Proceedings of the 24th European Conference on Object-Oriented Programming.

VON PRAUN, C. AND GROSS, T. 2001. Object-race detection. In Proceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applications.

YEUNG, D. AND AGARWAL, A. 1993. Experience with fine-grain synchronization in MIMD machines for
preconditioned conjugate gradient. In Proceedings of the 4th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. San Diego, California, 187–197.

ZHANG, Y., SREEDHAR, V. C., ZHU, W., SARKAR, V., AND GAO, G. R. 2007. Minimum lock assignment: A
method for exploiting concurrency among critical sections. In Proceedings of the International Workshop
on Languages and Compilers for Parallel Computing.

Appendix: Type Rules
In this appendix, we present type rules for a simplified version of the view system.
The language is based on CONCURRENTJAVA, as described in [Abadi et al. 2006]. Our
rules formally explain how our view language extensions ensure that the program
always holds the appropriate view before accessing a field or method that is protected
by a view. We assume that the statements in each method have been transformed into
control-flow graphs and that the program has been rewritten to explicitly include the
“base” views. Our type rules do not include arrays, which we handle with a separate
static analysis.

Following [Flatt et al. 1998], our type system uses these predicates, which we define
informally.

ClassesOnce(P) Each class in P is declared at most once.
FieldsOnce(P) Each field appears no more than once in any class.
MethodsOnce(P) Each method appears no more than once in any class.
ViewsOnce(P) Each view appears no more than once in any class.
JumpsLocal(P) Jumps in P do not cross scope boundaries.
ViewInheritOK(P) Access descriptions for view members in subclasses

are at least as permissive as in the superclasses.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36 B. Demsky and P. Lam

Figure 19 presents the purpose, or meaning, of each of the following judgments in
our type system. Figure 20 presents the type rules for our language.

Judgement Meaning
` P program P is well-typed
P ` defn defn is a well-formed class definition
P ;E, vc c ` inc inc is a well-formed view incompatibility declaration

if declared in class c
P ;E, vc c ` vf : accessDesc vf is a well-formed view field declaration

with access descriptor accessDesc ∈ {none, ro, rw}
P ;E, vc c ` vf : accessDesc ∈ v view v contains field vf
P ;E, vc c ` vm vm is a well-formed view method declaration
P ;E, vc c ` vm ∈ v view v contains method vm
P ;E, vc c ` view view view is a well-formed view
P ;E ` view ∈ c class c declares view view
P ;E ` meth meth is a well-formed method
P ;E ` meth ∈ c class c declares method meth
P ;E ` field field is a well-formed field
P ;E ` field ∈ c class c declares field field
P ;E ` wf E is a well-formed typing environment
P ;E ` τ τ is a well-formed type
P ;E ` e:τ expression e has type τ
P ;E ` cond condition cond is well-typed
P ;E ` s statement s is well-typed

Fig. 19. Meanings of Judgements in Type Rules.

Received June 2010; revised April 2011; accepted September 2011

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Views: Synthesizing Fine-Grained Concurrency Control A:37

` P

[PROG]
ClassesOnce(P) FieldsOnce(P) MethodsOnce(P) ViewsOnce(P)

JumpsLocal(P) P = defn1..n P ` defni
` P

P ` defn

[CLASS]
P ;E, vc c ` viewi P ;E ` fieldi P ;E ` methi

P ` class cn extends c’ {view1..n field1..j meth1..m}

P ;E, vc c ` inc

[VIEW INCOMP]
P ;E, vc cn ` view ∈ cn
P ;E, vc cn ` incompat view

P ;E, vc c ` vf : accessDesc

[VIEW FIELD]
P ;E, vc cn ` τ fd ∈ cn

P ;E, vc cn ` fd : accessDesc

P ;E ` vf : accessDesc ∈ v

[VIEW FIELD DECL]
P ;E, vc cn ` view vn {. . . vf . . .}
P ;E, vc cn ` vf : accessDesc
P ;E, vc ` vf : accessDesc ∈ vn

[VIEW FIELD INH]
P ;E, vc cn ` view vn {. . .}

P ;E, vc cn′ ` vf : accessDesc ∈ vn
P ;E ` cn <: cn′

P ;E, vc ` vf : accessDesc ∈ vn

P ;E, vc c ` vm

[VIEW METHOD]
P ;E, vc cn ` meth ∈ cn
P ;E, vc cn ` vm [pref]opt

P ;E ` vm ∈ v

[VIEW METHOD DECL]
P ;E, vc cn ` view vn {. . . vm . . .}

P ;E, vc cn ` vm
P ;E, vc ` vm ∈ vn

[VIEW METHOD INH]
P ;E, vc cn ` view vn {. . .}

P ;E, vc cn′ ` vm
cn <: cn′

P ;E, vc ` vm ∈ vn

P ;E, vc c ` view

[VIEW]
P ;E, vc cn ` inci P ;E, vc cn ` vfi ∈ vn

P ;E, vc cn ` vmi ∈ vn
P ;E, vc cn ` view vn{inc1..n vf1..m vm1..j}

P ;E ` view ∈ c

[VIEW DECL]
P ;E ` class cn {. . . view . . .}

P ;E, vc cn ` view
P ;E ` view ∈ cn

P ;E ` field

[FIELD]
P ;E ` τ
P ;E ` τ fd

P ;E ` field ∈ c

[FIELD DECL]
P ;E ` class cn {. . . field . . .}

P ;E ` τ field
P ;E ` field ∈ cn

[FIELD INH]
P ;E ` cn <: cn′

P ;E ` field ∈ cn′
P ;E ` field ∈ cn

P ;E ` meth

[METHOD]
P ` class cn {methmn . . .}

Vmn = {vs | P ;E ` mn ∈ vs }
argi = cni@vi vni P ;E0 ` ej : τj

τj = cnj@vj lvj = τj lnj ldj = [lj=ej]
P ;E0 ` wf E = E0, arg0..n, lvn+1..n+l
∀v ∈ Vmn. ∀i ∈ [1..t]. P ;E, cn@v this ` si
P ;E ` mn(arg1..n) {ldn+1..n+l s1..t}

P ;E ` meth ∈ c

[METHOD DECL]
P ;E ` class cn {. . .meth . . .}

P ;E ` meth ∈ cn

[METHOD INH]
P ;E ` cn <: cn′

P ;E ` meth ∈ cn′
P ;E ` meth ∈ cn

P ;E ` wf

[ENV ∅]

P ;∅ ` wf

[ENV X]
P ;E ` τ x 6∈ Dom(E)

P ;E, τ x ` wf

[ENV VC]
P ;E ` wf vc * 6∈ E
P ;E, vc c ` wf

P ;E ` τ

[TYPE C]
P ` class cn{. . .}

P ;E ` cn

[VIEWTYPE C]
P ;E ` v ∈ τ
P ;E ` τ@v

P ;E ` τ1 <: τ2

[SUBTYPE]
P ` class cn extends cn′{. . .}

P ;E ` cn
P ;E ` cn <: cn′

[SUBTYPE TRANS]
P ;E ` τ1 <: τ2
P ;E ` τ2 <: τ3
P ;E ` τ1 <: τ3

[SUBTYPE REFL]
P ;E ` τ1

P ;E ` τ1 <: τ1

P ;E ` cond

[COND EQ]
P ;E ` e1
P ;E ` e2

P ;E ` e1==e2

[COND NEQ]
P ;E ` e1
P ;E ` e2

P ;E ` e1! =e2

P ;E ` e:τ

[EXP VAR READ]
E = E1, τ y, E2
P ;E ` y:τ

[EXP FIELD READ]
E = E1, τx x, E2 τx = cx@vx
∃v ∈ vx. fd : {ro ∨ rw} ∈ v
τf = cf@vf P ` (τf fd) ∈ cx

P ;E ` x.fd:τf

P ;E ` s

[STMT NEW]
E = E1, τ x, E2 τ = c

P ;E ` c
P ;E ` x = new c

[STMT READ/COPY]
E = E1, finaloptτ x, E2
τ = cn P ;E ` e:τ
P ;E ` x = e

[STMT LABEL]
P ;E ` wf
P ;E ` `:

[STMT GOTO]
P ;E ` wf
P ;E ` goto `

[STMT IF]
P ;E ` `1 : P ;E ` `2 :

P ;E ` cond
P ;E ` if cond then `1else `2

[STMT FIELD WRITE]
E = E1, τx x, E2 E = E′1, τy y, E

′
2

τx = cx@vx τy = cy@vy
∃v ∈ vx. fd : {rw} ∈ v
P ;E ` (τy fd) ∈ τx
P ;E ` x.fd = y

[STMT FORK]
P ;E ` ei :τi gi = finalτiei
P ;E ` cj lvj = cj lnj

∀i ∈ [1..t]. P ;gi, lv1..l ` si
P ;E ` fork(e1..n){lv1..ls1..t}

[STMT ACQUIRE]
E = E1, τ lv, E2

∀i ∈ [1..t]. P ;E1, τ@v lv, E2 ` si
P ;E ` acquire(lv@v){s1..t}

[STMT INVOKE]
P ;E ` mn(τj yj)j∈1..n{· · · }

τj = cnj@vj P ;E ` e′j :τ′j τ
′
j = cnj@vj

P ;E ` a:τ τ = cn@va methmn ∈ cn
(∃v ∈ va. mn ∈ v) ∨ (∃v. mn pref ∈ v)

P ;E ` a.mn(e′1..n)

Fig. 20. Type Rules.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

