
Detecting Unread Memory using Dynamic
Binary Translation

Jon Eyolfson and Patrick Lam

University of Waterloo

Abstract. Reading from uninitialized memory—that is, reading from
memory before it has been written to—is a well-known memory usage
error, and many static and dynamic tools verify that programs always
write to memory before reading it. This work investigates the converse
behaviour—writes that never get read, which we call “unread writes”.
Such writes are redundant—at best, they do not perform any useful
work; furthermore, work done to compute the values to be written could
corrupt the program state or cause a crash. We present a novel dy-
namic analysis, implemented on top of the Pin dynamic binary transla-
tion framework, which detects instances of unread writes at runtime. We
have implemented our analysis and present experimental data about the
prevalence of unread writes in a set of benchmark applications.

1 Introduction

Modern languages and compilers detect memory usage errors caused by reads
from uninitialized memory: in Java, it is an error to read variable x before writing
a value to it, and gcc warns about uses of uninitialized variables. Programs also
contain the converse phenomenon: writes to memory which are never read. Such
writes are redundant; at best, they don’t perform any useful work. Computations
that produce values used only in unread writes do not contribute to the goal of
the program, gratuitously consume computational and memory resources, and
may, in the worst case, crash the program—for example, the Ariane 5 crash was
caused by an exception while computing an unused value1.

Because compilers detect memory problems ahead of time, most compilers
only report errors and warnings at an intraprocedural level, and only for local
variables and private fields of classes. (gcc 4.6, for instance, reports warnings
for unused but set variables.) Static approaches to memory error detection re-
quire detailed pointer information to detect memory errors on heap accesses:
the compiler needs to know which heap references may and must alias, so that
it can determine the access history of individual abstract memory locations.
Must-alias analysis is critical for reducing the rate of false positives. However,
implementations of whole-program must-alias analyses are rare.

Recently, Valgrind’s Memcheck tool [1] has used dynamic binary translation
to detect memory errors, including reads from uninitialized memory, at runtime.

1 Section 2.1, http://www.di.unito.it/∼damiani/ariane5rep.html

2

Purify [2] detects a similar class of errors by inserting instrumentation code
at compile time. In either case, runtime verification can ensure the absence of
memory errors on an observed execution. Dynamic analyses need not reason
about the heap, as a pointer comparison suffices to disambiguate heap addresses.

Our Tracerory tool implements a dynamic analysis to detect unread memory
in realistic C and C++ applications. It supports multithreaded programs. We
detect 1) unread memory allocations and 2) unread writes to the heap—writes
with no corresponding read. When a developer runs their code under Tracerory,
it reports instances of unread memory. Developers can use the report to manually
inspect flagged program points and fix their code.

Figure 1 shows a high-level overview of our tool’s operation. Tracerory takes
two inputs: an executable to be monitored, and specifications about which parts
of the program to monitor. While Tracerory executes the program, its runtime
monitor processes the stream of memory allocations, reads, and writes, reporting
unread writes and memory allocations.

Dynamic binary
translator

(pin+Tracerory)

Specifications

Executable

Instrument

Execute codeAnalyze

Program
Output

Unread
Memory Report

Fig. 1. Tracerory operation.

The contributions of this paper are:

– the identification of unread memory as a source-level phenomenon of interest;
– a novel dynamic analysis to detect unread memory in programs at runtime;
– an implementation of our dynamic analysis in the Pin dynamic binary trans-

lation framework; and
– qualitative and quantitative results outlining the prevalence of unread mem-

ory in a collection of open-source benchmarks.

2 Overview

This section presents, using an example, the two suspicious memory usage pat-
terns that our Tracerory dynamic monitoring tool detects. Section 5 presents
additional instances of unread writes drawn from real-world programs.

3

1 int main (int argc , char ∗argv [])

2 {
3 X∗ x = new X() ;

4 Y∗ y = new Y() ;

5 for (int i = 0 ; i < 4 ; ++i) {
6 x−>data = i ;

7 y−>data = i ;

8 }
9 cout << x−>data << endl ;

10 delete x ;

11 return 0 ;

12 }

Fig. 2. Example program with unread allocations and writes.

Al l o c a t i on s unread and/or with unread wr i t e s : 2
Unique a l l o c a t i o n s i t e s unread and/or with unread wr i t e s : 2

Created : example . cpp : 3 (1)
Destroyed : example . cpp :10 (1)
Unread : f a l s e (1)
Unread Writes (3) :

example . cpp : 6 (3)

Created : example . cpp : 4 (1)
Destroyed : [not destroyed] (1)
Unread : t rue (1)
Unread Writes (4) :

example . cpp : 7 (4)

Fig. 3. Tracerory output for motivating example.

The example program in Figure 2 allocates two objects, x and y. It then
performs 4 writes to each object, reads from x, and finally deletes x.

Lines 3 and 4 allocate the memory objects, which we initially mark unread.
Next, line 6 writes to x and line 7 writes to y. Our tool records the first two writes
to x and y in the first iteration of the loop and marks the memory locations as
having an active unread write. In the second iteration, the new writes overwrite
the previously active unread writes. The tool marks the writes from the previous
iteration as unread. At the end of the loop, there are 3 unread writes and 1 active
unread write to each object.

Finally, the program reads from x on line 9 and deletes it on line 10. If an
object is not deleted, we implicitly delete it when the program terminates (e.g.
y). After an object is deleted, no further reads can be made to it. Therefore, we
report the active unread write to y (in the last iteration of the loop). We also
report the object itself as completely unread. Upon exit, our tool reports the
unread object y, plus all unread writes to heap objects.

Tracerory outputs, for each “bad” object (with unread writes or itself un-
read): the location that created and destroyed the object; whether or not it is
an unread object; and the number of unread writes to the object, along with
the locations which performed the writes. If the tool observed a constructor call
for the object, it outputs the object’s type. To minimize false positives, the tool

4

only reports statement s as an unread write if all previous dynamic writes at s
are unread. For instance, if s occurs in a loop, then our tool only reports s if all
of its executions perform unread writes.

Figure 3 shows Tracerory’s output for our example program. First, Tracerory
reports x as an object of type X with 3 unread writes. Next, it reports y as an
object of type Y, with 4 unread writes, which is completely unread. The unread
writes on x indicate potentially-important information being ignored; writes to
y may correspond to wasted memory and redundant, potentially harmful, work.

As is standard for dynamic analyses, we only report unread writes from a
single program execution at a time. It is the responsibility of the developer
to execute the program with enough test coverage to adequately explore its
behaviour. A particular write may be unread for some, but not all, inputs. While
such a write is most likely not problematic, we believe that the developer is best-
placed to decide whether code changes are appropriate in such cases; perhaps
the write could have been avoided on that input.

To help developers prioritize the generated reports, our tool coalesces and
sorts its output. That is, it combines all objects allocated at the same static site,
and displays a count of “bad” objects, unread objects, and unread writes for
all objects allocated at that site. It lists the allocation sites which account for
the most unread objects first. In the future, we hope to combine unread write
reports from multiple executions, thus increasing the relevance of the reports.

3 Dynamic Analysis

To validate our design, we implemented the Tracerory tool atop the Pin dynamic
recompilation toolkit [3]. Our tool works on x86-64 Linux binaries. Pin supports
multithreaded programs and we have used appropriate data structures to ensure
that Tracerory also supports multithreading. Because Pin’s API provides an
abstraction layer, Tracerory should also work on x86 binaries.

Generally, Pin tools run in two phases: a (slightly) ahead-of-time instrumen-
tation phase, and an monitoring phase. Section 3.1 describes the instrumentation
phase while Section 3.2 describes the analysis phase, which implements a runtime
monitor to detect unread memory.

Our unread memory detection only monitors images (binaries and libraries)
explicitly specified by the user. We call such images “watched images;” watching
only specific images enables developers to focus their attention on memory usage
which they are responsible for and can fix.

3.1 Instrumentation Phase

The instrumentation phase transforms the input executable to invoke our run-
time monitor, which will be described in Section 3.2. Here, we describe our
instrumentation points and the information they pass to the monitor.

5

Allocations and Deallocations Our tool records all memory management
calls by instrumenting standard C/C++ allocation and deallocation functions.
For allocation functions (malloc, calloc, realloc), we insert a call to our mon-
itor at the function entry and exit points. At the entry point, we pass the size

argument to the monitor. At the exit point, we pass the returned pointer to the
monitor. For deallocation functions (free), we instrument the function entry
point and pass the pointer argument to the monitor.

Memory Accesses Our tool instruments every memory read, plus memory
writes from watched images. For both reads and writes, we pass all accessed mem-
ory addresses to the monitor. For writes, we also pass the instruction pointer.

Debugging Information To help developers localize memory problems, our
tool uses debug information to identify all program events (allocations, deallo-
cations, reads, writes) by source code line number.

At each call instruction, our tool records, in thread-local storage, the de-
bugging location and image name immediately before the call; this information
is then available upon entry to the callee. A debugging location consists of a
source line number, when available, or the procedure name and memory offset
otherwise. It enables the tool to attribute memory allocations and deallocations
to the code that requested or released the memory. Our tool uses the image
name to ignore memory allocations from unwatched images.

Dynamic loaders introduce indirect calls, which may overwrite the debugging
information as they call helper functions to load the function and resolve the
function address. To prevent this, we ignore calls to the dynamic loader library.
For 64-bit Linux, this library is /lib64/ld-linux-x86-64.so.2. We found that
ignoring the dynamic loader does not negatively affect our tool, as most appli-
cations do not interact directly with it.

Virtual Functions Our initial results included many unread writes to objects
with virtual functions. These were writes to the virtual table, which developers
do not control. Such writes should be ignored. We found that source locations for
virtual table writes corresponded to definition points for member functions. We
collect these source locations by inspecting every member function and recording
its definition point; the monitor then ignores these locations.

3.2 Monitoring Phase

To enable the classification of memory accesses, our tool records immutable facts
about each block of allocated memory (memory block), along with facts which
change during the execution. Figure 4 illustrates the structure of a memory block.
Our monitor stores memory blocks in an append-only list of unread memory
blocks and a map of currently-allocated blocks keyed by base address.

6

Memory block size

Creation debug location

Destruction debug location

Whether block is unread

Active locations

Active write locations

Unread writes

Source locations for retired writes

Memory Block

Fig. 4. Structure of a Memory Block.

Allocations At a call to an allocation function (e.g. malloc) originating from a
watched image, the monitor records the requested memory size and calling source
location in thread-local storage. Upon exit from the allocation, the monitor
receives the returned pointer and creates a new currently-allocated memory block
using that pointer as the base address. It also initializes the block’s size and
created location with the values recorded on entry and marks the block unread.

We take care to collect reliable source locations for custom allocator wrap-
pers. Consider C++ object allocation; the new call is essentially a wrapper for
malloc. Ordinarily, our tool would report a debugging location for malloc from
within the new implementation. However, we would prefer to know new’s caller
rather than malloc’s. To do this, we instrument the entry point to new, ensur-
ing that the caller belongs to a watched image. If it does, we record the calling
source location for the new and ignore the watched image check for the malloc.
We support arbitrary user-specified custom wrappers in the same style.

Reads and Writes To analyze a memory access, the tool looks up the requested
memory address in the allocated-memory structure. It uses the lower bound

operation of the C++ STL map. If the address falls in the range [address,

address + size) for any blocks, the tool then carries out the appropriate up-
date on those blocks. The tool assumes that memory accesses occur at machine
word granularity. The mutable part of the per-block structure includes a flag
indicating whether the block has ever been read, as well as the following sets:
active writes to the block; active locations (which have been accessed at least
once after initialization); unread writes (a list); and source locations for retired
writes (those which have been read). We ensure that concurrent threads do not
simultaneously update the block structures.

The per-instruction updates are as follows:

– At a read : the monitor marks the containing memory block as read and
removes any writes to the requested location from the active writes. It adds
any removed writes to the set of retired writes.

7

To reduce the false positive rate, we only report unread writes from static
program points from which no writes are ever read—equivalent to applying
intersection to unread writes. Hence, if we ever observe a retired write from
a given static program point, we filter out writes from that program point.

– At a write: if the write’s destination already has an active write, then that
value will be overwritten, hence unread. We thus add the previous write to
the list of unread writes, if its source location belongs to a watched image.
The tool also adds the current write to the list of active writes, if the source
location is not retired.

At every memory access beyond the initial write, we mark the destination
location as active. Our monitor uses this to omit initial values which are never
subsequently accessed, when processing the block’s deallocation.

Deallocations Deallocations remove memory blocks from the set of currently-
allocated blocks, moving them to the unread writes structure if appropriate. We
only add active writes to unread writes if the memory location was active, i.e.
accessed at least once after initialization. We move a block to the unread writes
structure if the block has at least one unread write or is itself unread. We also
set the block’s deallocation location.

We do not need to instrument the delete function: an instrumented destruc-
tor call will always happen first. At a destructor, if this is an allocated memory
block, our monitor follows the same process as for free.

Program Termination Upon program exit, the tool simulates frees for all
currently-allocated blocks, with a deallocation location of “[not destroyed]”. It
then traverses the heap structure abstraction and outputs summaries for all of
the unread memory blocks and unread writes. To help the developer prioritize the
most important program points, the tool sorts its output, putting blocks which
account for more writes first. Within each block, the tool also sorts unread writes
by descending order of unread write count. For each entry, the tool outputs
the location where the memory block was created, the location where it was
destroyed, whether or not it was unread, and its unread write locations.

False Positives We summarize some false positives that Tracerory will report.
Some false positives are due to analysis imprecision, and could be filtered out.

– Our analysis identifies many field initializers in C++ as unread writes; classes
will often explicitly initialize all of their fields in the constructor and then
re-initialize the fields later. The first initialization is unread.

– Data structure implementations in watched images often lead to unread
writes. For instance, we found a implementation of linked list insertion:

*new_edge = edge; new_edge->next = stl->tail;

next is copied from an input and immediately overwritten, hence unread.

8

– Other false positives include idioms like resetting pointers to NULL after
freeing them. Although this is good programming practice, it causes unread
writes—freed pointers are never read.

– Our tool does not capture block memory accesses. Although we did not
observe any instances of spurious unread writes caused by block accesses in
our benchmarks, system calls like read() may potentially use DMA, which
would cause our analysis to miss some reads.

Remark on concurrency In multithreaded programs, the execution depends
on both the input and the scheduler. Our monitor only reports what happens
on one execution; a write may be unread on an execution and read on another
execution, even if the accesses are properly protected by locks. This is because
mutual exclusion locks (without condition variables) do not impose an ordering.
We believe that a write that is unread on any execution ought to be investigated
as suspicious code; it is even more suspicious if it is only unread on some (but
not all) executions. Such a program’s results depend on the scheduler.

4 Formal Definitions

We continue by giving a precise definition of an unread write and formally stating
the property that our runtime monitor enforces. The runtime monitor watches
an execution trace on-line.

Definition 1 An execution trace t is a sequence t = t1, . . . , tn of executed
instructions ti = 〈pci, opi〉, where pci is a program counter value and opi is
an operation. Operations include allocations, reads (READ addr i) and writes
(WRITE addr i), where addr i is of the form basei + off i. basei is a block’s base
address, returned from a previous allocation call. off i is an offset into a block.

Our definition of execution traces uses the scheduler’s interleaving of instructions
from different threads. A single input may give rise to multiple execution traces.

We can now define the notion of an unread write.

Definition 2 An unread write is an executed instruction tu = 〈pc,WRITE b+o〉
with no subsequent READ from b+o in that execution trace, such that 1) there is
no preceding pair in the trace (tp = 〈pc,WRITE b+o′〉, tp′ = 〈pc′,READ b+o′〉),
where p < p′ < u, and 2) there exists some other access to the same location,
ti = 〈pc′′, op b + o〉, where i 6= u.

The definition primarily states that the memory location of the write must not
subsequently be read. However, an otherwise-unread write should not be con-
sidered unread if any previous instruction at the same program counter value
wrote to the same block and that value subsequently got read. Also, we do not
report an unread write if it is the only access to a memory location; such writes
are often one-time memory initializations.

Using Definition 2, we can state what our runtime monitor is looking for.

9

Proposition 1 The runtime monitor described in Section 3 detects all unread
writes in an execution trace.

The proposition follows immediately from the design of our runtime monitor.

5 Experimental Results

In this section, we present the results of our unread memory analysis on a se-
ries of benchmark programs. We found that our tool successfully identified a
number of instances of suspicious code as well as writes that were useless for
a given execution. On our benchmarks, Tracerory caused a slowdown of 87×
(geometric mean) over the original execution time, demonstrating its feasibility
for occasional use on real codebases.

5.1 Qualitative Results

The main experimental results in this paper demonstrate the efficacy of our tool
on five benchmarks: abiword, sqlite, crafty, ImageMagick, and Python. In all
cases, our unread memory tool identified interesting code within the benchmarks;
two of the benchmarks could be improved using the tool results, while the results
illustrate some perplexing behaviour by ImageMagick.

abiword AbiWord is a word processor written in C++. We used version 2.6.8
of AbiWord, which contains over 559,000 lines of code. Although we explored a
number of workloads, we will present results from a run of AbiWord’s command-
line file-conversion mode which converts a 1.28M AbiWord file into plain text.
Since AbiWord has not been tuned for performance, we expected to find a num-
ber of unread writes in its codebase. In addition to the base executable, we added
libabiword-2.8.so and plugin libraries to our watched images.

The top sources of unread memory were utility routines, particularly string
and vector implementations. For instance, AbiWord allocates 116,436 strings
which it never reads. AbiWord also allocates 6,081 completely unread vectors.
Note the role of watched images here: had AbiWord used the standard STL
implementation, our tool would assume that the developers weren’t interested
in modifying the STL, and would therefore not report these writes. On the
other hand, because the offending allocations and writes lie in AbiWord code,
Tracerory reports these routines.

The remainder of the discussion presents domain-specific unread writes. We
will ignore library-like unread writes.

– We found 11,336 unread writes to the private m leader field in the fp TabRun

class. This field is never read on the file-conversion executions; it is only
accessed by the draw() method of fp TabRun, which is never called on
a file-conversion workload. There are no calls to the getLeader() method
anywhere in the code.
There are also 11,336 writes to the private m tabType field, which is never
read on this workload, or outside its defining class on any workload.

10

– We also found about 28,000 unread writes at each of the fp Run::setTmpLine,
::setTmpX, ::setTmpY, and ::setTmpWidth methods. These methods are
only called by the format() method, and there are no other writes of the
fields. The only reads of these fields are in the clearIfNeeded() method,
which is only called by format(). It appears that clearIfNeeded() only
executes when the document is reflowed, which never occurs on the file-
conversion workload. We investigated the underlying fields and found that
they were used to store the previous metrics of the run, allowing AbiWord
to decide whether it actually needs to reflow the text. The text-conversion
workflows only reflow the text once.

– Finally, we found 7,085 unread writes of a private field m iDrawWidth. The
write follows a discussion, in the comments, about the proper value for this
field. It appears that the value does not matter on this workload, at least.
It is, however, read in the clearScreen() and draw() methods, which are
invoked in other workloads.

These examples illustrate how our tool correctly identifies writes which are
redundant on a given execution.

sqlite SQLite is a ubiquitous SQL database engine. We examined version 3.7.13
of SQLite (138,797 lines of C code) under its provided “zerodamage” workload
and found a number of unread writes. We will describe the first three unread
writes that our tool found.

– The first two unread writes are both to the CellInfo structure and enable
SQLite to handle cases where an SQLite cell overflows a page. Tracerory re-
ported 1,999 unread writes to the nPayload and iOverflow fields of CellInfo.
The nPayload field is seldom read; two of the reads occur in assertions and a
third is compiled in conditionally. The only regular read of this field is in the
clearCell() function, which must not have been called on this execution.
Our tool could help in ensuring good test coverage—it seems that it would be
worthwhile to specifically craft a test to verify that the field value is correct.
The iOverflow field is read more often than nPayload, with 6 static in-
stances of reads in the code. (One of these reads is never compiled and
belongs to a function annotated with the comment “This function does not
contribute anything to the operation of SQLite.”) The other reads occur in
functions like clearCell() and fillInCell().

– The third unread write is to the validNKey field of the BtCursor structure,
a cursor over sqlite’s central b-tree data structure. This field only has one
read, which occurs in the static function sqlite3BtreeMovetoUnpacked().
It is written to 11 times across different parts of the SQLite code. Our tool
suggests that it might be worthwhile to closely inspect these writes to ensure
that they are correct, as they are not often used on this workload.

crafty Crafty is a chess program and one of the SPECCPU benchmarks; ver-
sion 23.4, which we examined, contains 34,792 lines of C code. We ran crafty’s

11

included “bench” command after editing the code to evaluate only the first posi-
tion (for performance reasons). Because Crafty is tuned for chess competitions,
we did not expect to find inefficiencies in its main loop; however, all three unread
memory reports from Tracerory were instances of suspicious or buggy code.

We manually investigated each of the unread memory blocks and found a
number of code idioms which could be improved:

– We learned that crafty contains code to parse its command-line options—it
does not use a library. The main() function allocates space for 512 potential
arguments, each of maximum length 128, and calls ReadParse() to copy the
arguments into its buffer. Since our test run does not use any command-
line arguments, the allocation for the arguments is unread memory, and
Tracerory lists it in its output, as we would expect.
Furthermore, inspecting the code, we found a buffer overflow: it does not
check that the command-line arguments are shorter than the buffer.

– We found 973,169 unread writes in one of the memory blocks allocated in the
InitializeHashTables() function. The accompanying comment indicates
that this function is supposed to completely clear the pawn hash table be-
tween test positions. The code itself iterates through an array and sets all
but one field to 0; the remaining field gets -1.
Calling memset() would be a more efficient way to clear the memory, and
would be less likely to leave forgotten state around (especially in the context
of program maintenance, where a developer might add a new field to the
struct stored in the hash table.)
We were surprised that our tool reported this code, since it appears to be
initialization code. However, on our test run, InitializeHashTables() ex-
ecutes twice; our tool reports the second set of writes as unread writes.

– The final unread memory block points out code marked as a kludge in the
comments. When crafty is asked to log its commands, it searches for the first
nonexistent or small file named log.NNN. It uses fstat to identify small files
if they already exist, but unconditionally allocates (and does not deallocate)
the memory block for the stat * return information from fstat.

Although the problems in this benchmark were not directly caused by unread
writes, we believe that it was useful to run Tracerory on crafty—inspecting
unread memory in crafty pointed us to bugs and inefficiencies in the code.

ImageMagick ImageMagick is a collection of tools for manipulating images,
which consists of over 400,000 lines of code as of version 6.7.4-9. This benchmark
uses many external libraries to open and process images, such as libjpeg; in
this section, we report only the behaviour of the convert binary while watching
ImageMagick-6.7.4-9 with its libraries libMagickCore and libMagickWand. Im-
ageMagick is highly tuned for performance, and we did not expect to find many
inefficiencies in its code. In addition, the README reports that the maintainers
perform a “comprehensive security assessment that includes memory and thread
error detection to prevent security vulnerabilities” before each release.

12

We watched ImageMagick resize a picture from its original size of 1404×625
to a new size of 1280 × 720. We manually investigated some of the reported
results from the unread memory tool, and present our findings below.

– Our tool reported 729,600 calls (somewhat, but not exactly, related to the
number of pixels in the output) to SetPixelOpacity originating from the
source file resize.c. The offending line is

SetPixelOpacity(q, ClampToQuantum(pixel.opacity));

We found that JPEG does not encode opacity—ImageMagick manufactures
OpaqueOpacity for each pixel from JPEG input and discards it upon write.
The writes to opacity are therefore redundant work on this workload.

– The largest offender, accounting for 2,632,500 writes, was jpeg.c. Unfor-
tunately, this appears to be a false positive; ImageMagick converters write
data to a temporary buffer, QueueAuthenticPixels, with the values of the
pixels’ red, blue, green and opacity channels. ImageMagick seems to write
the data 1 byte at a time, and read 4 bytes at a time (which accounts for
the number of unread writes 1404× 625× 3). There are no reported unread
writes for the blue channel—the blue channel is the offset that gets read.

– The third-largest source of unread writes, accounting for 2,944 writes, is
apparently also a spurious report. These writes copy the ICC colour profile.
The code is rather opaque and worth examining in detail for possible bugs,
since the effect of the code is not obvious at all (Figure 5).

p=GetStringInfoDatum (p r o f i l e) ;
for (i =(s s i z e t) GetStr ingInfoLength (p r o f i l e)−1;

i >= 0 ; i−−)
∗p++=(unsigned char) GetCharacter (j p e g i n f o) ;

Fig. 5. ImageMagick code showing an unread write.

We verified that commenting out the writes does change the program output
(although not visibly, as colour profiles are only used in internal calculations).

Tracerory pointed out a number of interesting idioms in the ImageMagick
code. Our false positives tell us that ImageMagick produces output by batching
up reads to its buffer, inconsistent with the original per-byte buffer write mode.

CPython CPython is the default bytecode interpreter for the Python program-
ming language. This application is multithreaded. It consists of over 350,000 lines
of C code as of version 3.3.0a3. We ran the 366 individual tests shipped with
CPython and watched the CPython executable, the libpython library, and all
other Python libraries built in the standard configuration.

13

– Our tool reported 55,343 unread writes to the overflowed field of the
PyThreadState object. Deeper inspection revealed that the implementation
for protecting the stack from overflowing is in a haphazard state. The code
also referenced a mailing list discussion which pointed out potential prob-
lems with the implementation. Our tool adds to the discussion by pointing
out that the write which clears the overflowed flag is often unread.

– Our tool also reported unread writes to other parts of the interpreter state,
including the line number f lineno; and the previous instruction f lasti,
on LOAD FAST and STORE FAST instructions. The code revealed that the inter-
preter reads f lineno only in tracing mode, which we were not using; those
writes are therefore unnecessary in the interpreter’s normal operation. The
writes to f lasti are generated by a macro. That field is used to report the
current line number (e.g. when generating a stack trace) and during tracing.

Summary Our tool illustrates the additional complexity added by unused
modes of operation, as with Python and its tracing function. The extra state
for unused modes are unused in normal operation. Such rarely-accessed state is
likely to be less reliable than state which is regularly used. Programs with fewer
modes will certainly be simpler than programs with more modes.

Internal library (vectors and strings) usage accounted for many of the un-
read memory reports. Some string implementations, e.g. AbiWord and python,
track the string length and zero-terminate the string; we observed 152952 unread
writes of the final 0 on one of our test cases. AbiWord’s string implementation
also includes the buffer length, which is unread for any string which is never
grown. We observed thousands of unread writes of AbiWord vector elements.

5.2 Performance

To establish that our tool’s performance is adequate, we timed it on a number of
benchmarks, including the qualitative benchmarks above. Our test system is an
Intel Core i7-3930K at 3.20GHz running ArchLinux GNU/Linux, and our tool
runs on top of Pin 2.11 (release 49306). We compared the base runtime (without
Pin) to the runtime with Pin alone and with our tool. Reported times are an
average over three runs. Figure 6 presents our analysis times. The geometric
mean of our slowdown compared to the raw execution time is 87×, while we add
a geometric mean of 14× slowdown over pin with no instrumentation.

6 Related Work

We discuss two areas of related work. First, we summarize past work on investi-
gating writes to memory; the related work in that area attempts to reduce mem-
ory bandwidth, while we are advocating the use of unread writes to improve code
quality. Next, we discuss alternatives in the dynamic binary translation space,
including other memory checkers which also use dynamic translation, and other
applications of dynamic binary translation tools.

14

raw pin pin tracerory tracerory tracerory
(s) (s) slowdown (s) slowdown/raw slowdown/pin

imagemagick 0.22 2.78 12.6 37.76 172 13.6
python 170.63 208.24 1.22 224.63 1.32 1.08
abiword 28.92 63.45 2.19 7116.43 239 112
ffmpeg 2.31 6.76 2.93 446.46 193 66.0
crafty 15.57 22.36 1.44 906.49 58.2 40.5
sqlite 0.01 3.47 347 7.21 721 2.08

Fig. 6. Unread Memory analysis times.

6.1 Optimizing Memory Writes

The program transformation most closely related to the present research is the
store elimination transformation proposed by Ding and Kennedy [4]. Their work
generally attempts to reduce applications’ memory bandwidth usage. They pro-
pose a loop-based transformation, store elimination, which eliminates redundant
writes inside loop bodies. In store elimination, some loops write values back to
an array while performing a computation of some summary information (e.g. a
sum) over the array. If the code never reads the final values written to the array,
then store elimination will eliminate the unread writes. Because our goal is to
examine all of the program code for potential bugs, our dynamic analysis does
not focus on loops and arrays, but rather considers all writes to the heap.

Trace optimizers like Dynamo [5] and rePLay [6] eliminate unread writes at
runtime. A pass through a trace that is about to execute suffices for removing
some unread writes, and such an optimization is therefore standard in the trace
optimizer context. A more-powerful dynamic analysis could eliminate most un-
read writes. Our work, however, aims to help developers improve program quality
by enabling them to remove unread writes, rather than to improve performance.

Arnold et al [7] have implemented Virtual-Machine level runtime monitors
which detect a subset of our memory properties—their QVM can detect idle
objects, i.e. objects on which only the constructor is called. We would report
such objects as unread as long as the constructor only initializes the object.

6.2 Dynamic Binary Translators

We chose to build our monitor on top of the Pin engine [3]. Other dynamic binary
translation engines would have been as effective for monitoring. DynamoRIO [8]
and Valgrind [1] would also support unread memory detection.

Valgrind’s Memcheck tool performs runtime verification for the following
memory errors: accesses to unallocated memory, uninitialized memory, memory
leaks, double frees and overlapping memory. Our tool analyzes unread writes,
which are not detected by Valgrind. While not as serious as memory errors
(they don’t cause crashes), unread writes may lead to bugs or at least wasted
resources—they should qualify as a novel “code smell” [9].

15

Another approach is to statically rewrite the program source by inserting
monitoring calls. Purify [2] follows this approach; it transforms the program at
link time and inserts instrumentation code to detect memory errors. A program
rewriting approach could potentially be equally effective for detecting unread
memory; however, this approach requires recompilation of the program and li-
braries, which our current scheme does not need.

7 Conclusion

We have presented a novel dynamic analysis, unread memory, that investigates
the converse of the standard memory safety property “all reads to memory must
have previously been written”. Our analysis instead identifies writes to memory
that never get read. We explained the design and implementation of our analysis,
using dynamic binary translation, and presented experimental results from a set
of benchmarks. We found that unread writes often indicate something interesting
in the code; a number of the writes that we found could be eliminated or improved
without affecting the program semantics.

Acknowledgments This research was supported in part by Canada’s Natural
Science and Engineering Research Council and an Ontario Graduate Scholarship.
We’d like to thank Emina Torlak for helpful comments on a draft of this paper.

References

1. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic bi-
nary instrumentation. In: Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation (PLDI 2007), San Diego,
California, USA, ACM Press (June 2007) 89–100

2. Hastings, R., Joyce, B.: Purify: Fast detection of memory leaks and access errors.
In: Proc. of the Winter 1992 USENIX Conference. (1991) 125–138

3. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: PLDI 2005, Chicago, IL, USA (June 2005) 190–200

4. Ding, C., Kennedy, K.: The memory bandwidth bottleneck and its amelioration by
a compiler. In: IPDPS, IEEE Computer Society (2000) 181–190

5. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: a transparent dynamic optimiza-
tion system. In: PLDI ’00, New York, NY, USA, ACM (2000) 1–12

6. Fahs, B., Bose, S., Crum, M., Slechta, B., Spadini, F., Tung, T., Patel, S.J., Lumetta,
S.S.: Performance characterization of a hardware mechanism for dynamic optimiza-
tion. In: MICRO 34, Washington, DC, IEEE Computer Society (2001) 16–27

7. Arnold, M., Vechev, M.T., Yahav, E.: Qvm: An efficient runtime for detecting
defects in deployed systems. ACM Trans. Softw. Eng. Methodol. 21(1) (2011) 2

8. Bruening, D., Garnett, T., Amarasinghe, S.P.: An infrastructure for adaptive dy-
namic optimization. In: CGO 2003, San Francisco, CA (March 2003) 265–275

9. Fowler, M., Beck, K.: Refactoring: improving the design of existing code. Addison-
Wesley Professional (1999)

