
Identifying Test Refactoring Candidates with
Assertion Fingerprints

Zheng (Felix) Fang
∗

Microsoft Corporation
zfang@uwaterloo.ca

Patrick Lam
University of Waterloo

patrick.lam@uwaterloo.ca

ABSTRACT
Test cases constitute around 30% of the codebase of a num-
ber of large software systems. Poor design of test suites hin-
ders test comprehension and maintenance. Developers often
copy-paste existing tests and reproduce both boilerplate and
essential environment setup code as well as assertions. Test
case refactoring would be valuable for developers aiming to
control technical debt arising due to copy-pasted test cases.

In the context of test code, identifying candidates for
refactoring requires tedious manual effort. In this work, we
specifically tailor static analysis techniques for test analy-
sis. We present a novel technique, assertion fingerprints, for
finding similar test cases based on the set of assertion calls
in test methods. Assertion fingerprints encode the control
flow around the ordered set of assertions in methods.

We have implemented similar test case detection using as-
sertion fingerprints and applied it to 10 test suites for open-
source Java programs. We provide an empirical study and
a qualitative analysis of our results. Assertion fingerprints
enable the discovery of tests that exhibit strong structural
similarities and are amenable to refactoring. Our technique
delivers an overall 75% true positive rate on our benchmarks
and reports that 40% of the benchmark test methods are po-
tentially refactorable.

CCS Concepts
�Software and its engineering → Automated static
analysis; Software testing and debugging;

1. INTRODUCTION
Modern software systems often use unit tests to ensure

proper code behaviour. We have found that test-intensive
systems contain 30 lines of unit tests for every new 100 lines
of system code [13]. Tests therefore make up a significant
part of the codebase in modern systems. While coverage

∗This work was done while the author was a student at the
University of Waterloo.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPPJ ’15, September 08 - 11, 2015, Melbourne, FL, USA
© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3712-0/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2807426.2807437

tools are ubiquitous, and while many tools exist for generat-
ing tests, we are aware of far fewer tools for statically analyz-
ing test cases. Yet, based on the sheer number of lines of ex-
tant test code, test analysis and maintenance must consume
a significant amount of developer resources, and have been
cited as a threat to the viability of at least one project [15,
Preface]. Furthermore, Bavota et al have found that the
presence of code smells in tests hinders comprehension of
test cases [3]. Our overall goal is to develop static analysis
techniques specifically applicable to test code.

Test cases are often thought of as being self-contained en-
tities. At a class level, JUnit test classes must run inde-
pendently and take no input parameters. Inspired by this
self-contained worldview, a common way to develop a set of
related test cases is to copy-paste an existing test case, re-
placing the inputs and expected outputs. As system size in-
creases, this lack of design manifests as technical debt. The
presence of multiple copies of boilerplate code increases test
maintenance overhead and propagates pre-existing errors.

As with system code, refactoring is a powerful tool for in-
crementally improving the design of test suites. Van Deursen
et al were the first to propose refactoring test code [5].
Meszaros built on this work and, more generally, advocates
for the application of agile software design techniques to test
design. His book [15] explains strategy and tactics for de-
veloping maintainable test suites.

Our primary goal is to facilitate the refactoring of suites
of unit tests by identifying suitable refactoring candidates.
We describe the design and implementation of a tool that
applies static analysis techniques to find similar test cases
throughout a test suite. Our tool leverages the fact that
most test cases rely on assertions to validate system state.
We compute sets of assertion fingerprints for test cases and
identify similar test cases using these fingerprints. We then
show these results to the developer, along with contextual
information, as potential candidates for refactoring.

A number of options exist for implementing test refac-
toring, once candidates have been found. First, developers
may simply refactor tests using language features such as
inheritance or generics. Test frameworks allow test classes
to provide common setup and teardown methods for the
test cases in a particular class. Tillman and Schulte have
proposed parametrized unit tests (PUTs) to increase the ex-
pressive power of unit testing and to enable test reuse [22].
Similarly, Saff proposed theories to simplify and increase the
robustness of unit tests [20].

We believe that refactoring existing test suites to im-
prove their design is valuable. According to Saff, the use

http://dx.doi.org/10.1145/2807426.2807437

of theories reduces the long term maintenance cost for test
suites. Moreover, Thummalapenta et al. conclude from an
empirical study of existing test suites that parametrization
is beneficial—their results indicate that test suites, when
retrofitted with parametrization, can detect new defects and
provide increased branch coverage [21]. Test refactoring, ei-
ther with language extensions or with standard language
features, generally reduces the brittleness and improves the
ease-of-understanding of test code.

However, test refactoring technologies currently require
the developer to manually identify opportunities for refac-
toring, which becomes increasingly difficult as test suite size
grows. Refactoring candidates are already difficult to man-
ually identify across different test classes, let alone across
packages. While writing new tests using test refactoring
techniques is often the correct long-term decision, it is not
always clear when such techniques apply. Incremental evo-
lution and short-term imperatives may slowly lead to situ-
ations where technical debt, due to copy-pasted test cases,
gets out of control. The output of our tool—sets of similar
test cases, or clones—enables developers to regain control,
refactor tests, and thus improve the quality of their test
suites.

We present a technique for statically analyzing suites of
unit tests to detect potentially refactorable test cases. We
implemented our technique using the Soot program analysis
framework [12]. Our tool analyzes test suites and displays
sets of similar test methods along with the evidence, in terms
of specific program fragments, used to draw this inference.

Using our tool, we conducted an empirical study based on
a suite of 10 benchmark programs (ranging from 8,000 to
246,000 lines of code) with test suites ranging from 6,000 to
57,000 lines of test code, and 12,332 test methods in all. Our
technique finds that the benchmarks have from 19% to 70%
potentially refactorable test methods. Suite-wide, 44% of
methods are similar to at least one other method in the suite.
We manually inspected 191 randomly sampled refactoring
candidates (as identified by our tool) and found that 75%
of our recommendations appeared to be copy-pasted from
other methods.

Our primary contributions1 are:

• the application of static analysis techniques towards
test code, in this case for identifying similar test cases;

• the concept of an assertion fingerprint set to summa-
rize key aspects of a unit test; and

• an empirical study of a significant suite of benchmark
programs using our technique for identifying similar
unit tests.

Our technique computes, for each test method, an ordered
set of fingerprinted assertions. It then identifies sets of tests
with identical ordered sets of assertions, and filters out likely
false positives. Finally, our display tool shows the computed
sets of similar tests to the developer. Our tool enables many
viable test refactorings and reports few false positives.

Our tool is available under the GNU GPL at:

https://bitbucket.org/felixfangzh/similartestanalysis

and our benchmark set at:

http://patricklam.ca/files/pppj15-benchmarks.tgz.

1Supplementary results available in the companion thesis [7].

1 public void testNominalFiltering() {
2 m_Filter = getFilter(Attribute.NOMINAL);
3 Instances result = useFilter();
4 for (int i = 0; i < result.numAttributes(); i++)
5 assertTrue(result.attribute(i).type() != Attribute.

NOMINAL);
6 }

1 public void testStringFiltering() {
2 m_Filter = getFilter(Attribute.STRING);
3 Instances result = useFilter();
4 for (int i = 0; i < result.numAttributes(); i++)
5 assertTrue(result.attribute(i).type() != Attribute.

STRING);
6 }

Figure 1: Similar test methods (set of size four; NOMINAL
and STRING shown) from Weka’s test suite, reported by our
tool. Unshown NUMERIC and DATE methods are analogous.

1 static final int [] filteringTypes = {
2 Attribute.NOMINAL, Attribute.STRING,
3 Attribute.NUMERIC, Attribute.DATE
4 };
5

6 public void testFiltering() {
7 for (int type : filteringTypes)
8 testFiltering(type);
9 }

10

11 public void testFiltering(final int type) {
12 m_Filter = getFilter(type);
13 Instances result = useFilter();
14 for (int i = 0; i < result.numAttributes(); i++)
15 assertTrue(result.attribute(i).type() != type);
16 }

Figure 2: Refactored testFiltering() motivating example
from Figure 1 (using a Test Utility Method in standard
Java).

2. APPROACH
Our technique detects potentially refactorable methods in

a test suite by collecting and matching sets of assertions
across test methods. Our key insight is that assertions form
a fundamental part of the structure of JUnit tests. In this
section, we define the notion of an assertion fingerprint and
explain how it helps identify similar test methods.

An assertion fingerprint summarizes the parameters of
an assertion along with information about the assertion’s
control-flow reachability. A test method’s assertion finger-
print set is an ordered set of assertions. Our tool computes
assertion fingerprint sets, collects methods with matching
fingerprint sets, and filters out common false positive pat-
terns.

2.1 Motivating Example
Our goal is to report candidates for refactoring to the

developer. Intuitively, our analysis declares that method m1

is similar to method m2 if they contain similar assertions (or
related calls to fail()) with similar control flow.

Figure 1 presents an excerpt from one set reported by
our analysis. The full set contains 4 similar methods from
Weka’s test suite (which test nominal, string, numeric, and

https://bitbucket.org/felixfangzh/similartestanalysis
http://patricklam.ca/files/pppj15-benchmarks.tgz

date filtering). Manual inspection confirms that these meth-
ods are indeed viable refactoring candidates. Figure 2 shows
the result of an Extract Method refactoring of the code
from Figure 1, creating a Test Utility Method. While, af-
ter refactoring, individual tests become more complicated
to understand, we argue that the suite of 4 refactored tests
is collectively easier to understand and maintain; Meszaros
advocates using a Test Utility Method “whenever test logic
appears in several tests and we want to be able to reuse that
logic” [15].

Our analysis identifies the set in Figure 1 by matching fin-
gerprints from the assertion invocations in the methods. In
this case, all four test methods only have one static assertion
invocation, assertTrue(boolean).

We next compute assertion fingerprints for each of the
assertions. Assertion fingerprints consist of 5 components;
we illustrate branch counts and merge counts here. Each
assertion is reachable from its method start through a sin-
gle branch, {i < result.numAttributes()}, and thus has a
branch count of 1. Furthermore, there is an implicit branch
and merge in the boolean comparison in the assertion pa-
rameter ({.type() != ...}), which leads to a merge count
of 1 for each assertion. Also, the assertion is in a for loop.
Finally, these assertions are not in catch blocks or caught by
exception handlers. This gives assertion fingerprints {(bc:1,
mc:1, inLoop:true)} for all asserts. (Although we include
predicates in Figure 3 for expository reasons, they do not
play any role in the assertion fingerprint.)

0: // ...start

1: {i < result.numAttributes()}

2: int type;
/* type in
* { Attribute.NOMINAL, Attribute.STRING,
* Attribute.NUMERIC, Attribute.DATE }
*/
{result.attribute(i).type() != type}

3

4: assertTrue(boolean)

true

false

true false

Figure 3: A control-flow graph for the example in Figure 1.
Only assertions and predicates included.

Because all four of the test methods share the same or-
dered set of assertion fingerprints, and no other methods in
the suite have the same fingerprints, our technique reports
that the test methods in Figure 1 are similar, and a devel-
oper can then refactor the code to that in Figure 2.

2.2 Assertion Fingerprints
We next describe all of the parts of our assertion finger-

prints. Our analysis computes a fingerprint for each JUnit
assertion or fail call. It then collects the set of assertion fin-
gerprints for a method to form the method’s assertion fin-
gerprint set, which is ordered using the method’s statement
ordering (as written by the developer in the source code).
Our analysis then uses assertion fingerprint sets, along with
the parameter types in the assert calls, to identify similar
methods. Fingerprints include 5 attributes for each asser-
tion: a branch count; a merge count; an exceptional suc-
cessors count; and two boolean flags, indicating whether the
given assertion is in a loop or a catch block. These attributes
characterize the control flow reaching each assertion.

The intuition behind the components of an assertion fin-
gerprint are as follows. Normal control flow edges, as cap-
tured in the branch and merge counts and the loop flag,
are important to understanding the control-flow structure of
test methods and how assertions make up test methods. In
particular, they summarize the control-flow features that an
execution of the test must traverse to reach each assertion.
Section 4.3 further discusses the relevance of merge counts.
We also include exceptional control flow in our fingerprints
after noticing that try and catch blocks are common in some
of our test suite benchmarks, particularly JDOM.

Our implementation uses the Soot framework [12] to stati-
cally analyze test suites, generate assertion fingerprints, and
compute sets of similar methods. Soot provides a control-
flow graph (CFG) over three-address code for each (test)
method, as well as functions for computing useful properties
such as dominators. Each control-flow graph has a distin-
guished start vertex (node 0 in Figure 3), which corresponds
to the first statement in the method.

Branch Count.
The most straightforward positional attribute of a vertex

is its branch count.

Definition 1. The branch count of a vertex n is the
minimal number of branches needed to reach that vertex from
the start of a method, excluding n.

We traverse the control-flow graph from its head, annotat-
ing each vertex with its branch count the first time that
vertex is visited. (A vertex may be visited multiple times
if there are multiple paths from the start vertex to that
method.) Every time our traversal encounters a branch, we
increment the branch count. Note that we never decrement
the branch count; instead, we account for merges by increas-
ing the merge count.

In Figure 3, vertex 1 is a branch. We increment the branch
count at all of its successors. Vertex 2 is also a branch.

Merge Count.
The merge count is dual to the branch count. We ignore

vertices with more than 2 successors or predecessors.

Definition 2. A branch vertex is a vertex b in the
control-flow graph with two successors b+ and b−. A merge
vertex mb for b is a vertex that is a transitive successor of
both b+ and b− such that the sum of the path lengths from b
to mb through b+ and b− is minimal.

In Figure 3, vertex 4 is the merge vertex for vertex 2. There
is no merge vertex for vertex 1.

Definition 3. The merge count for a vertex n is the min-
imal number of merge vertices needed to reach n from the
start of the method, including n.

The merge count at nodes 0, 1, 2, and 3 is 0, while the merge
count at node 4 is 1.

Once again, we consider the shortest paths because there
may be multiple paths to reach a vertex in the CFG.

Exceptional Successors.
We determine the number of exceptional successors of an

assertion by examining the exceptional CFG of the method
body. Soot’s exceptional CFG augments the regular CFG
with exception edges at all CFG vertices; this CFG repre-
sents possible exceptions and their handling. We consider
only the number of exceptional successors and not the types
of exceptions being handled.

Loops & Catch Block Indicator Flags.
We use a depth-first search on the CFG to determine

whether an assertion is in a loop. We determine whether
an assertion is in a catch block using dominator analysis
and examining whether any exception handler statement is
a dominator of the assertion call in the CFG.

On approximation.
Our technique collects fingerprints for the assertions in

each test method and then identifies methods containing the
same assertion fingerprints (in the same order) as being sim-
ilar. It would also be possible to use graph isomorphism on
control-flow graphs (or slices thereof). However, our finger-
printing technique incorporates approximation, thus captur-
ing more results than a strict isomorphism-based approach,
while empirically showing a low false positive rate. (Sec-
tion 3 discusses our estimate of the false positive rate.)

Example.
The code in Figure 4, and its CFG in Figure 5, illustrate

all five components of a fingerprint. For expository reasons,
we have included fingerprints for each vertex v in Figure 5
(even though only fingerprints for assertion invocations mat-
ter for our technique). We include predicates for expository
reasons; we do not use them in our algorithm.

Observe that the branch vertex at line 3 ({i < 10}) in-
crements the branch count for its successors at line 4 and
5 (inside the for loop) and those at line 10 and 12 (outside
the for loop). Line 6 is represented as two vertices, both of
which are merge vertices. One merges the two successors of
{i == 2} (lines 4 and 5), while the other merges {i != 10}
(introduced at line 6). Although line 10 (fail(String)) is
actually unreachable and hence does not throw any excep-
tions, Soot includes its exceptional successors anyway.

2.3 Building Sets of Similar Methods
After computing ordered sets of assertion fingerprints, we

then partition a suite’s test methods into sets of similar
methods. Methods in the same set all have the exact same
ordered set of assertion fingerprints. We match methods
based on ordered sets of assertions because our key assump-
tion is that test methods that verify state, using asserts, in
the same order are likely to be refactorable.

1 public void test() {
2 int i;
3 for (i = 0; i < 10; ++i) {
4 if (i == 2)
5 assertEquals(i, 2);
6 assertTrue(i != 10);
7 }
8 try {
9 throw new Exception();

10 fail("Should have thrown exception");
11 } catch (final Exception e) {
12 assertEquals(i, 10);
13 }
14 }

Figure 4: Java code used to illustrate assertion fingerprints.

/*
* line 3
*/
{i < 10}

start

/*
* line 4
* bc:1 ({i<10})
* inLoop:true
*/
{i == 2}

try:
/*
* line 10
* bc:1 (¬{i<10})
* es:1
*/
fail(String)

/*
* line 5
* bc:2 ({i<10},{i==2})
* inLoop:true
*/
assertEquals(int, int)

/*
* line 6
* bc:1 ({i<10})
* mc:1 ({i==2})
* inLoop:true
*/
{i != 10}

catch:
/*
* line 12
* bc:1 (¬{i<10})
* inCatch:true
*/
assertEquals(int, int)

/*
* line 6
* bc:1 ({i<10})
* mc:2 ({i==2},{i!=10})
* inLoop:true
*/
assertTrue(boolean)

true

false
true

false

exception

true false

Figure 5: A control-flow graph over three-address code for
the example in Figure 4. We elide all but assertions and
predicates. Notations bc, mc, es, inLoop, inCatch represent
branch count, merge count, exceptional successors, whether
in loops or not, and whether in a catch block or not.

Filtering.
To mitigate the false positive rate, we filter out sets un-

likely to be refactorable. Manual analysis of the results
showed that the ordered set of assertions of a true positive
set generally satisfy at least one of:

1. must contain some control flow—this is enforced by

requiring that at least one component of an assertion
fingerprint is either greater than 0 or true;

2. must contain more than 4 assertions; or

3. must be heterogeneous in signature (invoke different
assertion types, e.g. assertEquals(String, double,
double, double) and assertEquals(int, int)).

We only report sets which satisfy at least one of the above
conditions.

This filtering eliminates sets containing tests that are not
likely to be related. Condition 1 eliminates tests that are too
simple; Condition 2 guarantees that test methods are large
enough to be interesting; Finally, Condition 3, when the
assertion calls do not satisfy conditions 1 or 2, empirically
helps avoid false positives on simple (homogeneous) but long
test methods.

3. RESULTS
We implemented our technique to evaluate its efficicacy

and have released our tool and benchmark set (see Section 1
for the URLs). Table 1 briefly describes each of the bench-
marks. Our tool takes from 25 seconds (jdom) to 4 min-
utes (Google Visualization) to run on an Intel Core i7-2600K
processor. These benchmarks have manually-generated test
suites; as we describe later, some of the test suites have al-
ready been manually refactored, while others have not.

Our technique works on any JUnit test suites, although
we expect it to be most effective for unrefactored manually-
generated test suites. We present an empirical study of the
results, a qualitative analysis of our technique’s efficacy, and
a sampling-based investigation of the false-positive rate.

In our sampling-based investigation, we manually judged
whether tests were similar enough to be potentially refac-
torable. True positives were cases where all tests in a set
were potentially refactorable; false positives had no pair of
tests in a set that could be refactorable; and fragmented true
positives contained at least one pair of refactorable tests.
For instance, we found that some sets contained obviously
cut-and-pasted clones, while others were obviously false pos-
itives. (Consider methods with just a single assertTrue()
call; our technique explicitly filters out such methods, as de-
scribed in Section 2.3, but they would otherwise be included
in the results.)

Our technique identifies 44% of the test methods in our
benchmark suites as being similar to some other test method
in that suite. Our technique also enjoys a low false positive
rate; 75% of the results reported by our technique appear
to be similar enough to be refactorable (potentially with
language extensions beyond plain Java 8).

3.1 Empirical Study
Table 2 presents statistical properties of our sets of simi-

lar methods, including counts of methods, classes, and pack-
ages per set. It also presents medians, means, and (assum-
ing a normal distribution) standard deviations (σ) for these
counts. Our potentially-refactorable sets are small and rel-
atively local: the median number of methods in a set is 3,
classes 2, and packages 1.

Test Methods.
Table 2 shows that our system identifies 5476 test methods

(44% of all test methods in 10 test suites) as belonging to

0 20 40 60 80

0

50

100

150

200

Asserts

M
et

h
o
d
s

Figure 6: Distribution of set sizes. Each point represents
one set, showing the number of asserts common to members
of that set on the x-axis, and its distribution (# of similar
methods) on the y-axis. 98.26% of sets have fewer than 40
assertions and 50 methods.

sets of similar methods. However, the mean masks a wide
dispersion; our sets contain from 2 to 201 methods, and
the suite-wide standard deviation in the number of methods
per set is 12.3. Joda-Time and JFreeChart, with standard
deviations of 19.3 and 16.6 in the number of methods per
set, are particularly widely dispersed.

Distribution of Assertions.
Since our technique focuses on assertions, we computed

per-benchmark statistics counting how many assertions be-
longed to a set of similar methods (Table 3). Our results
indicate that 44% of assertions in the suite belong to some
set (the same as the number of methods which belong to a
set). Our sets of similar methods contain a median of 4 and
a mean of 6.2 assertions. Assuming a normal distribution,
the standard deviation is 6.6.

Similar Method Set Size (methods and assertions).
Figure 6 presents a scatter plot summarizing the sizes (in

terms of methods and asserts) of our sets. Most of the sets
reside in the lower left quadrant: 98% of sets have fewer
than 40 assertions and fewer than 50 methods. We find no
sets with both lots of methods and lots of assertions.

Estimating True Positive Rate via Sampling.
Since it is impractical to manually investigate the false

positive rate for 978 sets, we used random sampling to es-
timate our false positive rate. For 9 of our benchmarks, we
randomly drew 20 reported similar method sets and manu-
ally classified them as true positives, false positives, or frag-
mented true positives. The other benchmark only included
11 sets and we manually classified all of them. Table 4 shows
the manual sampling results. To compute confidence inter-
vals, we assume that the underlying distribution of true/false
positives is binomial.

Table 1: Our evaluation included 10 benchmark suites, all open-source projects with test suites.

Version Test LOC Total LOC
Apache POI v3.9 86 113 247 799 Java API for Microsoft documents
Commons Collections v3.3 46 129 110 394 Implementation of Collections data structures
Google Visualization v1.1.2 13 440 31 416 Data visualization framework
HSQLDB v2.2.9 30 481 32 208 Relational database
JDOM v1.1.2 25 618 76 734 Java API for manipulating XML data
JFreeChart v1.0.15 93 404 317 404 Charting library
JGraphT v0.8.3 12 142 41 801 Graph theory objects and algorithms
JMeter v2.8 20 260 182 293 Performance testing and measurement framework
Joda-Time v2.0 67 978 134 758 Date and time library
Weka v3.7.8 26 270 495 198 Machine learning framework

Table 2: On our benchmark suite, 44% of test methods resemble other test methods in the same benchmark. Detected sets
of similar methods tend to have few methods (3), classes (2), and packages (1). % Methods in Sets denotes the number of
methods which belonged to a set of similar methods.

Sets
Test

Methods
% Methods

in Sets

Methods/Set Test
Classes

Classes/Set
Packages

Packages/Set
Median Mean σ Median Mean σ Median Mean σ

Apache POI 185 747 26 2 4.0 5.1 571 2 3.1 4.4 411 2 2.2 1.8
Commons Collections 166 501 46 2 3.0 2.2 354 2 2.1 1.8 267 1 1.6 1.0
Google Visualization 35 142 37 3 4.1 3.8 83 2 2.4 1.4 54 1 1.5 0.8

HSQLDB 65 298 40 2 4.6 8.5 99 1 1.5 1.8 75 1 1.2 0.5

JDOM 29 82 31 2 2.8 1.7 37 1 1.3 0.7 32 1 1.1 0.3
JFreeChart 146 1066 49 3 7.3 16.6 900 2 6.2 16.3 373 2 2.6 2.9
JGraphT 11 27 19 2 2.5 0.9 11 1 1.0 0.0 11 1 1.0 0.0
JMeter 60 196 34 2 3.3 2.2 90 1 1.5 1.2 83 1 1.4 1.0

Joda-Time 231 2113 58 4 9.1 19.3 708 2 3.1 3.6 267 1 1.2 0.5
Weka 50 304 70 3 6.1 9.7 139 2 2.8 4.0 100 1 2.0 2.2

Total 978 5476 44 3 5.6 12.3 2992 2 3.1 7.1 1673 1 1.7 1.6

Efficacy of Filtering.
We manually investigated all 197 sets that were filtered

out by the technique described in Section 2.3. Overall, 24%
of the filtered-out results were false positives and 63% were
fragmented true positives. Removing these results increased
the quality of our reported results. Filtering worked ex-
ceptionally well on POI (40% false positives and 58% frag-
mented true positives on 43 removed sets) but poorly on
Weka (43% true positives in 7 sets removed).

Beyond false positives and highly-fragmented true posi-
tives, 13% of the true positive results removed by the filter
appeared to be copy-pasted. However, these true positive
sets contained small sets of straight-line homogeneous asser-
tions. These sets therefore likely contain ubiquitous clones
(Section 4.2) and would typically be difficult or not worth
the effort to refactor. We believe such sets provide little
value to the developers and should be ignored.

3.2 Qualitative Analysis
We randomly selected 191 sets (all 11 sets from JGraphT

and 20 from each of the other benchmarks) for a manual
analysis, including a false positive determination and a qual-
itative inspection. (Section 3.3 will present our manual anal-
ysis of the largest sets in our benchmark suite.) Using our
best judgment, we determined whether each of these would
be potentially refactorable (using the techniques described
in Section 4.2, notably Extract Method or parametrization)
or whether they were false positives. Table 4 summarizes
per-benchmark false positive rates. We report true/false

positive rates as (r ± c)%, where r is the true/false pos-
itive rate of the samples, and c is the confidence interval
on the reported true/false positive rate. Overall, the sam-
ples demonstrated high true positive rate (75±5)% and low
false positive rate (10±5)%. Our technique worked particu-
larly well on JGraphT (100% true positives) and Joda-Time
(95±10)% true positives, but less well on Google Visualiza-
tion (60± 15)% and Apache POI (30± 20)%. The remain-
ing benchmarks showed true positive rates between 70% and
85%.

JGraphT.
JGraphT is a Java library that implements graph theory

objects and algorithms. Our analysis found 11 sets in the 54
test classes (14 packages) of the JGraphT test suite (version
0.8.3). All reported sets are refactorable. We were surprised
by the high quality of JGraphT’s sets, since the matched
assertion fingerprints are fairly simple. For instance, one
of our sets includes the assertion fingerprint consisting of
a single assertEquals(String, String) with 1 exceptional
successor. This set contains two similar test methods,
testGraphReader() and testGraphReaderWeighted(), and no
other methods. It appears that our technique performs well
on JGraphT’s test suite because this suite is composed of
heterogeneous test methods and is fairly small (diminishing
the likelihood of getting false positives).

JDOM.
JDOM is a Java-based document object model library for

Table 3: Between 17% and 73% of the assertions in a benchmark, depending on the benchmark, belong to some set of similar
methods. Coincidentally, 44% of assertions also belong to some set of similar methods. Median set contains 4 assertions.

Sets Assertions % Assertions
in Sets

Assertions/Set
Median Mean σ

Apache POI 185 906 17 3 4.9 4.8
Commons Collections 166 1217 46 5 7.3 8.8
Google Visualization 35 147 23 4 4.2 2.8

HSQLDB 65 213 37 2 3.3 3.0

JDOM 29 205 31 5 7.1 7.6
JFreeChart 146 1031 56 5 7.1 5.7

JGraphT 11 37 18 2 3.4 3.4
JMeter 60 271 31 3 4.5 3.4

Joda-Time 231 1923 73 6 8.3 7.9
Weka 50 141 60 3 2.8 1.8

Total 978 26952 44 4 6.2 6.6

Table 4: Sampling-based investigation shows that 75% of the reported sets are true positives. Confidence intervals included
for 95% confidence level.

Sets Sample
Size

% True Positives
in Samples

% Fragmented True
Positives in Samples

% False Positives
in Samples

Confidence
Interval (%)

Apache POI 185 20 30 15 55 20
Commons Collections 166 20 85 10 5 16
Google Visualization 35 20 60 35 5 15

HSQLDB 65 20 75 15 10 17

JDOM 29 20 85 15 0 9
JFreeChart 146 20 70 15 15 20

JGraphT 11 11 100 0 0 0
JMeter 60 20 85 15 0 14

Joda-Time 231 20 95 5 0 10
Weka 50 20 80 15 5 15

Total 978 191 75 15 10 5

XML. The JDOM test suite (version 1.x) includes 16 test
classes in 3 packages. Its tests often use try/catch blocks
to ensure that exceptions are thrown as expected. Assertion
fingerprints’ inclusion of try/catch blocks thus work particu-
larly well for JDOM—its true positive rate is (85% ± 9%).

Joda-Time.
Joda-Time is a library for manipulating dates and times.

The Joda-Time test suite (version 2.0) consists of 121
test classes in 6 packages. The samples showed that the
Joda-Time test suite contains many sets of similar test
methods, which contain straight-line assertion fingerprints.
Figure 7 presents an example set. This set includes tests
Test{Buddhist,Coptic,Ethiopic,GJ,Gregorian}Chronology,
all of which have identical structure and can be refactored
using theories. This example also shows that assertion
fingerprints can leverage the lack of control-flow structures
to match test methods.

Apache Commons Collections.
The Apache Commons Collections augments the Java

Collections Framework with additional data structures.
The 151 test classes in the 11 packages of the Apache

1 public void testEquality() {
2 assertSame(BuddhistChronology.getInstance(TOKYO),
3 BuddhistChronology.getInstance(TOKYO));
4 // [... 4x assertSame(BuddhistChronology,

BuddhistChronology)]
5 }

(a) testEquality() for TestBuddhistChronology.

1 public void testEquality() {
2 assertSame(CopticChronology.getInstance(TOKYO),
3 CopticChronology.getInstance(TOKYO));
4 // [... 4x assertSame(CopticChronology, CopticChronology)]
5 }
6 }

(b) testEquality() of TestCopticChronology.

Figure 7: Two implementations of testEquality() make
up one set from the Joda-Time test suite. Both contain
straight-line assertion fingerprints.

Commons Collections test suite (version 3.3) include a
number of refactorable tests. Furthermore, some test

methods are exactly identical (modulo whitespace) but
reside in different classes and hence invoke different
helper code. In Figure 8, test methods testIterator()
of classes Test{ArrayIterator, IteratorChain,
ObjectArrayIterator, UniqueFilterIterator} are textu-
ally identical. However, their containing classes implement
different makeFullIterator() methods and testArray
arrays. Hence, the tests exercise different data structures
despite being identical. This implementation pattern makes
the test methods in the Apache Commons Collection highly
refactorable.

1 public void testIterator() {
2 Iterator iter = (Iterator) makeFullIterator();
3 for (int i = 0; i < testArray.length; i++) {
4 Object testValue = testArray[i];
5 Object iterValue = iter.next();
6 assertEquals("Iteration value is correct", testValue,

iterValue);
7 }
8 assertTrue("[...] should now be empty", !iter.hasNext());
9 try {

10 Object testValue = iter.next();
11 } catch (Exception e) {
12 assertTrue(
13 "NoSuchElementException must be thrown",
14 e.getClass().equals((new NoSuchElementException()).

getClass()));
15 }
16 }

Figure 8: Test method from the Apache Commons
Collections, belonging to classes Test{ArrayIterator,
IteratorChain, ObjectArrayIterator,
UniqueFilterIterator}. At runtime, makeFullIterator()
(line 2) and the value of testArray (line 3, 4) bind different
values depending on the containing class.

Weka.
Weka is a machine learning software suite. The

Weka test suite (version 3.7.8) consists of 98 test
classes in 17 packages. Weka has classes that im-
plement similar machine learning techniques in both
supervised and unsupervised variants. One exam-
ple is weka.filters.supervised.attribute.DiscretizeTest
vs weka.filters.unsupervised.attribute.DiscretizeTest.
Both tests exercise the methods of class Discretize but one
targets the supervised version and the other targets the un-
supervised version. Test method testTypical() is textually
identical between the supervised and unsupervised variants
of DiscretizeTest. One can refactor this set by theoriz-
ing data points of supervised and unsupervised Discretize
objects and applying the same test method.

JFreeChart.
JFreeChart is a library allowing the creation and display of

professional quality charts in applications. The JFreeChart
test suite (version 1.0.15) consists of 348 test classes in
23 packages, and in particular contains similar methods
which test related types. Figure 9 shows that the test
method named testClear() in classes VectorSeriesTests
and XIntervalSeriesTests are identical but perform tests
on VectorSeries and XIntervalSeries, respectively. (Un-

like with the Commons Collection, testClear() only differs
in terms of the calls to the class under test, not to self-calls
on the test class.) Theories would be straightforward to
apply to such test methods. Despite testing different data
types, the example in Figure 9 appears to be refactorable.

1 public void testClear() {
2 ComparableObjectSeries s1;
3 // (a) in VectorSeriesTests:
4 // s1 = new VectorSeries("S1");
5 // (b) in XIntervalSeriesTests:
6 // s1 = new XIntervalSeries("S1");
7 s1.addChangeListener(this);
8 s1.clear();
9 assertNull(this.lastEvent);

10 assertTrue(s1.isEmpty());
11 s1.add(1.0, 2.0, 3.0, 4.0);
12 assertFalse(s1.isEmpty());
13 s1.clear();
14 assertNotNull(this.lastEvent);
15 assertTrue(s1.isEmpty());
16 }

Figure 9: JFreeChart contains testClear() methods which
are identical except for the type under test.

Apache POI.
Apache POI is a Java API for Microsoft documents. Our

technique worked poorly on this benchmark, yielding a low
true positive rate of (30 ± 20)% on the 50 test classes in
10 packages of Apache POI test suite (version 3.9). We no-
ticed that several test methods have identical assertion fin-
gerprints but are not refactorable. Hence, the Apache POI
test suite exposes the limitations (Subsection 4.4) of asser-
tion fingerprints. Specifically, because our technique does
not gather information on assertion parameters, it cannot
detect the differences between the arguments passed to dif-
ferent calls to assertNotNull and assertEquals(int, int),
making it susceptible to a certain class of false positives.

Google Visualization Data Source Library.
The Google Visualization Data Source Library enables

the visualization of data sources. The test suite (ver-
sion 1.1.2) contains 50 test classes in 10 packages. We
found that this suite contains test methods involving com-
plex query-related statements, consequently reducing the
roles of assertions in a test method. Furthermore, this
test suite also uses custom helper methods such as void
assertStringArraysEqual(String[] expected, String[]
found). Google Visualization’s test suite thus exploits lim-
itations of our technique, resulting in a below-average true
positive rate of (60± 15)%.

3.3 Large Sets
Figure 6 shows that 5 of our sets include over 100 methods

each. These large sets have from 1 to 9 assertions, and
belong to Joda-Time (3 sets) and JFreeChart (2 sets). We
investigated them in more detail, and found that most of
the reported methods in these large sets were refactorable
true positives; 1 of the reported sets was fully true positive,
while another 3 sets were fragmented true positives, with a
majority of the contents of those sets being true positives.

The JFreeChart true positive set finds 151 methods with

3 matching assertTrue(boolean) calls; these calls succeed
1, 2, and 2 control-flow merges respectively. Manual in-
spection revealed that JFreeChart uses exactly the same
code to implement a method called testCloning() (148) or
testCloning2() (3) across different classes.

The remaining 3 sets include one from JFreeChart and 2
from Joda-Time. The JFreeChart set contains 124 meth-
ods with 2 straight-line asserts (assertTrue(boolean) suc-
ceeded by assertEquals(int, int)), 123/124 of which are
all implementing testHashcode() with the same code. The
Joda-Time examples are testing arithmetic operations and
constructors with identical code; a few false positives sneak
into these sets.

The one set containing false positives is a 201-method set
with one assert inside a try. The assert is simply a call
to fail(), with no message. This could be considered bad
practice—there is no error message indicating the reason for
the failure. This set is the only result that is very fragmented
and contains smaller sets.

4. DISCUSSION
We next discuss several aspects of our results in greater

depth. Previously, we presented counts of false and frag-
mented true positives; in this section, we discuss some po-
tential causes of these non-true positive results. We also
qualitatively discuss the refactorability of our reported sets.
We conclude this section with a survey of limitations and
threats to validity.

4.1 False and Fragmented True Positives
While our technique returns many sets of methods that we

classify as refactorable, it also returns some sets that are less
actionable—false positives and fragmented true positives.

False Positives.
False positives occur when two different methods have, by

chance, the same assertion fingerprints. For instance, POI
contains two methods, testBasics() and testImageCount(),
which both have 4 straight-line assertions of the same types,
but no conceptual similarity. False positive sets are unrefac-
torable and hence undesirable. Fortunately, they appear
relatively rarely: they account for (10±5)% of the manually-
investigated random sample and 13% of the filtered sets.

Fragmented True Positives.
Recall that fragmented true positives occur when a set

contains some, but not all, refactorable test methods. For in-
stance, one set in Commons Collections includes four meth-
ods with the same assertion fingerprint—fail() with 1 ex-
ceptional successor. This set confounds two 2-element sets.
(A more complex algorithm could split such sets; however,
simplicity was one of our design goals.) While counting frag-
mented true positives can approximate the applicability of
refactoring in a benchmark suite, their lack of unity makes
them difficult to work with and they are hence likely to be
lower on the priority list for potential refactoring. We believe
that it is helpful to the developer to filter out fragmented
true positives whenever possible, and indeed, the sets re-
moved by our filter are 63% fragmented true positive.

4.2 Refactorability of Similar Method Sets
Because our technique uses assertion fingerprints to group

similar test methods, methods in the same set are similar in

structure. (See Figures 1, 8, and 9 for examples.) This
similarity should enable refactoring. In this work, we are
agnostic to refactoring technology. Figure 2 showed the re-
sult of one refactoring. More generally, Meszaros provides
an arsenal of techniques for test refactoring. The most rel-
evant techniques are Test Utility Methods, Custom Asser-
tions, Test Helpers, Testcase Superclasses, and Parametrized
Tests [15, Chapter 24]; these techniques result in shorter test
methods whose intent is more obvious. Parametrized unit
tests and theories can also help. Nevertheless, some sets re-
main difficult to refactor. This difficulty surely contributes
to the existence of clones in benchmark suites.

Non-parametrizable Sets.
Figure 10 demonstrates a non-parametrizable set. De-

spite similar structures, testValueList_getByIndex() tests
the get(int) method of a ListOrderedMap object by iterat-
ing forward, whereas testValueList_removeByIndex removes
items from a ListOrderedMap object while iterating until the
ListOrderedMap object only contains one element. The dif-
ference in semantics makes the two test methods difficult or
impossible to refactor.

1 public void testValueList_getByIndex() {
2 resetFull();
3 ListOrderedMap lom = (ListOrderedMap) map;
4 for (int i = 0; i < lom.size(); i++) {
5 Object expected = lom.getValue(i);
6 assertEquals(expected, lom.valueList().get(i));
7 }
8 }

1 public void testValueList_removeByIndex() {
2 resetFull();
3 ListOrderedMap lom = (ListOrderedMap) map;
4 while (lom.size() > 1) {
5 Object expected = lom.getValue(1);
6 assertEquals(expected, lom.valueList().remove(1));
7 }
8 }

Figure 10: A non-parametrizable set from the Apache Com-
mons Collections test suite.

Ubiquitous Clones.
Ubiquitous clones are short methods with high frequency

across a system [18]. We have discovered a few ubiquitous
clones in our results. For example, copies of the 4-line test
method testToolTips (Figure 11) exist in 10 test classes of
the Weka test suite. Ubiquitous clones appear to be meth-
ods that perform short, specific tasks, or that were already
refactored with helper methods and are now short. Ubiqui-
tous clones are not only difficult to refactor because of their
highly frequent appearance in the system, but also unlikely
to be worth the effort to refactor because they are so short.

4.3 Relevance of Merge Counts
Recall that our assertion fingerprints include 5 compo-

nents: branch count, merge count, exceptional successor
count, and indicators for loops and catch blocks. In Sec-
tion 2.2 we provided an intuitive justification for these com-
ponents. Clearly, including the merge count (or any other

1 public void testToolTips() {
2 if (!m_GOETester.checkToolTips())
3 fail("Tool tips inconsistent");
4 }

Figure 11: A member of an ubiquitous clone set from Weka.
Identical copies of testToolTips() exist in 10 test classes.

component) in assertion fingerprints can only decrease the
number of reported assertion sets. This lowers the false pos-
itive rate at the expense of recall. Not using merge counts
may increase the false positive rate but also the recall. We
continue with an empirical examination of the merge count
specifically.

In the JGraphT benchmark, using the merge count omits
two assertion sets from the results. One of the two sets is
a false positive. The other set is a true positive. In the
end, the user could choose to enable or disable merge counts
depending on their needs. If the result sets are small and
the user would like to see more similar test sets, the user
can disable merge counts. In the more likely scenario where
our tool returns many results, we estimate that the user
would like to avoid false positives as much as possible. In
that case, the user should stay with the default setting and
enable merge counts as part of assertion fingerprints.

4.4 Limitations
The key assumption behind our technique is that test

methods with the same assertion fingerprints are likely to
be refactorable. Test suites that do not respect this assump-
tion expose the limitations of our technique. Specifically,
our technique works less well when the specific arguments
to the assertion are important, or when assertions have al-
ready been refactored into helper methods. More generally,
assertion fingerprints work best when the ordered set of as-
sertions in a method is important, and less well when tests
use other means to verify program behaviour.

Assertion Arguments.
Assertion fingerprints focus on the structure of the test

methods and not on the data flowing to the particular as-
sertions. We observed that this worked well for most of our
test suites. However, Apache POI’s test suite would require
finer-grained information for best results.

Helper Methods.
Occasionally, test methods are already somewhat refac-

tored and use helper methods to invoke relevant assertions.
Our technique currently relies on bare assertions appear-
ing in test methods; it does not understand Custom As-
sertions [15]. Our technique is unaware of helper methods’
effects and does not include the assertions of callees in asser-
tion fingerprints, which may cause additional false positives.
Test methods that already use helper methods are unlikely
to be worth the effort to refactor.

4.5 Threats to Validity
The selection of 10 benchmarks from different application

areas (graph theory, machine learning, data structures, etc)
aims to mitigate threats to external validity. However, no
benchmark suite is exhaustive and captures all possible test
code styles, especially those specific to certain applications

or domains. Also, our benchmark suite size does not exceed
270 kLOC (lines of code in the test suites). Larger bench-
marks may have different properties than those in our set.

We have not investigated non-Java or non-JUnit bench-
marks. Our results might not generalize to such test suites.

The major threat to internal validity in our case is from
confounding effects. Our results show that similar assertion
fingerprints are correlated with refactorable test methods.
However, the assertion fingerprints may simply be reflecting
some other property of the code.

A threat to construct validity is that the clone sets were
manually analyzed, using a subjective 3-point scale (true
positive, fragmented true positive, false positive).

We believe that we have adequately mitigated the threats
to validity through benchmark selection and the use of def-
initions of clone characteristics. The result is an accurate
assessment of our technique’s performance on JUnit suites.

5. RELATED WORK
Proper agile development techniques require tests to be

developed concurrently with system code. In that vein,
Van Deursen et al first proposed refactoring test code [5].
Meszaros followed up with an exhaustive description of de-
sign patterns for test code [15]. This prior work included
instructions for manually refactoring to test code. It did not
propose techniques for identifying potential refactorings.

Bavota et al investigated the incidence of test smells along
with their impact [3]. Their work used a simple rule-based
tool to identify properties of the test code (e.g. “uses ex-
ternal resources”), followed by manual classification. Other
approaches use metrics, e.g. Van Rompaey et al [17] and
Aniche et al [1]. Greiler et al [9] analyze method and field
names, but not the code itself. Many of these works are
purely empirical and describe extant test suites. Our goal
is to use sophisticated static analysis techniques to produce
tools to help developers. The previous work also showed
that test smells harmed test suite comprehension, an issue
that we empower developers to address through our results.

Guerra and Fernandes describe a framework for (ad-hoc
manual) reasoning about test refactorings and present a tool
to carry out simple refactorings [11]. Similarly, Estefo de-
scribes TestSurgeon [6], a tool for restructuring unit tests.
Our tool can provide input to an automatic refactoring tool,
but applying the appropriate refactorings appears to still be
beyond the state of the art.

The most common automated test suite analysis is the
ubiquitous code coverage tool. Such tools help develop-
ers increase coverage by pointing out where it is lacking.
Combined static and dynamic approaches exist—Zhang et
al proposed such an approach for test generation to improve
structural coverage [24]. We do not consider coverage.

More relatedly, Greiler et al apply dynamic techniques
to measure test case similarity [10]. However, their work
attempts to match tests at different levels, namely end-to-
end tests with unit tests, to aid test suite understanding—
presumably, one could understand the high-level test more
easily than the unit test. Our work instead finds lateral
relationships between different unit tests, and supports de-
velopers when they refactor tests.

Recent research has also investigated automated and
guided refactoring. However, our focus on tests is novel.
Balazinska et al proposed an approach to refactor common
parts of method clones, parametrizing their differences [2].

Their technique is limited to certain types of applicable
clones. An alternative approach proposed by Volanschi [23]
also covers other domain-specific and application-specific
clones but requires manual intervention. Because we focus
on test code, our technique would require less manual effort
than Volanschi’s technique on our domain.

5.1 Comparison with Clone Detectors
Our work aims to discover refactorable test methods us-

ing static analysis techniques. We therefore leverage several
properties specific to the problem at hand, including the as-
sertion structure of test methods and the fact that the unit
of granularity is always going to be a method.

Clone detectors are another, more generic, tool for po-
tentially finding refactorable test methods. Roy et al have
surveyed existing clone detectors [19], and classify existing
clone detection tools into four broad categories: textual,
lexical, syntactic, and semantic. Our approach is closest
to a syntactic approach in that it operates on control-flow
graphs. However, our focus on test cases’ assertion finger-
prints bakes in a selection of features that we believe to
be most relevant, and our results show that this emphasis
results in better results. Related syntactic approaches are
those of Baxter [4] and, more recently, the AST-based ccdiml
clone detector of the Bauhaus suite (henceforth referred to
as simply “Bauhaus”).

Some syntactic approaches are metrics-based; for in-
stance, the Datrix tool [14] computes metric values for each
function and groups together functions with similar metrics.
Our approach is similar to Datrix’s in that we are sensitive to
features such as control-flow loops. However, we collect fea-
tures for each assertion—assertion fingerprints—rather than
for a method as a whole, and we report methods with the
same set of assertions and the same control-flow (i.e. the
same set of assertion fingerprints). This is possible because
of our focus on assertions as the key to understanding test
methods, and we expect that it would yield better results.
(Datrix is not available for a head-to-head comparison.)

We continue by comparing our technique to syntactic
AST-based clone detectors, both in principle and empiri-
cally, via a head-to-head comparison with the best-in-class
clone detector Bauhaus [16, 8]. We omit quantitative com-
parisons to Bauhaus; see [7] for full results.

Contextual Information.
As a byproduct of computing assertion fingerprints, our

technique has additional information about why certain
methods belong to clone sets. We make this information
available to the developer. We believe that it will enable
developers to better refactor the reported methods.

In particular, our tool reports the branch nodes which
contribute to each assertion’s branch count and merge count.
It also reports quantitative information—counts of methods,
classes, and packages for each clone set—that could hint at
the relevance and refactorability of the reported clones.

Comparison with Bauhaus.
To further evaluate our results, we performed a head-to-

head comparison of our sets with those from Bauhaus. Un-
like our technique, Bauhaus operates by comparing tokens at
source level and detects similar patterns throughout a code-
base. We ran Bauhaus with a token threshold of 50 (normal
for Bauhaus). Bauhaus’s performance is subject to tuning

the token threshold; a lower value detects more clones while
giving more spurious results. Our technique does not re-
quire thresholds. Recall that our technique works at method
level, while Bauhaus is oblivious to code structure and de-
tects duplicate code within methods. If Bauhaus operated
at method level rather than matching arbitrary AST frag-
ments, then it would report fewer results. Although that
would then enable the user to increase thresholds, there is
no conceptual reason to believe that higher thresholds would
yield better results.

Due to the unavailability of method-level AST tools, we
do not report comparisons with such tools. However, we
believe that our qualitative conclusions would still hold.

Inspecting randomly selected Bauhaus results revealed:

• because Bauhaus is insensitive to method boundaries,
it detects more clone sets (5367) than we do (978).
However, Bauhaus clone sets thus include arbitrary
method fragments. We believe that our similar meth-
ods are easier to refactor; returning methods also helps
avoid spurious results, particularly ubiquitous clones.

• our technique is unaffected by mid-clone textual dif-
ferences that Bauhaus is sensitive to, as we operate
on Java bytecode rather than source code. Hence,
some of our clone sets are supersets of Bauhaus clone
sets. (An AST-based clone detection tool that works
at method granularity would not find clones with mid-
method textual differences unless such differences were
beneath its threshold.)

• our technique detected 443 clone sets (45% of our re-
sults) that Bauhaus missed. In particular, Bauhaus
(with threshold 50) was not able to detect our moti-
vating example (Figure 1).

• our technique misses clones where assertions get added
or removed, as it requires exact matches on sets of
assertion fingerprints. Bauhaus can find such clones
by matching around missing assertions. Hence, some
of our clone sets are subsets of Bauhaus clone sets.
(Matching assertion fingerprint sets with edit distance
of 1 caused too many false positives.) Requiring
exact matches increases our precision but costs re-
call. Matching at method granularity would also cause
Bauhaus to miss such clones, again unless they were
beneath Bauhaus’s threshold.

Our technique captures additional, high-quality, clones
which are not reported by existing clone detectors.

6. FUTURE WORK
This work presented a technique for detecting similar tests

in JUnit test suites. Two avenues for future work are its
generalization to other test frameworks as well as the appli-
cation of this work to test code refactoring.

Test Frameworks.
JUnit inspired many similar unit test frameworks. This

family of frameworks is sometimes denoted xUnit, and in-
cludes NUnit, PHPTest, AUnit, and many others.

It is straightforward to generalize our technique to xUnit
frameworks that support imperative languages. All of the
above-listed frameworks would qualify. We suspect that our

technique would work about as well on these frameworks
as it does for JUnit, but that claim is subject to empirical
validation.

We expect that our technique would work less well on
test frameworks for functional languages, since control-flow
works differently for those languages. It is possible that
developers would often have already refactored test cases
in these languages, especially due to the dynamic nature of
these languages.

Test Refactoring.
The present work is a useful first step towards test refac-

toring, both manual and automated. In both cases, it would
be useful to develop techniques for prioritizing the resrults
of the similar test analysis. We expect that a heuristic ap-
proach could work well enough to enable further work. To
automatically refactor tests, we would examine high-priority
sets and propose suitable program transformations.

7. CONCLUSIONS
Test suites account for a significant proportion of system

code, yet are poorly served by static analysis tools. In this
paper, we presented a novel application of static analysis
techniques for detecting similar test cases. Our tool’s output
enables developers to improve the quality of their test suites
by refactoring similar test cases.

Our technique works by computing assertion fingerprints,
which summarize the control-flow surrounding assertion
calls in test methods. It then partitions test methods into
clone sets according to ordered sets of assertion fingerprints.

We implemented our technique and collected sets of sim-
ilar methods for 10 open-source Java test suites, analyzing
them via empirical study and qualitative analysis. Empir-
ically, our tool reported that 44% of test methods in our
suite were similar to other methods. Qualitatively, we veri-
fied that 1) many of our reported test methods are amenable
to refactoring; and 2) control and exception flow is impor-
tant for detecting similar test methods. More broadly, we
believe that our research points towards future work that
applies static analysis techniques to help developers under-
stand and improve test suites.

Acknowledgments
Divam Jain collected our benchmark suite and worked on an ear-

lier technique for detecting similar test methods. This research

was supported by Canada’s Natural Science and Engineering Re-

search Council.

8. REFERENCES
[1] M. F. Aniche, G. A. Oliva, and M. A. Gerosa. What

do the asserts in a unit test tell us about code quality?
a study on open source and industrial projects. In
CSMR, pages 111–120, 2013.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Partial redesign of Java software
systems based on clone analysis. In Proceedings of the
Sixth Working Conference on Reverse Engineering,
WCRE ’99, pages 326–336, 1999.

[3] G. Bavota, A. Qusef, R. Oliveto, A. D. Lucia, and
D. Binkley. An empirical analysis of the distribution of
unit test smells and their impact on software

maintenance. In ICSM, pages 56–65. IEEE Computer
Society, 2012.

[4] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees.
In International Conference on Software Maintenance,
pages 368–377, November 1998.

[5] A. V. Deursen, L. Moonen, A. Bergh, and G. Kok.
Refactoring test code. In Proceedings of the 2nd
International Conference on Extreme Programming
and Flexible Processes in Software Engineering
(XP2001), pages 92–95, 2001.

[6] P. Estefo. Restructuring unit tests with testsurgeon.
In M. Glinz, G. C. Murphy, and M. Pezzè, editors,
ICSE, pages 1632–1634. IEEE, 2012.

[7] Z. Fang. Test clone detection via assertion fingerprints.
Master’s thesis, University of Waterloo, Sept. 2014.

[8] N. Gode. Evolution of type-1 clones. In Proceedings of
the 2009 Ninth IEEE International Working
Conference on Source Code Analysis and
Manipulation, SCAM ’09, pages 77–86, 2009.

[9] M. Greiler, A. van Deursen, and M. D. Storey.
Automated detection of test fixture strategies and
smells. In ICST, pages 322–331. IEEE, 2013.

[10] M. Greiler, A. van Deursen, and A. Zaidman.
Measuring test case similarity to support test suite
understanding. In C. A. Furia and S. Nanz, editors,
TOOLS, volume 7304 of LNCS, pages 91–107.
Springer, 2012.

[11] E. M. Guerra and C. T. Fernandes. Refactoring test
code safely. In ICSEA, page 44. IEEE Computer
Society, 2007.

[12] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The
Soot framework for Java program analysis: a
retrospective. In Cetus Users and Compiler
Infrastructure Workshop, Galveston Island, TX,
October 2011.

[13] P. Lam and Z. F. Fang. Beyond coverage: What lurks
in test suites? In GTAC, 2014. http://goo.gl/tVGzy3.

[14] J. Mayrand, C. Leblanc, and E. M. Merlo. Experiment
on the automatic detection of function clones in a
software system using metrics. In International
Conference on Software Maintenance, pages 244–253,
November 1996.

[15] G. Meszaros. xUnit test patterns: Refactoring Test
Code. Addison-Wesley, 2007.

[16] Project Bauhaus. http://www.bauhaus-stuttgart.de/.
Last accessed July 2015.

[17] B. V. Rompaey, B. D. Bois, S. Demeyer, and
M. Rieger. On the detection of test smells: A
metrics-based approach for general fixture and eager
test. TSE, 33(12):800–817, 2007.

[18] C. K. Roy and J. R. Cordy. A survey on software
clone detection research. Technical Report 2007-541,
Queen’s University, Kingston Ontario, Canada, Sept.
2007.

[19] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison
and evaluation of code clone detection techniques and
tools: A qualitative approach. Science of Computer
Programming, 74(7):470–495, May 2009.

[20] D. Saff. Theory-infected: Or how I learned to stop
worrying and love universal quantification. In

http://goo.gl/tVGzy3
http://www.bauhaus-stuttgart.de/

Companion to the 22nd ACM SIGPLAN conference on
Object-oriented programming systems and applications
companion, OOPSLA ’07, pages 846–847, 2007.

[21] S. Thummalapenta, M. R. Marri, T. Xie, N. Tillmann,
and J. de Halleux. Retrofitting unit tests for
parameterized unit testing. In Proceedings of the 14th
international conference on Fundamental approaches
to software engineering: part of the joint European
conferences on theory and practice of software,
FASE’11/ETAPS’11, pages 294–309, 2011.

[22] N. Tillmann and W. Schulte. Parameterized unit tests.
In Proceedings of the 10th European software
engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of
software engineering, ESEC/FSE-13, pages 253–262,
2005.

[23] N. Volanschi. Safe clone-based refactoring through
stereotype identification and iso-generation. In
Software Clones (IWSC), 2012 6th International
Workshop on, pages 50–56, 2012.

[24] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined
static and dynamic automated test generation. In
Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA ’11, pages
353–363, 2011.

	Introduction
	Approach
	Motivating Example
	Assertion Fingerprints
	Building Sets of Similar Methods

	Results
	Empirical Study
	Qualitative Analysis
	Large Sets

	Discussion
	False and Fragmented True Positives
	Refactorability of Similar Method Sets
	Relevance of Merge Counts
	Limitations
	Threats to Validity

	Related Work
	Comparison with Clone Detectors

	Future Work
	Conclusions
	References

