
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

C++ const and Immutability: An Empirical
Study of Writes-Through-const

Jon Eyolfson1 and Patrick Lam2

1 University of Waterloo
Waterloo, ON, Canada
jeyolfso@uwaterloo.ca

2 University of Waterloo
Waterloo ON, Canada
patrick.lam@uwaterloo.ca

Abstract
The ability to specify immutability in a programming language is a powerful tool for developers,
enabling them to better understand and more safely transform their code without fearing unin-
tended changes to program state. The C++ programming language allows developers to specify
a form of immutability using the const keyword. In this work, we characterize the meaning of the
C++ const qualifier and present the ConstSanitizer tool, which dynamically verifies a stricter
form of immutability than that defined in C++: it identifies const uses that are either not con-
sistent with transitive immutability, that write to mutable fields, or that write to formerly-const
objects whose const-ness has been cast away.

We evaluate a set of 7 C++ benchmark programs to find writes-through-const, establish root
causes for how they fail to respect our stricter definition of immutability, and assign attributes to
each write (namely: synchronized, not visible, buffer/cache, delayed initialization, and incorrect).
ConstSanitizer finds 17 archetypes for writes in these programs which do not respect our version
of immutability. Over half of these seem unnecessary to us. Our classification and observations
of behaviour in practice contribute to the understanding of a widely-used C++ language feature.

1998 ACM Subject Classification D.3.3 Language Constructs and Features

Keywords and phrases empirical study, dynamic analysis, immutability

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2016.

1 Introduction

Immutability is an important concept that simplifies reasoning about programs and eases
software maintenance. Most importantly, immutability circumscribes possible side effects, so
that (in some cases) a user of a function may avoid closely examining the implementation
of the function and its callees. One concrete application of immutability is: if a developer
knows that a library function does not modify one of its arguments (including transitive
arguments), then they know that it is safe to call that library function with that argument
from multiple threads, as the function only requires read access to its argument.

C++ [6] is a popular language that allows programers to specify immutability using
const1. C++ experts such as Meyers recommend judicious use of “const-correctness” [7]
in C++ codebases. It is generally clear when developers could use const, but not (in
non-obvious cases) when they should use const.

1 Some of our discussion also applies to C, but we focus on C++ in this paper.

© Jonathan Eyolfson and Patrick Lam;
licensed under Creative Commons License CC-BY

30th European Conference on Object-Oriented Programming (ECOOP 2016).
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 C++ const and Immutability: An Empirical Study of Writes-Through-const

We distinguish between two uses of C++’s const qualifier: const-qualified global/stack
objects, whose data may never change (i.e. immutable objects), and const-qualified refer-
ences/pointers to objects (i.e. read-only references [9]). (For now, assume that there are no
casts that remove const qualifiers and no mutable storage class specifiers; these language
features violate immutability.) An immutable object’s fields may never change, and mutable
references to that object may never be created. A read-only reference, on the other hand,
only guarantees immutability for accesses through qualified references. An object with a
read-only reference to it may still be mutated through other, mutable, references. C++
enforces a shallow immutability guarantee (also known as bitwise const) for writes through
the read-only reference: while it is illegal to reassign the fields of such an object, any referents
of fields may change. We expand on this in Section 3.

C++’s type system admits several workarounds to const’s supposed immutability guar-
antees. Much research defines type qualifiers similar to C++ const, but with stronger
guarantees. These type systems do not have any holes in the type system, such as unsafe
casts. Furthermore, they not only ensure that the field values do not change, but also
ensure that objects referenced through fields also do not change (i.e. deep, or transitive,
immutability; again, see Section 3 for more details).

On the other hand, our industrial contacts have indicated that, in their codebases, const
has been used to deter new developers from modifying certain variables. Such variables may
be modified by an experienced developer ready to assume the consequences [4]. In such cases,
const serves an advisory role, but does not provide any guarantees.

Our goal is to explore the space of possible meanings for immutability declarations in
C++ and to examine what guarantees developers appear to be expecting in practice. We
developed a tool, ConstSanitizer, that instruments programs to identify source locations that
modify const-qualified objects, using more restrictive semantics than guaranteed by C++.
ConstSanitizer monitors writes-through-const, i.e. writes performed on const-qualified
objects or references, either transitively (which is allowed in C++), or through C++’s const
escape hatches. To better understand const usage in practice, we ran ConstSanitizer on a
benchmark suite and manually classified all writes-through-const.

Specifically, the goal of this work is to answer the following research questions:
(RQ1) Do developers perform shallow and transitive writes-through-const?

(Answer: Yes to both.)
(RQ2) How do developers write-through-const?

(Answer: By directly writing to fields of const-qualified objects and through
transitive writes; both are about equally common.)

(RQ3) Why do developers write to fields of const-qualified objects?
(Answer: Buffers and delayed initialization were important reasons, but
over half the time, we couldn’t find any clear reason motivating developers’
decisions to write through const.)

Section 8 presents our detailed answers to these questions.

Our contributions include:
the design and implementation of a novel dynamic analysis for C++ that detects writes-
through-const-qualified variables (both shallow and transitive);
an empirical study of const usage (including writes-through-const-qualifiers) on a suite
of 7 C++ benchmarks; and,
based on the empirical study, a novel classification of writes-through-const-qualifiers in
the wild according to a root cause and a set of attributes.

J. Eyolfson and P. Lam XX:3

2 Motivating Example

We continue with an example of a const usage that must be accepted by C++ compilers [6]
but leads to undefined behaviour when used with the C++11 standard library specification.

Listing 1 contains function writeId(), which modifies field id of its parameter. Func-
tion evil() takes a const-qualified parameter, casts away the const qualifier, and calls
writeId(). Both these functions must be accepted by C++ compilers.

Listing 1 Method evil() violates the spirit of const by causing a write to an externally-visible
field of const object “a”. Circled numbers used for subsequent explanations.

class A { public: int id; };
size_t std::hash(const A& a) { return std::hash(a.id); }
std::unordered_map<A, std::string> m;
const A a;

m.insert(a, "Value");
evil(a);
m.find(a);

void evil(const A& a) { writeId(const_cast<A*>(&a)); }
void writeId(A *pa) { pa->id = 5; }

1

2 3

4

Function writeId() does not perform anything unexpected. The write to id is legitimate
with respect to const: writeId() has a non-const reference to data and is therefore entitled
to write to it. (writeId() conflicts with a different part of the library specification—one
oughtn’t write to fields used as hashes—but that conflict is beyond the scope of this work.)

Function evil() accepts a const parameter “a”; the const qualifier intuitively suggests
that the state of “a” should not change across a call to evil(). (Section 3 explains the
C++ semantics of const in more detail; Section 4 explains the writes that ConstSanitizer
monitors.) evil() then casts away the const qualifier and calls writeId(), which writes to
the id field, thus changing the state of “a”.

Listing 1 also contains client code. This client code provides a hash() function for when
objects of type “A” are used with the standard library. It continues with a declaration of
an std::unordered_map m, which gets a const-qualified object “a” added to it. (In C++,
objects like “a” and m are constructed upon declaration.) Between the insert() call and the
find() call, the program calls evil(), which changes the id field, thus causing the hash()
of “a” to change. As a result, the find() call may unexpectedly return m.end(), indicating
that it did not find “a” in the expected bucket; that result should be a surprise to the client.

In our example, the client code is doing nothing wrong, yet it may get an unexpected
result from the map. The client should be entitled to believe that its const-qualified “a”
object does not change between the two map calls and that the object is still in the map.

Shadow Value

bn+1 bn bn−1 ... b0

Is T const?

Is T * const?

Is T ** const? Is T (*)n const?

Figure 1 Our shadow values encode the const-ness of each level of an n level pointer.

ECOOP 2016

XX:4 C++ const and Immutability: An Empirical Study of Writes-Through-const

Analysis of example. We informally describe how ConstSanitizer works on our example.
Our LLVM-based tool actually operates at the llvm bitcode level (assisted by metadata
from clang), but for clarity we describe shadow values and the effects of statements on them
using C++ code. Section 4 describes our analysis as-implemented on top of LLVM.

ConstSanitizer associates a shadow value with each variable. This shadow value describes
whether or not the variable, and each of its dereferences, may be written to; Figure 1 shows
how shadow values encode const-ness. We present the semantics of our shadow encoding
more thoroughly in Table 1. ConstSanitizer propagates shadow values through the program’s
execution. At each write, ConstSanitizer verifies that the shadow value permits a write, and
indicates a write-through-const-qualifier if not.

We next show how ConstSanitizer works; circled numbers refer back to Listing 1.

1 Program allocates const-qualified new object “a”. Using debug information, ConstSanit-
izer finds the const qualifier in “a”’s type, and associates shadow value (1)2 with “a”,
indicating that “a” is const.

2 ConstSanitizer then propagates shadow value (1)2 to the function call evil(). Inside
function evil(), variable “a” is a reference, so we shift the shadow value to the left and
obtain (10)2 inside the function call boundary.

3 Program casts from type const A* to type A*. Because “a” is a reference inside evil(),
the address-of operation has no effect on the shadow value. (On a non-reference, taking
the address would also result in a logical shift left of the shadow value.)
The cast of the const qualifier is invisible to LLVM, so ConstSanitizer propagates shadow
value (10)2 across the cast. (Had “a” originally not been const, a pointer to it would
have shadow value (00)2 and it would have shadow value (0)2.)
Finally, ConstSanitizer passes shadow value (10)2 for parameter “pa” of writeId().

4 Inside function writeId(), the instrumented write to field “id” observes that the shadow
value of the address of the containing object is (10)2. Because the left-hand side uses the
-> operator, ConstSanitizer shifts the shadow value back right once, giving shadow value
(1)2 for the containing object. Because the containing object is const, we also apply a
shadow value of (1)2 to all writes to fields of that object.
When executing the write, ConstSanitizer checks the right-most bit of the shadow value
for the destination. Since this value is (1)2, the program is writing a value through a
const reference. ConstSanitizer therefore signals a write-through-const.

Section 5 contains our classification of writes-through-const. We classify this write as root
cause “C”, a write after casting away a const, and assign attribute “I”, for incorrect.

3 Meaning of const in C++

As discussed earlier, the C++ const keyword allows programmers to declare, in some sense,
that a value should not change. In this section, we explain the specific guarantees that C++
provides, and we present the deep immutability variant of these guarantees that we verify.

Meaning of const on C++ primitive and pointer types. The meaning of const in C++ is
an extension of its meaning in C. We start by describing the common meaning of const across
C and C++, applying to primitive and pointer types. In these languages, the const-ness
of a memory location depends on the qualifiers of the variable through which the location
is accessed; our motivating example illustrated a change in const-ness through a cast, in
function evil(), that is allowed by both C and C++.

J. Eyolfson and P. Lam XX:5

Developers may const-qualify primitive types such as int, resulting in immutable object
types like const int. When variable v has primitive const-qualified type, the C++ type
system prevents developers from assigning to v after its definition; i.e. it prevents writes to
v. In this case, const behaves like final in Java, which also prevents re-assignment.

For pointer types, such as int *, developers may const-qualify both the pointee and
pointer type. The const qualifier applies to the type directly to the left of it; if there is
nothing to the left, then const applies to the right. If a variable has type int *const,
developers may not change the address value of the variable (where it points to), but they
may dereference the location and change the value it points to. A different type is int
const * (also known as const int *), which allows the address value to change, but not
the value pointed-to by the variable. This type represents a read-only reference. The const
qualifier may also apply to both the pointer and pointee types (int const * const), which
prevents writes to both the address value and the value pointed-to. If all pointers to a value
are read-only references, then the value pointed-to is immutable. C++ references can be
thought of as const-qualified pointers; a developer may not write to the reference address
value. However, in contrast with pointers, developers cannot cast away reference address
value const-ness and re-assign the address value; this property is enforced by the language.

Listing 2 The const qualifier may apply to C++ member functions.

class Pointish {
private:

int x;
int * y;

public:
int getX() const { return x; }
void setX(int val) { x = val; }
void setY(int val) { *y = val; }

};

not OK if setX() were const

transitive write
OK if setY() were const

Meaning of const on C++ object types. We continue by exploring the meaning of const
in C++-specific contexts. When a C++ object type is const-qualified, the developer may
only call member functions declared with a const qualifier.

const-qualifying a member function has two effects. First, const-qualifying a member
function allows it to be called on a const-qualified receiver object. Furthermore, inside the
function, the type qualifiers of the receiver object’s fields are treated as const.

Conceptually, each C++ class provides two interfaces: the const-qualified interface and
the non-const qualified interface. A const-qualified reference is meant to be a read-only
reference, although C++ enforces no guarantees. One of our goals is to evaluate whether read-
only guarantees hold in practice. When an object has non-const type, then the developer
may call all methods on that object2. On the other hand, when an object has const type,
then the developer may only call methods on that object that are const-qualified.

Consider class Pointish, defined in Listing 2. As written, the developer could call all
methods on a non-const-qualified object of type Pointish. On the other hand, the developer
may only call the getX() method on a const-qualified Pointish object.

The second effect of const-qualifying a function changes the type qualifiers of fields inside
the function. In our example, field x becomes int const within const-qualified member

2 There is a small exception: on a non-const object, the developer cannot call const-qualified methods
that are hidden due to overloading by a non-const-qualified method of the same signature.

ECOOP 2016

XX:6 C++ const and Immutability: An Empirical Study of Writes-Through-const

functions. The compiler successfully compiles getX(), since there are no writes to x or y.
But, if setX() was const-qualified, the compiler would refuse to compile the code, since the
type of x would be treated as const int and setX() contains a write to that variable.

In C++, without using const escape hatches, developers may re-assign fields in non-const
qualified methods and may not re-assign fields in const-qualified methods. In all methods,
developers are permitted to mutate state outside of re-assignment (through references or
pointers). This type of immutability is referred to as shallow immutability.

A C++ const-qualified stack/global object would be considered a shallow immutable
object. That is, without escape hatches, developers cannot create non-const references
(including through pointers) to such a const-qualified object. However, as we discuss next,
developers may indeed remove the const qualifier on references to the const-qualified object.
Therefore, C++ does not strongly enforce the concept of an immutable object.

Working around const restrictions. Practical type systems appear to require escape
hatches. C++’s escape hatches for const include casting (the sole escape hatch in C)
and mutable. Also, C++ const does not specify deep immutability. ConstSanitizer dynam-
ically observes executions to monitor uses of escape hatches and deep immutability.

Most type systems permit casting between types. C-style casts ((const A)a) and C++
const_casts can add or remove const qualifiers. const manipulation may also occur through
unions and reinterpret_casts. ConstSanitizer ignores casts, instead using the declared
type of a variable or function argument. When there is a mismatch between variable and
function argument types, we persist all const information.

For const member functions, “mutable” instructs the compiler to not add the implicit
const type qualifier otherwise imposed on fields inside those functions. In Listing 2, if x were
instead declared as mutable int x, then setX() could be const-qualified and still compile.
ConstSanitizer would then report the write to field x whenever setX() was called on a const
receiver object, as we consider the write to be a breach of that object’s immutability.

ConstSanitizer goes beyond C++’s guarantees with respect to transitivity. Consider
again Listing 2. Field y has type int *; within a const-qualified member function, its type
is int *const. C++ therefore prevents writes to y inside a const-qualified member function.
However, it does not prevent writes to *y without further explicit markup (i.e. int const
*const). We call writes to locations like *y transitive writes.

C++ only guarantees shallow immutability—that is, field values directly stored in a
const-qualified class do not change. If a field has pointer type, C++ ensures that the
pointer value does not change, but does not guarantee anything about the value pointed to.
ConstSanitizer verifies deep immutability through transitive writes, and enables us to answer
the empirical question of whether extant programs preserve deep immutability or not.

4 Technique

Our ConstSanitizer tool generates instrumented code which, when executed, prints out noti-
fications about writes-through-const-qualifiers3. ConstSanitizer builds upon LLVM [16] and
was inspired by existing sanitizers including AddressSanitizer [13] and MemorySanitizer [14].

3 We previously implemented a static analysis which was an unpublishable dead end. Most of its reported
violations required calling context to make sense of; context-sensitive interprocedural analysis would thus
be required to get meaningful results. Static counts of mutables and const casts were too overwhelming.
Furthermore, imprecision due to pointers made its results unusable.

J. Eyolfson and P. Lam XX:7

Source File(s)

clang

sanitizer flag

add metadata for
expression extents llvm

instrument
LLVM bitcode
to track const
and check stores

Object File(s)

clang

sanitizer flag

link with modified
runtime library

includes code to report writes-
through-const at runtime

compiler-rt

Executable

Figure 2 ConstSanitizer generates instrumented LLVM bitcode which reports writes through
const qualifiers at runtime.

We implemented ConstSanitizer by extending the clang frontend and adding instru-
mentation passes on llvm bitcode. The instrumented code calls hooks in our modified
version of llvm’s compiler-rt runtime library. Figure 2 depicts our processes for compiling
instrumented code. Plain text indicates inputs and outputs; outlined boxes indicate existing
software components; and light gray boxes indicate our modifications.

We first describe our modifications to the clang frontend. When the developer enables
ConstSanitizer (using a command-line flag), our frontend adds metadata about initialization
expression extents to the bitcode. This metadata notifies the llvm-level instrumentation
about source-level constructs that would otherwise be lost in translation to bitcode.

Specifically, we modified clang’s bitcode generator at variable declaration statements.
At statements of the form type var = expr we mark the instructions making up expr so
that our llvm-level instrumentation can ignore them. The rationale for ignoring those writes
is that the primary user-visible write from a clang declaration statement is to var, on the
left-hand side. We empirically observed that other writes within expr are almost always
initialization writes to var, which ought not to be reported even if var is const. Although a
programmer may include explicit (side-effecting) writes within expr, we ignore such writes
to eliminate the false positives that otherwise occur due to initialization writes.

We use const-ness information as provided by declarations, rather than implementing
a taint-based approach. Listing 3 shows a false negative caused by our approach. The
debugging information for y gives shadow value (00)2. Hence, on the write through y, we
do not report a write-through-const, because we do not propagate const-ness information
from variable initializers. One might expect this write to trigger a report since y aliases the
read-only reference x. (We report a write if the cast is part of a function argument.)

Most of our instrumentation lives in a custom llvm pass that generates code to track
const-ness of the program’s values. The instrumentation manipulates shadow values to track
const qualifiers at every instruction that generates a pointer value. The const information

ECOOP 2016

XX:8 C++ const and Immutability: An Empirical Study of Writes-Through-const

Listing 3 C++ source code showing a false negative due to expression handling.

const int * x = new int(0);
int * y = const_cast<int *>(x);
*y = 1; not reported

relies on type tables from DWARF 4 debugging information. In llvm, this includes all
variables in functions—all local variables are allocated on the stack and are pointers.

Our dynamic analysis returns (as one might expect) no false positives, since it observes
program executions. However, it depends on the accuracy of the debugging information and
metadata, which it uses to identify which variables are const-qualified in the source and
to identify initialization expression extents. We ran into one false positive in our results
which we believe is the result of the metadata being invalidated between LLVM passes.
Throughout the remainder of the section, we point out a couple of cases where our analysis
must approximate intended const-ness because actual const-ness information does not exist.

Structure of shadow values. A shadow value consists of n bits tracking const-ness (where
n is the word length of the processor architecture). Each bit represents whether a pointer or
pointee has a const qualifier or not. The rightmost bit represents the const qualifier of the
value itself. Bits to the left (if the value is a pointer) represent what the pointer transitively
points to. Our encoding supports pointers up to n − 1 levels deep on n-bit processors (64 for
our experiments). Figure 1 depicted our encoding of shadow values, while Table 1 shows
how shadow values represent sample const-ness settings and corresponding writes allowed.

Shadow value computation. We next describe how we create and propagate shadow values.
Our ConstSanitizer instrumentation dynamically propagates shadow values representing
const qualifiers through a program’s instructions. Our goal is to monitor 1) writes to
mutable fields; 2) locations where const has been cast away; and 3) transitive writes, to
pointees of fields, through const references. Table 2 summarizes the analysis rules.

llvm bitcode uses alloca instructions to introduce new pointer values. Our llvm pass
instruments each alloca instruction with the appropriate shadow value, as extracted from
the type information in the source code, using standard clang debug information.

Ultimately, our instrumentation verifies the behaviour of store instructions. Recall
that we exclude store instructions that come from the right-hand side of a declaration

Table 1 Shadow values encode available const-ness restrictions on variables.

Declaration Shadow value Example statement Allowed

int x (0)2 x = 5 X
const int x (1)2 x = 5 ×
int * x (00)2 x = y X

*x = 55 X
int *const x (01)2 x = y ×

*x = 55 X
const int * x (10)2 x = y X
(or int const * x) *x = 55 ×
const int *const (11)2 x = y ×
(or int const *const) *x = 55 ×

J. Eyolfson and P. Lam XX:9

statement. For all other stores, we check whether the operand—the location being written-
to—represents a const-qualified type. The rightmost bit of the shadow value provides
this information. If that bit is 1, an execution of this store instruction is a write to a
const-qualified location. We insert a call to our runtime library to check the value of the bit
and to report a write-through-const if the bit is 1. (We later discuss a special case for store
instructions where the value being stored is a function argument.)

Conversely, load instructions return a pointer that represents a single pointer dereference.
To compute the returned shadow value, we right shift the operand’s shadow value.

llvm’s getelementptr (GEP) instruction accesses arrays and fields of objects. This
instruction preserves type safety through dereferences in the compilation process and is a
safe alternative to directly generating pointer arithmetic code. Our instrumentation performs
a logical shift right by one bit for every pointer dereference implied in the GEP instruction.
Our treatment of GEP implicitly handles transitive immutability as follows: when a GEP

Table 2 Dynamic analysis rules showing computation of shadow value for result %1.

Instruction New shadow value

%1 = alloca ... from const qualifiers in debugging information, consistent
with Figure 1.

%1 = getelementptr %2 by logically shifting left %2’s shadow value once for each
dereference this instruction represents.
if field access: check const qualifier of base object; for
(immutable) const base objects, new shadow value is all
ones, otherwise all zeros.

%1 = call(%2) loaded from return shadow value in Thread-Local Storage
(TLS).
for pointer arguments %2: also write shadow values
to appropriate TLS slots for the function call; if the call
and argument are marked as ignored, write all zeros for
the shadow value for the argument.

%1 = phi/select ... carry out same operation on shadow value operands.

%1 = bitcast %2 from the shadow value for %2, if compatible;
otherwise all zeros.

%1 = load %2 logical shift right of %2’s shadow value.

store %2, %1 check rightmost bit of shadow value for %1, report write-
through-const if set. (Only applies if the instruction not
ignored as an initializer.)
if %2 is function argument: load shadow value for %2
from TLS, left shifted once. New shadow value is bitwise
OR of shifted value with previously computed shadow
value for %1.
if %2 is “this” function argument: same steps as
above, except skip the bitwise OR step.
if %2 is “this” function argument for destructor:
shadow value for %1 is (00)2.

%1 = extractelement all zeros.
%1 = extractvalue
%1 = inttoptr
%1 = landingpad

ECOOP 2016

XX:10 C++ const and Immutability: An Empirical Study of Writes-Through-const

accesses an object field, and the containing object is const-qualified, we generate a shadow
value as if the field had a const qualifer on every type for the contained field. This treatment
implies checks for transitive immutability; generating a non-const shadow value here would
generate the same bitwise immutability checks for const as specified by the C++ standard.

Our instrumentation propagates const-ness information (in shadow values) alongside
references to that location. In C++, access restrictions to a location depend on whether
the program is accessing that location through a const reference or not. Therefore, in the
presence of casts and pointer arithmetic, there is no ground truth about the const-ness of the
resulting references and we must make a reasonable under-approximation as to const-ness.

We next discuss casting-related llvm instructions. The bitcast instruction converts
a value into a specified type. If a program converts a pointer between equally-indirected
pointer types, then we copy the old shadow value to the result. (C++ const-casts do not
appear at LLVM bitcode level, nor do the component of a C-style cast that manipulates
const-ness. ConstSanitizer preserves declared const-ness for such variables.) Otherwise,
we choose to assume that the instruction’s result has no const qualifiers. We make this
assumption in all cases for the inttoptr instruction, which represents pointer arithmetic
not handled by the GEP instruction, as well as for extractvalue and extractelement.

Our instrumentation stores shadow values for function calls’ arguments and return values
using thread local storage (TLS). In the straightforward case, we store shadow values for
pointer arguments in TLS slots reserved for each argument. However, we ignore pointer
arguments’ const qualifiers if the call and the argument are both part of a variable declaration.
As for (pointer) return values: if a function was instrumented by our tool, then we read
the shadow value from the appropriate TLS slot. We also store a mutable shadow value
in the return value TLS slot, in case the function had not been instrumented by our tool.
Our instrumentation either reads the approximation or, if applicable, the actual return value
generated by the called function. In the presence of callbacks from uninstrumented code
back to instrumented code, our instrumentation may use stale shadow values and report
extraneous results based on these stale shadow values.

We have a special case for store instructions where the value stored is a function argument,
as mentioned above. Consider a store instruction “store value, location”. We compute
the shadow value for “location” as follows. First, we get the shadow value for “value” from
the TLS. Then, we adjust this shadow value to be compatible with the type of “location”:
our encoding requires one logical shift to match the type of “value” to that of “location”.
We bitwise OR the shadow value for “location” previously computed (from an alloca
instruction) with the shifted value to get the new shadow value for “location”. This preserves
const qualifiers of the original argument and of the local variables in the function.

There are two further special sub-cases for store instructions and function arguments
for (i) method and (ii) destructor calls. Listing 4 illustrates sub-case (i). Here, foo() is
declared const. The compiler will hence treat this as const within foo(). However, for
our dynamic analysis, we want to detect writes based on the const-ness of this from the
caller; in method bar() in Listing 4, receiver object nc for foo is not const, so we do not
want to report the call’s (transitive) store to x. foo’s method arguments appear as “value”
operands of store instructions while the “location” is an alloca within the function. We
set the shadow value of the associated alloca instruction to the value of the argument after
applying a logical shift left by one (since it’s a pointer). This treatment properly ignores
const qualifiers added due to callee method signatures.

For sub-case (ii), destructors, we do not want to report any writes through this as the
object no longer exists after the call (so that writes to the object aren’t visible in any case).

J. Eyolfson and P. Lam XX:11

We handle this case by simply assuming that the this argument is mutable. For all other
arguments, we do a bitwise OR between the alloca shadow value and the argument shadow
value logically shifted left by one, which maintains all const qualifiers.

Listing 4 C++ source code showing calls to method foo() (with its definition and associated
LLVM bitcode) from const context cc and non-const context nc.

void bar() {
C nc;
const C cc;
nc.foo();
cc.foo();

}

class C {
int *x;

public:
void foo() const {

*x = 42;
}

};

define void @C::foo(%class.C* %this) {
%1 = alloca %class.C*
store %class.C* %this, %class.C** %1
%2 = load %class.C*, %class.C** %1
%3 = getelementptr %class.C, %class.C*

%2, i32 0, i32 0
%4 = load i32*, i32** %3
store i32 42, i32* %4
ret void

}

definition

bitcode

Shadow value computation example. Listing 4 presents the C++ source code for C::foo,
a const qualified method, and the associated LLVM bitcode. Consider the bar function,
which calls foo twice, first with mutable (i.e. non-const) receiver object nc and then with
const receiver object cc. Within bar, the shadow value of nc is (0)2 and the shadow value
of cc is (1)2. Our instrumentation assigns shadow values for each LLVM instruction with a
pointer result. We instrument C::foo as follows:

The first instruction, alloca, stores its result in %1. Since it is an alloca instruction, we
obtain its shadow value from clang debugging information. The associated shadow value
is (10)2: in this const-qualified method, the type of this is that of a const pointer to
the containing class, const C *.
At the store instruction, without special handling, we would load the shadow value of
argument %this from the TLS; logically shift left the shadow value by one to account for
the fact that we are performing a store to memory allocated for that argument; and
bitwise OR the resulting shadow value with the original shadow value for %1. In our
example, whether the receiver object is cc or nc, the shadow value for %1 is (10)2.
Next, we obtain the shadow value for the result of the load, %2. As %2 returns a pointer,
we shift %1’s (the operand’s) shadow value right by one, giving a shadow value of (1)2.
Next, the getelementptr instruction results in a pointer to the class’s x field. Our
instrumentation of getelementptr could produce two different shadow values, depending
on the instruction’s operand. In this case, %2 is a const object, and the resulting shadow
value for a fully const-qualified x field is (11)2.
Next, we obtain the shadow value for the load result %4 using the same technique as for
%2. The resulting shadow value is (1)2.
Finally, we insert a check at the store instruction. In this case, the least significant bit
of the shadow value associated with location (%4) is 1. Therefore we would dynamically
report a write-through-const at the write to field x of the const method.

For methods, this instrumentation is not enough. We only want to report a write-through-
const for the call with const receiver object even though both objects call the same static
method. Before the call to foo, our instrumentation stores the shadow value of the receiver

ECOOP 2016

XX:12 C++ const and Immutability: An Empirical Study of Writes-Through-const

object in its TLS slot. Our instrumentation of foo looks for store instructions that use the
receiver object and recomputes the shadow value of the location. Here, we load the shadow
value from its TLS slot and shift left to match the type of the expected shadow value of
%1. For nc’s call, this shadow value is (00)2. Since foo is a method, we ignore the original
shadow value of %1 ((10)2) and overwrite it with new shadow value (00)2. Following the
remaining steps in foo as above, the shadow value of %4 is now (0)2 and we do not report a
write-through-const. In the cc case, we would follow the same steps, but instead report a
write-through-const, because the shadow value would be (10)2.

5 Classification of writes-through-const

One of our contributions is a careful analysis of the const usages detected by our ConstSan-
itizer dynamic analysis tool. We propose a classification for writes-through-const-qualifiers
along 2 axes. We manually assigned each write 1) a single cause, from a set of common
root causes; and 2) a set of additional attributes. This classification distills our empirical
observations about const use in practice.

Table 3 Root causes of writes through const and our symbols for these causes.

Root Cause Symbol

Write to mutable field M
Transitive write T
Write after casting a const qualifier away C

Table 3 lists all of the root causes for writes-through-const, along with a one-letter abbrevi-
ation that we will use in Section 6’s tables. ConstSanitizer detects such writes and reports
them to the user. The causes are:

mutable field (M): the program writes to a mutable-labelled field of a const object.

class Mutable {
mutable int x;

public:
void mutator() const { x = 42; }

};

mutable permits method mutator() to write to field x even though it is a const method,
which would ordinarily prevent (at compile-time) writes to fields of the this object.
transitive write (T): the program writes through a field of a const object.

class TW {
int *x;

public:
void transitiveWrite() const { *x = 42; }

};

const-qualified method transitiveWrite() writes to field x of the this object. While
the const qualifier prevents mutation of the x field, it does not prevent transitive writes
of the memory pointed to by x.
casting away const (C): the program writes through a pointer which has previously been
const but whose const-ness has been cast away using a const_cast or C-style cast.

J. Eyolfson and P. Lam XX:13

void writeToArg(int *y) { *y = 17; }
const int *x = ...;
writeToArg(const_cast<int *>(x));

The write in writeToArg() mutates the value pointed-to by x while x is const-qualified.
ConstSanitizer reports writes-through-const-qualifiers whose const-ness has been cast
away, using the const-ness of the most recent declared type for the value.

Table 4 Observed common attributes of writes through const and corresponding symbols.

Attribute Symbol

Write is synchronized S
Write is not visible N
Write is to a buffer/cache B
Write is delayed initialization D
Write is incorrect I

Table 4 summarizes our attributes for writes-through-const-qualifiers. We assigned
attributes to writes based on our understanding of the code. Writes may have multiple
attributes; for instance, a write in our Protobuf benchmark is B & N & S. The attributes are:

synchronized (S): indicates that the write is always protected by a lock. This attribute is
often required under the C++11 standard: all types that are shared between threads and
that may be used with the standard library must be either bitwise const, which is clearly
not the case when we witness a write, or else protected against concurrent accesses [15].
The following example, from Protobuf, is synchronized using Google mutex primitives.

GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
_cached_size_ = total_size;
GOOGLE_SAFE_CONCURRENT_WRITES_END();

not visible (N): indicates that the result of the write is never externally visible (e.g.
private and with no accessor methods; may be accessed in the same translation unit).
Often occurs in the context of testing-related counters.

mutable int countFooCalls;
void foo() const { ++countFooCalls; }

to a buffer/cache (B): indicates that the write is of a derived value which can be computed
from other currently-available state. Such writes are often optimizations.

_cached_size_ = total_size;

delayed initialization (D): indicates that the write initializes state not initialized in the
constructor or its transitive callees. Writes with this attribute could have also occurred
in the constructor, but the written value was not yet available. Failure to call a delayed
initialization method would lead to undesired behaviours (or lack of desired behaviours).

bool Generator::Generate(const FileDescriptor* file, ...) const {
this->file_ = file;

}

incorrect (I): indicates that the write appeared to violate the const-ness of the object.

ECOOP 2016

XX:14 C++ const and Immutability: An Empirical Study of Writes-Through-const

Note that S/N/B/D writes are not necessarily errors and do not necessarily violate
immutability properties. We thus chose the word “attribute” to suggest that S/N/B/D
indicate an incidental property of a write-through-const. If the code containing the writes is
properly written, an object with an S/N/B/D write-through-const can still appear to be
immutable to the client, assuming all references to that object are read-only. A write with
attribute I, however, is a client-visible violation of const.

6 Results

We evaluated our ConstSanitizer tool on 7 C++ software projects, plus 1 C project. We
attempted to choose significant benchmarks using these guidelines:

1. must span a range of application areas: applications and libraries; small, medium, and
large projects; interactive and non-interactive;

2. are used by the community: the Google projects are the most popular on GitHub; the
applications are popular among FOSS users; contributor-group sizes vary from a core
group to a large community; and,

3. must extensively use const constructs.

A ConstSanitizer report indicates that a write that would not be allowed under deep
immutability occurred through a read-only reference. Such writes are allowed under C++
semantics. They are only a departure from the const semantics that we experiment with
(i.e. deep immutability with no casts and no mutable). Our experiments classify writes-
through-const observed in actual const-using programs. Classifying these writes provides
us valuable insight about const usage in practice, which will guide future work.

Our approach was to modify the project’s build system to use our tool and to disable
optimizations. We then ran the project’s test suite, when available, and collected output from
our instrumentation. Using this output we categorized the writes that we found, assigning
root causes and attributes. Along with the number of static locations of writes that we found
(bolded), we also report the number of dynamic occurrences of each write over observed
executions. All else being equal, dynamic counts can help prioritize writes-through-const,
with more-frequent locations to be investigated first. We refer to these dynamic occurrences
of writes as “occurrences” in the sequel. Table 5 summarizes our benchmark projects.

Table 5 We ran our experiments across 7 C++ (and 1 C) software projects; ConstSanitizer
introduces a build slowdown of 1.05×–1.40× across all projects.

Name Version Description Build
Slowdown

C++ Protobuf 2.6.1 Serialization framework 1.40×
C++ LevelDB 1.18 Key/value database 1.05×
C++ fish shell 2.2.0 UNIX shell 1.32×
C++ Mosh (mobile shell) 1.2.5 SSH replacement 1.26×
C++ LLVM TableGen 3.7.0 Domain-specific generator —
C++ Tesseract 3.04.00 OCR engine 1.10×
C++ Ninja 1.6.0 Build system 1.20×
C Weston 1.9.0 Wayland compositor 1.28×

We recorded relative overhead introduced by our instrumentation with respect to both
building and testing times on the longest-running projects, Protobuf and LevelDB. Table 5

J. Eyolfson and P. Lam XX:15

includes build slowdowns induced by our tool, which ranged between 1.05× and 1.40×. Our
tool caused a 3.3× slowdown and 1.3× slowdown in test execution times for Protobuf and
LevelDB respectively. The remaining projects were either interactive, or did not have long
enough running test suites to get meaningful results. We do not any report LLVM TableGen
numbers because we built it (with instrumentation) as part of the LLVM build process and
were not able to build the executable separately.

6.1 Protobuf
Protobuf is Google’s serializing framework for structured data, consisting of about 214 000
lines of C++ code. We analyzed version 2.6.1 of Protobuf by running its test suite, which
contains 5 tests. Table 6 summarizes the Protobuf results. ConstSanitizer found 76 static
write locations (and 127 644 occurrences). We describe 5 archetypes for these writes. An
archetype is a group of writes that we judged to be similar; the writes may happen at different
source locations.

Table 6 Protobuf shows 5 archetypes for 76 writes through const resulting in 127 644 occurrences.

Archetype Locations Occurrences Root Cause Attributes

Generator printer 7 118464 T B & N & S
Message cache sizes 61 7158 M B & S
Source code locations 4 1898 T I
Linked list operations 2 84 M I & S
Generate initialization

method 2 40 M D & N & S

The “Generator printer” archetype occurred most often. Listing 5 presents a representative
expanded stack trace. The function at the top of the listing shows the initiation of the write in
Generator’s const-qualified Generate method. This method calls PrintTopBoilerplate,
passing a pointer to a mutable io::Printer. Then, Printer’s WriteRaw method modifies
(root cause T) two fields: buffer_ and buffer_size_. These fields are protected by a lock,
act as a buffer, and are not visible outside the class (which is just a printer). This archetype
also includes other Print-like calls with different source locations but a common explanation.

The “Generate initialization method” archetype is related to “Generator printer”. Listing 6
shows this archetype. The printer_ field was initialized as seen above. C++ allows this
write due to the mutable specifier. Another field, file_, is lazily initialized as well. Both of
these fields are protected by the same lock, and are not externally visible outside the class.

We show an example of the “linked list operations” archetype in Listing 7. Here, the
depart method grabs a lock, and uses a pointer with type linked_ptr_internal const
*, so that the const applies to what is pointed to, not to the pointer. The method then
modifies the next_ field of a valid object at the point indicated by the comment. The root
cause here is mutable: the next_ field is declared mutable linked_ptr_internal const*
next_. This write is a delayed initialization, not visible, and synchronized.

Listing 8 shows the “Message cache sizes” archetype. The write is protected by a lock,
and is allowed by C++ because the field is mutable. However, this write, while involved with
caching, is externally visible. The method void SetCachedSize(int size) const enables
external code to modify this field through a const reference to the containing object.

Listing 9 shows the “Source code locations” archetype. The mutable_leading_comments
method, which includes “mutable” in its name, is not declared as const, and thus allows

ECOOP 2016

XX:16 C++ const and Immutability: An Empirical Study of Writes-Through-const

Listing 5 Protobuf’s Generator class performing transitive write-through-const to a Printer field.

bool Generator::Generate(...) const {
PrintTopBoilerplate(this->printer_, ...);

}

void PrintTopBoilerplate(io::Printer* printer, ...) {
printer->Print(...);

}

void Printer::Print(...) {
WriteRaw(text + pos, i - pos + 1);

}

void Printer::WriteRaw(..., int size)
this->buffer_ += size;
this->buffer_size_ -= size;

}

python_generator.cc

printer.cc

transitive writes
initiated by const
::Generate()

Listing 6 Protobuf’s Generate initialization method performing lazy initialization.

bool Generator::Generate(...) const {
this->file_ = file;
this->printer_ = &printer;

}

python_generator.cc

Listing 7 Protobuf using Google test linked list that writes internally.

bool linked_ptr_internal::depart()
GTEST_LOCK_EXCLUDED_(g_linked_ptr_mutex) {

MutexLock lock(&g_linked_ptr_mutex);

if (this->next_ == this) return true;
linked_ptr_internal const* p = this->next_;
while (p->next_ != this) p = p->next_;
p->next_ = this->next_;
return false;

}

gtest-linked_ptr.h

Listing 8 Protobuf writing to a message’s cached size field.

int FieldDescriptorProto::ByteSize() const {
GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
this->_cached_size_ = total_size;
GOOGLE_SAFE_CONCURRENT_WRITES_END();

}

descriptor.pb.cc

writes. Its implementation writes to the location_ field; we show an example of a caller
which causes such a write. The location_ field is externally-visible, so this is a clearly
incorrect externally-visible transitive write; we assign attribute I.

We also found an archetype involving writing data to a message. This included 133 unique
source locations, occurring 14 638 times in total. However, the code is heavily inlined and
the build system appears to overwrite optimization settings for this subdirectory. Manual
inspection of the code revealed no obvious writes. We believe this is a result of optimizations
causing invalid debugging information. We thus omitted this archetype from Table 6.

J. Eyolfson and P. Lam XX:17

Listing 9 Protobuf writing to a source location object.

void Parser::LocationRecorder::AttachComments(...) const {
this->location_->mutable_leading_comments()->swap(*leading);

}

std::string* SourceCodeInfo_Location::mutable_leading_comments() {
this->leading_comments_ = new ::std::string;

}

parser.cc

descriptor.pb.h

6.2 LevelDB
LevelDB (1.18) is Google’s lightweight key/value database library, consisting of approximately
18 000 lines of C++ code. The test suite contains 23 test drivers. There were 6 archetypes
and also 6 root source locations for these writes. These locations contributed to 13 792
occurrences over the test drivers. Table 7 shows a summary of our findings for LevelDB.

Table 7 LevelDB shows writes from 6 source locations, with 13 792 occurrences in total.

Location Occurrences Root Cause Attributes

db/db_test.cc:40 10311 T N & S
util/cache.cc:315 2841 T B & S
db/snapshot.h:54 319 T I
db/snapshot.h:55 319 T I
helpers/memenv/memenv.cc:274 1 T I & S
util/testutil.h:42 1 T N

Listing 10 shows the source location that caused the majority of the occurrences. This code
extends the RandomAccessFile class to add an atomic counter field, counter_, that tracks
the number of read calls. The root cause is that counter_ is a pointer and is transitively
written to. The reason for this write is test controllability: this class is part of the test
infrastructure. Yet it must override the monitored call (and thus must be const). This class
is meant for testing purposes only, so we concluded the write was not visible outside the
class—the counter is only used in the testing code.

Listing 10 LevelDB write in db_test.cc:40 incrementing counter tracking # of writes to a file.

class CountingFile : public RandomAccessFile {
virtual Status Read(...) const {

this->counter_->Increment();
}

};

db_test.cc

Listing 11 shows a modification to a caching structure that generates a new identifier.
This cache is a field, block_cache, in options, which is declared as const Options& in
Table::Open. The root cause is a transitive write, since the code dereferences a field of
a const object to do the write. This write is protected by a lock and clearly involved in
caching. However, it appears that other code outside of Options uses this block cache.

Listing 12 shows a modification of a linked list node accessed through two pointer
dereferences. This corresponds to both snapshot.h locations shown in the table. This code

ECOOP 2016

XX:18 C++ const and Immutability: An Empirical Study of Writes-Through-const

Listing 11 LevelDB write in cache.cc:315 creating a new block cache in const Options object.

Status Table::Open(const Options& options, ...) {
rep->cache_id = (options.block_cache ?

options.block_cache->NewId() : 0);
}

virtual ShardedLRUCache::uint64_t NewId() {
MutexLock l(&id_mutex_);
return ++(last_id_);

}

table.cc

cache.cc

modifies the pointers obtained from following its own nodes, performing a transitive write
through a const qualifier. We do not know why the developers declared s as const since it
is also destroyed at the end of the method. In any case, we assigned attribute I.

Listing 12 LevelDB write in snapshot.h deleting a list element and updates pointers.

void Delete(const SnapshotImpl* s) {
assert(s->list_ == this);
s->prev_->next_ = s->next_;
s->next_->prev_ = s->prev_;
delete s;

}

snapshot.h

Listing 13 shows a write-through-const in the InMemoryEnv class. As with the cache, the
root cause is a transitive write: in the caller, options is declared const Options&. Unlike
the caching example, this file isn’t involved in caching and appears to be a visible change to
options. This write is protected by a lock, giving attribute I & S.

Listing 13 LevelDB write in memenv.cc changing the environment in options object.

Status DB::Open(const Options& options,) {
s = options.env->NewWritableFile();

}

InMemoryEnv::NewWritableFile() {
MutexLock lock(&mutex_);

file_map_[fname] = file;
}

...
...

... ...

this->

db_impl.cc

memenv.cc

Listing 14 shows the final write-through-const-qualifier that we found for LevelDB. The
caller location is the same as in Listing 13 above. In this case, however, the containing class
extends InMemoryEnv and adds a field to count the number of errors (for testing purposes
only). Therefore we attribute this write as being not visible—it is only used in tests.

Listing 14 LevelDB write in testutil.h injecting faults into the test suite.

... EnvError::NewWritableFile(...) {
++this->num_writable_file_errors_;

}

testutil.h

J. Eyolfson and P. Lam XX:19

6.3 fish shell
fish shell (2.2.0) is a UNIX shell providing advanced features, consisting of approximately
48 000 lines of C++ code. We compiled the project with our tool and executed an instance
of the shell. Our workload launched the shell and immediately exited. We found writes from
4 unique source locations for 98 occurrences in total. All locations are within the exchange
function. Listing 15 shows this function along with a snippet of _wgetopt_internal that
calls exchange. The root cause is that the const-qualified argv variable gets cast to non-
const and then passed to exchange. This write shows that the const-qualifier on argv is
incorrect and should not be included.

Listing 15 fish shell writing to const-qualified argv object.

... _wgetopt_internal(..., wchar_t *const *argv, ...) {
exchange((wchar_t **) argv);

}

... exchange(wchar_t **argv) {
argv[bottom + i] = argv[top - (middle - bottom) + i];
argv[top - (middle - bottom) + i] = tem;
argv[bottom + i] = argv[middle + i];
argv[middle + i] = tem;

}

wgetopt.cpp

6.4 Mosh (mobile shell)
Mosh (mobile shell) (1.2.5) is a remote terminal application that is a replacement for secure
shell (SSH), consisting of about 13 000 lines of C++ code. Our workload was to launch
the mosh server and immediately terminate it. We found writes-through-const at 8 unique
source locations (432 occurrences). Listing 16 shows one of the writes. Mosh parsing code
sets a flag to indicate completion. However, the developers declared the parser action as
const in the same method where they modify it. The root cause is that the variable handled
is declared public mutable. We believe this is an incorrectly const qualified variable.

Listing 16 Mosh handling terminal action with a write-through-const.

void Emulator::print(const Parser::Print *act) {
act->handled = true;

}

terminal.cc

6.5 LLVM TableGen
We instrumented LLVM’s (3.7) TableGen executable, which uses domain-specific information
to generate files with custom backends. This part of LLVM consists of approximately
34 400 lines of C++ code. It is primarily used in building LLVM itself. We added our
instrumentation to the build system and observed reports from an instrumented version of
TableGen executing as part of the build process. LLVM itself is a large body of code with
too many writes-through-const-qualifier objects to manually classify. In TableGen, we found
writes from 3 unique source locations (282 occurrences).

The handling code for DFAs contains some puzzling writes, shown in Listing 17. The
write immediately follows an instantiation of a const State object. The State class itself

ECOOP 2016

XX:20 C++ const and Immutability: An Empirical Study of Writes-Through-const

is only available in a file’s translation unit (not usable outside the file), which may indicate
that the State is not intended to be widely used. State only contains const methods and
all of its fields (except one explicitly declared const) are mutable. Since all methods are
const there is no difference in callable methods between non-const and const-qualified
access. In addition, since all other fields are mutable, developers are allowed to re-assign
the same fields in a const method as they would in a non-const method. Since only one
field doesn’t have mutable, developers could achieve the same effect by making all methods
non-const, removing all mutable specifiers on fields, and changing the one field that did not
have mutable to be const qualified.

Listing 17 LLVM DFA code marks State const for no apparent reason.

void DFAPacketizerEmitter::run(raw_ostream &OS) {
const State *NewState;
NewState = &D.newState();
NewState->stateInfo = NewStateResources;

}

DFAPacketizerEmitter.cpp

The other write is in the code that computes a sub-register index for code generation.
Listing 18 shows the containing method. The root cause here is that the LaneMask field is
mutable. The write caches the value. However, this value is not used in any other methods.

Listing 18 LLVM SubReg writes to a mutable field in a const method.

unsigned CodeGenSubRegIndex::computeLaneMask() const {
if (this->LaneMask)

return this->LaneMask;
this->LaneMask = ~0u;
unsigned M = ...;
this->LaneMask = M;
return this->LaneMask;

}

CodeGenRegisters.cpp

6.6 Tesseract

Tesseract (3.04.00) is an optical character recognition (OCR) engine maintained by Google,
consisting of 147 000 lines of C++ code. This project does not contain any easy-to-run tests.
We compiled it with our tool and ran it with invalid arguments. With our limited knowledge
of Tesseract’s usage, we were not able to cause the core algorithm to execute. However, we
found a strange write, shown in Listing 19. The root cause is that the used_ field is mutable.
This write appears to be an incorrect usage of const. Strangely, however, the comments
indicate that is a defensive write against possible further writes-through-const-qualifiers.

Listing 19 Tesseract performs a strange write in its string class.

const char* STRING::string() const {
const STRING_HEADER* header = GetHeader();
header->used_ = -1;
return GetCStr();

}

/* mark header length unreliable
because tesseract might cast away
the const and mutate the string
directly. */

strngs.cpp

J. Eyolfson and P. Lam XX:21

6.7 Ninja
Ninja (1.6.0) is a build system consisting of approximately 14 900 lines of C++ code. It
includes a modest test suite. Our tool reports 39 occurrences from calls to the standard
library. All of these warnings have a single source location outside the standard library:
src/disk_interface_test.cc:226:3. Listing 20 shows this static source location. This is
a quick hack to run the test suite with the same API as normal clients. This field stores
statistics that are checked in the test suite only. The field is mutable and not seen outside
the test suite, so we give this write the “not visible” attribute.

Listing 20 Ninja write-through-const in test code.

TimeStamp StatTest::Stat(const string& path, ...) const {
this->stats_.push_back(path);

}

disk_interface_test.cc

6.8 Weston
While we focus on C++ in this work, our technique also works on const in C programs. We
therefore evaluated it on a C application. Since this is the sole C project, we omit Weston
from the overall table of results (Table 8). Weston (1.9.0) is a reference implementation of a
Wayland compositor. It consists of approximately 85 000 lines of C code and the test suite
has 20 tests. We did not expect to see many writes, as most C standard library functions
do not require const (corresponding C++ library functions usually do), and also due to
annoyances in using const in C, which we describe below. However, even with a small test
suite, we found 4 unique source locations for writes (accounting for 115 occurrences).

All of the writes-through-const are transitive and came from parsing code. The argument
option parser accounts for 3 locations. Listing 21 shows a write in the parser. Function
handle_option does not modify the pointer value of option but modifies its transitive data
field. This does not change any data stored in the weston_option structure, maintaining
bitwise const-ness. The data field’s type is void * and the cast does not remove const.
Based on the function name, one might expect a write to the data field, not its pointee.

Listing 21 Weston option parser modifying its const option argument.

handle_option(const struct weston_option *option, ...) {
* (char **) option->data = strdup(value);

}

option-parser.c

The final location was in the configuration file parsing code. Listing 22 shows the
weston_config_section_get_uint function dereferencing and modifying the value argu-
ment passed in from a field of a const struct. As above, based on the function naming, one
would expect any writes to happen through the dest pointer. This write does not modify
any data stored in the config_command structure and maintains bitwise const-ness as well.

We made an observation as to why const may be unattractive to C developers: there is
no clean way to initialize a structure analogous to C++ constructors/destructors. A popular
C idiom is to assign constructor-like functions signatures like rec_init(struct rec *r).
This signature prevents initialization without casting: const struct rec r; rec_init(&r)
is illegal. However, it is cumbersome to always cast for constructor-like calls. One could
change the signature of the function to rec_init(const struct rec *r) and perform the

ECOOP 2016

XX:22 C++ const and Immutability: An Empirical Study of Writes-Through-const

Listing 22 Weston config parser writing to its value argument.

struct config_command {
char *key;
uint32_t *dest;

};
const struct config_command *command = ...;

weston_config_section_get_uint(..., command->dest, ...);

... weston_config_section_get_uint(..., uint32_t *value, ...) {
*value = strtoul(entry->value, &end, 0);

}

hmi-controller.c

cast in the function. However, that function would violate shallow immutability—it writes
to fields as it initializes them. Using const in C appears to require developers to ignore the
casting away of const qualifiers for constructor-like functions.

6.9 Summary

Table 8 summarizes the writes-through-const-qualifiers from benchmarks other than Protobuf
and LevelDB. Across the 7 C++ projects we instrumented and ran, we observed 17 unique
archetypes across a total of 142 288 dynamic occurrences. We manually divided these
archetypes into 17 classifications. The root causes were evenly split between writes through
mutable fields and transitive writes (8 of each) with one write-through-const due to casting.
Valid attributes were mostly with-synchronization and because the write was not visible
(7 and 6 respectively). The other valid attributes, writing to a buffer/cache and delayed
initialization, occurred 4 times and 1 time respectively. The majority attribute, in 9 cases,
was that the write was incorrect and violated intuitive notions of what const should mean.
We reported our results to developers. Within a few days the developers simply removed
incorrect const qualifiers in both fish and Mosh.

Table 8 Writes-through-const-qualifiers in our other benchmark programs were mainly incorrect
uses of const.

Project Location Occurrences Root Cause Attributes

fish shell wgetopt.cpp 98 C I
Mosh terminal.cc 432 M I
LLVM DFAPacketizerEmiter.cpp 112 M I
TableGen CodeGenRegisters.cpp 170 M B & N

Tesseract ccutil/strngs.cpp 1 M I
Ninja disk_interface_test.cpp 39 M N

We found 3 projects (LevelDB, Mosh, and Ninja) had writes that only occurred in tests.
The writes-through-const we found were in testing code; writes were to counters only present
in test environments. In Mosh, the fact that the writes were only for test purposes was not
immediately obvious. However, discussions with the developers revealed that the handled
variable was only used for debugging. All of these writes-through-const are related to test
controllability, suggesting that this idiom should be supported directly in the programming
language.

J. Eyolfson and P. Lam XX:23

7 Related Work

We discuss a number of areas of related work: immutability (and related approaches) for Java;
purity analyses; and dynamic analyses that inspired our approach. The Java programming
language has no exact analog to C++’s const operator. Related work defined immutability
annotations for Java and statically and dynamically verified that programs satisfy their
annotations. Potanin et al [9] provide a recent discussion of immutability terminology
and compare research implementations in depth. (Our implementation has at its core a
dynamic analysis verifying that C++ programs satisfy a strengthened version of their const
annotations.) A different stream of related work verifies whether (Java) methods are pure,
i.e. have no visible side-effects; there is a strong connection between purity and immutability.

const for Java, and similar projects. Javari [17, 18] allows its users to specify read-only
references in Java programs. It aims to ensure that a readonly (effectively, deeply-immutable
const) typed object does not mutate its state or any state transitively reachable through its
references. Javari, like C++, includes a mutable keyword, which allows developers to specify
that a field may be modified regardless of readonly qualifiers. Javari also inserts dynamic
checks to verify that downcasts maintain the immutability qualifier of the type. Essentially,
Javari provides a safer version of C++’s const that, due to the nature of Java, maintains
deep immutability unless the developer explicitly opts out of the checks.

Our work provides similar guarantees to those provided by Javari. Since Javari does
not have an underlying C++ const specification to build on top of, it has to implement
all of those checks itself. In terms of what we check, our work matches Javari in terms of
transitivity and downcasts. Our work also reports writes to mutable fields at runtime.

Unlike Javari, we could investigate the behaviour of a set of real-world benchmark
programs, developed against the C++ const semantics (and which, by necessity, satisfy
those semantics). Our empirical study therefore points out the difference in practice between
const semantics as they exist—shallow immutability, mutable, and const casting; and a
stronger version of these semantics—deep immutability, no mutable, and no const casting.

A related concept to const is that of stationary fields, as proposed by Unkel and Lam [19].
A stationary field is similar to a Java final field. A Java final field can only be written to
in a constructor. By contrast, a stationary field is only written to before it is read. In essence,
a stationary field acts like a final field but with fewer restrictions on where initialization
may occur. Nelson et al [8] performed a follow-up study using a dynamic analysis which
determined that 72–82% of fields in Java programs are stationary. Their work, like ours,
empirically explores how programs use (or could use, in their case) language features.

Purity analyses. A pure method does not modify any state accessible before the method
was called. Pure methods may create and modify objects to return to the caller. A function
which writes to no global state and has all arguments transitively const is pure.

ReIm and its corresponding type inference system, ReImInfer [5], is similar to Javari,
except that its type system is context sensitive. ReIm was designed to find method purity.
Its type system allows the immutability of the return type to match that of the calling
reference. This allows methods to be reused without requiring mutable and read-only versions.
ReImInfer is a type inference system that maximizes the amount of methods marked as
readonly. They report that 41–69% of methods can be marked as readonly.

Other systems also verify method purity. JPPA is a combined pointer and escape analysis
for Java [12, 11]. Sălcianu and Rinard found over half the methods they analyzed were pure.

ECOOP 2016

XX:24 C++ const and Immutability: An Empirical Study of Writes-Through-const

Rytz et al [10] instead use a simpler flow-insensitive analysis and find similar results.
Artzi et al proposed a combined dynamic and static analysis for mutability [1]. Their

analysis determines the mutability of method parameters. The goal of that work was to scale
better and produce more precise results than static analysis alone.

const-correctness through abstract machines. Chisnall et al [3] propose a memory-safe
abstract machine for C which can be used to verify that immutable objects (declared with
const) are never mutated through non-const aliases. This resembles our approach of using
shadow values to track the declared const-ness of an object. (They do not investigate
transitive immutability.) Our study, by contrast, focuses solely on writes-through-const. All
of their subject programs removed a const qualifier at some point. It was beyond the scope
of their work to investigate how and why their subject programs removed the const qualifier.

Other dynamic analyses. Our dynamic analysis approach is similar to approaches used in
Umbra [20] and Dr. Memory [2]. Like Umbra and Dr. Memory, we use shadow values to
detect interesting program behaviours. However, ConstSanitizer builds directly on LLVM
and does not use a dynamic instrumentation platform. Furthermore, the properties that we
verify are novel const-related properties, compared to Dr. Memory, which looks for memory
errors such as accesses to unallocated space, and Umbra, which helps developers understand
threads’ memory access patterns and implements almost-free custom watchpoints.

8 Conclusion

The const qualifier in C++ is extensively used in real-world code, but developer intent
behind const usage is unclear. In this paper, we have presented our ConstSanitizer system.
ConstSanitizer dynamically detects writes through const qualifiers which are legal in C++
but which modify state transitively starting from a const qualifier, write to mutable fields,
or write to values whose const-ness has been cast away. Our results show that, although
writes through const are ubiquitous across our 7 C++ and 1 C benchmark programs, there
are only a small number (17) of archetypes these writes. We used our results to develop a
classification of writes according to root cause (transitivity, mutable field, or const cast) and
attributes (synchronized, not visible, buffer/cache, delayed initialization, incorrect). Our
work helps understand how the const qualifier is used in practice and leads us to conclude:

Developers definitely violate bitwise const (RQ1).
The majority of write-through-const archetypes (9/17) are incorrect code which observ-
ably change an object’s state.
On our benchmarks, programs write-through-const about equally often using transitive
writes through fields (8/17) and writes to mutable fields (8/17) (RQ2).
We observed four classes (N, B, D, S, discussed in Section 5) of valid reasons for writes-
through-const-qualifiers. For instance, sometimes developers write-through-const to
delay initialization or implement buffer caches. Such writes should be automatically
validated by yet-to-be-developed tools.
About half (9/17) of the observed usages are invalid, consisting of methods which
implemented exceptions to an object’s const-ness; perhaps the developers chose to add
one exception rather than remove const completely. (RQ3)

Acknowledgements. This work was supported in part by Canada’s Natural Science and
Engineering Research Council as well as a Google Faculty Research Award.

J. Eyolfson and P. Lam XX:25

References
1 Shay Artzi, Adam Kiezun, David Glasser, and Michael D. Ernst. Combined static and

dynamic mutability analysis. In ASE, pages 104–113, November 2007.
2 Derek Bruening and Qin Zhao. Practical memory checking with Dr. Memory. In CC, pages

213–223, 2011.
3 David Chisnall, Colin Rothwell, Robert N. M. Watson, Jonathan Woodruff, Munraj Vadera,

Simon W. Moore, Michael Roe, Brooks Davis, and Peter G. Neumann. Beyond the PDP-11:
architectural support for a memory-safe C abstract machine. In ASPLOS, 2015.

4 Felix Fang. Personal communication, 2015.
5 Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. ReIm & ReImInfer:

Checking and inference of reference immutability and method purity. In OOPSLA, 2012.
6 ISO. Programming languages—C++. N3690, May 2013.
7 Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs.

Addison Wesley, 3rd edition, 2005.
8 Stephen Nelson, David J. Pearce, and James Noble. Profiling field initialisation in Java. In

RV, volume 7687 of LNCS, pages 292–307, 2012. doi:10.1007/978-3-642-35632-2_28.
9 Alex Potanin, Johan Östlund, Yoav Zibin, and Michael D. Ernst. Immutability. In Aliasing

in Object-Oriented Programming. Types, Analysis and Verification, volume 7850 of LNCS,
pages 233–269. 2013.

10 Lukas Rytz, Nada Amin, and Martin Odersky. A flow-insensitive, modular effect system
for purity. In FTFJP, July 2013.

11 Alexandru Salcianu. Pointer Analysis for Java Programs: Novel Techniques and Applica-
tions. PhD thesis, MIT, 2006.

12 Alexandru Salcianu and Martin C. Rinard. Purity and side effect analysis for Java programs.
In VMCAI, pages 199–215, January 2005.

13 Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. Ad-
dressSanitizer: A fast address sanity checker. In USENIX Annual Technical Conference,
pages 309–318, 2012.

14 Evgeniy Stepanov and Konstantin Serebryany. MemorySanitizer: Fast detector of unini-
tialized memory use in C++. In CGO, pages 46–55, 2015.

15 Herb Sutter. GotW #6a solution: Const-correctness, part 1. http://herbsutter.com/
2013/05/24/gotw-6a-const-correctness-part-1-3/, May 2013. Accessed Dec 2015.

16 LLVM Team. The LLVM compiler infrastructure. http://llvm.org/, December 2015.
17 Matthew S. Tschantz. Javari: Adding reference immutability to Java. Master’s thesis,

Massachusetts Institute of Technology, 2006.
18 Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutability to Java.

In OOPSLA, pages 211–230, October 2005.
19 Christopher Unkel and Monica S. Lam. Automatic inference of stationary fields: a gener-

alization of Java’s final fields. In POPL, pages 183–195, January 2008.
20 Qin Zhao, Derek Bruening, and Saman P. Amarasinghe. Umbra: Efficient and scalable

memory shadowing. In CC, pages 22–31, 2010.

ECOOP 2016

http://dx.doi.org/10.1007/978-3-642-35632-2_28
http://herbsutter.com/2013/05/24/gotw-6a-const-correctness-part-1-3/
http://herbsutter.com/2013/05/24/gotw-6a-const-correctness-part-1-3/
http://llvm.org/

	Introduction
	Motivating Example
	Meaning of const in C++
	Technique
	Classification of writes-through-const
	Results
	Protobuf
	LevelDB
	fish shell
	Mosh (mobile shell)
	LLVM TableGen
	Tesseract
	Ninja
	Weston
	Summary

	Related Work
	Conclusion

