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Abstract—Methods which are not covered by a project’s test
suite are especially prone to exhibiting unexpected behaviours
and being more challenging to maintain over time. Some meth-
ods are untested but have related implementations in sibling
classes (sharing a common superclass) that are tested. Our
goal is to help developers improve test suites by identifying
such untested methods. We have implemented a prototype tool,
SIBLINGCLASSTESTDETECTOR, which accepts programs along
with their test suites, and outputs a set of Completable Candidates
(CCs). We have applied our prototype tool to 17 open-source
benchmarks and identified 107 CCs within these benchmarks.
We have also manually produced two tests for Completable
Candidates and submitted Pull Requests for these tests, one of
which has been merged by developers.

Index Terms—Hierarchy Analysis, Unit Testing, Test Coverage

I. INTRODUCTION

Even well-tested software systems almost always fall short
of 100% statement coverage. While testing does not guarantee
desired system behaviour, and 100% statement coverage is
arguably not a sensible goal, developers certainly have much
less insight into the behaviour and the effects of changes on
untested code as compared to tested code.

In object-oriented programming, code is organized into
classes which belong to class hierarchies; for instance, Col-
lection is a common ancestor of List and Set. Sometimes, the
ancestor specifies a method that all subclasses must implement,
such as isEmpty(). We have observed projects where some of
the subclass method implementations are tested, but not others.

As sibling methods share the same specification, it is likely
that a test case for one subclass’s implementation will also
work for another, possibly with minor changes (such as the
identity of the class to create). The existing test implementa-
tion can serve as a template for a test for the untested method.

Our vision is to create a system which analyzes a software
system, including the main code and the test suite, identifies
untested methods whose siblings are tested, and automatically
proposes tests for those untested methods. At this stage, we
have implemented a prototype tool, SIBLINGCLASSTESTDE-
TECTOR, which accepts programs, their test suites, and a list
of untested methods (obtainable from a coverage tool such as
JaCoCo); analyzes the program’s class hierarchy; and outputs
a set of Completable Candidates (CCs).

We have applied our prototype tool to 17 open-source
benchmarks and identified 107 CCs within these benchmarks.
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Fig. 1. joda-time contains superclass AssembledChronology and subclasses
BuddhistChronology, GJChronology, StrictChronology, and others. Method
withZone() is tested in Buddhist- and GJChronology but not StrictChronology.

We have also manually produced two tests for Completable
Candidates and submitted Pull Requests for these tests, one of
which has been merged by developers.

II. MOTIVATING EXAMPLE

In this section, we show how our SIBLINGCLASSTESTDE-
TECTOR tool finds a Completable Candidate (CC) from the
popular joda-time library (version 2.10.5). CCs are untested
methods that have closely related tests.

Figure 1 depicts an example: abstract parent class Assem-
bledChronology inherits a specification of method withZone()
from its parent (not shown). Subclasses BuddhistChronology,
GJChronology, StrictChronology, and others all implement
method withZone(). Furthermore, joda-time’s test suite ex-
ercises the withZone() implementation in BuddhistChronol-
ogy and GJChronology but not StrictChronology, as seen
in the JaCoCo1 reports excerpted in Figure 2. Based on
this information, SIBLINGCLASSTESTDETECTOR identifies
StrictChronology.withZone() as a Completable Candidate.

The next stage is to identify which tests exercise withZone()
methods—a test-to-code traceability problem. In particular, we
need to identify the tests that have withZone() as a focal
method [1]—a method whose behaviour is the key point of
interest in a unit test. We currently do this manually. Listing 1
shows the unit test with focal method withZone() from Bud-
dhistChronology; a corresponding test exists for GJChronology
which is identical except for referencing GJChronology in

1JaCoCo—Java Code Coverage Library: https://www.eclemma.org/jacoco/

https://www.eclemma.org/jacoco/


Fig. 2. JaCoCo coverage report showing that implementations of withZone() in BuddhistChronology and GJChronology are tested but that StrictChronol-
ogy.withZone() is not.

place of BuddhistChronology. This is strong evidence that
StrictChronology should also have a corresponding test. We
currently identify the exercising testWithZone() test by using
the grep tool on the source code of the test suite to find
instances of the string “withZone”2 We anticipate replacing
this text-based search with an AST-based search for calls to
withZone() from test methods.
public void testWithZone() {
assertSame(BuddhistChronology.getInstance(TOKYO),
BuddhistChronology.getInstance(TOKYO).withZone(TOKYO));

assertSame(BuddhistChronology.getInstance(LONDON),
BuddhistChronology.getInstance(TOKYO).withZone(LONDON));

assertSame(BuddhistChronology.getInstance(PARIS),
BuddhistChronology.getInstance(TOKYO).withZone(PARIS));

// omitted 3 more similar asserts for space reasons
}

Listing 1. withZone() function that is implemented in multiple children
classes of AssembledChronology, where the unit test case selected indicates
the withZone() function covered in BuddhistChronology

In this example, our SIBLINGCLASSTESTDETECTOR tool
parses JaCoCo XML output to obtain a list of untested
methods. (JaCoCo defines an untested method to be one with
0% statement coverage.) It iterates over this list and reaches
untested method withZone() belonging to class StrictChronol-
ogy. This class has multiple concrete sibling classes. (In de-
termining a class’s siblings, we exclude potential siblings that
are interfaces or abstract classes, as well as library classes.)
Since StrictChronology has siblings including GJChronology
and BuddhistChronology, our tool looks for sibling method im-
plementations. This search uses the complete method signature
(method name, parameter types, and return type) associated
with withZone() to ensure unambiguity. Our tool verifies
that each of the concrete sibling classes declares its own
implementation of withZone(). (If some but not all siblings
implement the method, our tool would report it as a Partial
Completable Candidate, or PCC; we write (P)CC to denote
a CC or a PCC). Lastly, our tool checks that at least one of
these implementations is tested by ensuring that at least one
implementation is not on JaCoCo’s list of uncovered methods.

The eventual goal of this work is to automatically create
new tests for Completable Candidates like StrictChronol-
ogy.withZone(), based on tests for its sibling implementations.

2Admittedly, this example is a clean one, where testWithZone() tests exactly
one method from the main program; it will be more difficult to identify focal
methods in other cases—we plan to apply techniques from the literature there.

III. TECHNIQUE AND IMPLEMENTATION

In this section, we describe the technique that SIBLING-
CLASSTESTDETECTOR implements to detect Completable
Candidates (CCs), as well as how it identifies where new tests
could be added. Our technique has three main stages.

1. The preprocessing stage collects functions not covered by
unit tests; this pool is the source of CCs and PCCs.

2. Next, the SIBLINGCLASSTESTDETECTOR tool identifies
untested methods whose siblings are tested.

3. (Ongoing) The last stage is to generate new tests for
viable (P)CCs. Currently, we manually select the most
promising (P)CCs and manually generate new tests. We
identify potential heuristics which, when implemented,
will allow our tool to locate promising tests and auto-
matically generate sibling tests. We will manually review
these tests and propose them as Pull Requests (PRs) for
upstream developers.

A. Collecting Untested Functions

The first stage is a preprocessing phase, which collects data
in the appropriate format for SIBLINGCLASSTESTDETECTOR
to process. Our approach relies on Java projects that are built
with Maven. The user must acquire the source code and is
expected to sanity-check the code using mvn clean test,
ensuring that the tests are executable. In our evaluation, we
omitted projects that did not pass the sanity check, or that had
any failed tests, from further consideration.

For the remaining projects, we collect coverage information.
First, we add jacoco-maven-plugin and maven-surefire-plugin
to their build setups. We then rerun mvn clean test and
run the corresponding JaCoCo reporting command to generate
the XML coverage report, as well as the HTML report for
human visualization. Next, we run our Python script which
takes the JaCoCo Coverage XML report as input and parses
it using the minidom library. This script identifies all non-
constructor methods with missed attribute equal to 1 (i.e.
0% statement coverage). For each identified non-constructor
method m, our script stores its package name, class name,
method name and method descriptor (an encoding of the
method signature) in a CSV file.
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Fig. 3. A Partially Completable Candidate D. Superclass S declares abstract
method u(). Direct subclass A implements u(). Classes {B, C, D} are
direct subclasses of A. B has an implemented and tested u(), D has an
implementated but untested u(), and C has no implementation of u().

B. Computing (Partial) Completable Candidates

We implemented the SIBLINGCLASSTESTDETECTOR tool
on top of the Soot [2] Java analysis framework. It takes as
input the output of the preprocessing stage along with class
files for the program under analysis (excluding test cases). The
implementation uses the class hierarchy relationships declared
in the classes under analysis to determine parents and siblings,
and it assumes that it is given all relevant classes.

Let U be the list of untested methods collected from the
preprocessing stage. SIBLINGCLASSTESTDETECTOR iterates
through methods u ∈ U and collects subsets of methods that
satisfy properties P1, P2, P3−CC for completable candidates
or P1, P2, P3−PCC for partially completable candidates.
The notation s :: u denotes a method with the same signature
(method name, parameter types, return type) as u but instead
belonging to class s.

We introduce the notion of Partial Completable Candidates
(PCCs) to explore cases where some but not all siblings have
an implementation of the method u (with the same signature).
Figure 3 illustrates an example of a PCC where the sibling
class C has no implementation of u. Contrast this to a CC,
where all of the sibling classes implement u; for both CCs
and PCCs, at least one of the implementations are tested.

We differentiate CCs and PCCs because the relative distri-
bution of each provides information about the structure of a
benchmark and perhaps about which test generation techniques
might be best suited for particular candidate classes. We found
that benchmarks have different proportions of CCs and PCCs.

Property 1. The superclass SUPERCLASS of u’s containing
class C has more than one concrete, non-library direct sub-

classes (sibling classes).

let Siblings :={c ∈ DIRECTSUBCLASSES(SUPERCLASS) |
c 6= C ∧ ISCONCRETE(c) ∧ ¬ISLIBRARY(c)} in

P1 : sizeof(Siblings) > 1.

ISCONCRETE(c) holds when c is not an interface and not an
abstract class. ISLIBRARY(c) holds when c does not belong
to the benchmark that we are analyzing but rather one of its
libraries.

Property 2. At least one of u’s siblings is tested.

P2 : ∃s ∈ Siblings. s :: u 6∈ U.

Property 3. Each sibling class s (for CC) or at least one
sibling class s (for PCC) implements a method with the same
signature as u.

P3−CC : ∀s ∈ Siblings. IMPLEMENTSMETHOD(s, s :: u);

P3−PCC : ∃s ∈ Siblings. IMPLEMENTSMETHOD(s, s :: u).

The predicate IMPLEMENTSMETHOD means that class s di-
rectly implements method m.

The predicates DIRECTSUBCLASSES, ISCONCRETE, ISLI-
BRARY, and IMPLEMENTSMETHODS are provided by Soot.

C. Finding Promising Candidates & Generating Tests

We have identified two types of (P)CCs as promising
candidates, described below. We are working on techniques
for automatically finding them and generating tests.

1) Candidates with Corresponding Test Classes: Let
method m be implemented in all sibling classes {B, C, D}.
Let B.m() be tested. A promising candidate with corresponding
test classes has a BTest class with test t which directly invokes
focal method B.m(). For this type of promising candidate, t
provides a potential template for generating sibling tests to
cover the untested C.m() and D.m() methods.

Our current approach for locating candidates with corre-
sponding test classes follows. The crux is locating tests with a
given focal method. Our current approximation iterates on all
test classes ZTest. We treat ZTest as a test for class Z, removing
the “Test” suffix from its name. If we find focal method B.m()
in BTest with sibling implementation C.m() that is a CC or a
PCC, then we have found a corresponding-test-case promising
candidate and generate a test for C.m() from BTest.

To generate tests, we would first (if needed) create the CTest
and DTest classes, and then clone test case t from BTest to
CTest and DTest, modifying declared types of variables and
static class references, and otherwise preserving the method
bodies and exception declarations. In the cases that we have
looked at, this approach has worked, but it is of course subject
to differences between B, C, and D, such as different methods
or fields being present on the different siblings.

Because EvoSuite [3] integrates well with JaCoCo inside the
Maven/Surefire configuration, we plan to first use EvoSuite
(via commandline) with classes C and D as parameters to



generate the corresponding CTest and DTest. We will then use
Soot to collect the necessary information from test case t in
BTest, and apply it to the generated test cases covering C.m()
and D.m(), perhaps using the Comby tool3.

2) Candidates with Focal Method Called via Superclass:
Again, let m be a method in all of the sibling classes {B, C,
D}, and let B.m() be tested. This time, {B, C, D} have a
common superclass S. For this type of promising candidate,
a test case invokes B.m() as a focal method through dynamic
dispatch using a receiver object of declared type S (i.e. s.m()).
No test case invokes C.m() or D.m().

Until now, we have only used program queries that are
directly answerable from benchmark Java class files (e.g. in-
formation about sibling classes). However, to find this type of
candidate, we need more sophisticated call graph information;
for Java, this is tightly connected to pointer analysis.

To find called-via-superclass candidates, given that B.m() is
a PCC or a CC, we look for edges in the call graph from some
test case t that reaches method B.m(), where the call site in t
has declared type S for the receiver object (s.m()). A call graph
based on Class Hierarchy Analysis would show calls to C.m()
and D.m() at s.m(). An object-sensitive approach [4] would
potentially be able to construct a call graph guaranteeing that
no D object reaches the s.m() callsite. We plan to manually
investigate a number of called-via-superclass candidates before
proposing a strategy for automatic test generation.

IV. EVALUATION

We investigated the efficacy of our approach by applying it
to a convenience sample of 17 open source Java benchmarks.
Many of these benchmarks have a high number of GitHub
stars, showing popularity; build successfully with Maven and

3Comby—Structural code search and replace for every language: https:
//comby.dev/

have no failing tests; and have test suites with a range of code
coverage percentages. Table I presents our results, including
the numbers of completable condidates and partial completable
condidates, as well as the number of untested non-constructor
methods (0% statement coverage) and tested non-constructor
methods in each benchmark, and the percentage of untested
methods. Note that the benchmarks with the smallest propor-
tions of untested methods, like classmate, commons-lang3, and
fastjson, also had no (P)CCs, while Soot and FindBugs had the
highest proportions of untested methods and many CCs and
particularly PCCs. In all, 11 of the 17 benchmarks had some
(P)CCs. This suggests that (P)CCs have promise for extending
coverage of lightly-tested systems.

We had a closer look at joda-time and soot, represent-
ing low-coverage and high-coverage extremes. For joda-time,
which had higher coverage (i.e. not many untested meth-
ods), the untested methods that do exist tend to cluster
around a small number of classes. That is, many of the
(P)CC methods share the same superclass. For instance,
org.joda.time.field.DecoratedDateTimeField is the direct su-
perclass for 3 out of the 18 CCs, and 8 out of the 11 PCCs.
Such clustering of untested methods suggest that joda-time
may be an especially suitable candidate for test generation. In
any case, whether the (P)CCs in joda-time are intentionally
untested needs to be investigated.

At first glance, soot appears to be poorly tested. However,
more than half of the untested methods are from generated
code not checked into Soot’s git repository: Soot includes
a generated Java parser. Package soot.JastAddJ is generated,
with a total of 10,629 untested methods, accounting for > 40%
of the untested methods. Hence, using the methods-covered
metric indiscriminately leads to unwarranted conclusions. Ex-
cluding these methods, soot would be in the middle of the
pack. The PCCs in soot arise because many of soot’s method

TABLE I
COUNTS OF UNTESTED AND TESTED NON-CONSTRUCTOR METHODS, PERCENTAGE UNTESTED METHODS, AND COUNTS OF COMPLETABLE CANDIDATES

AND PARTIAL COMPLETABLE CANDIDATES AMONG OUR 17 OPEN-SOURCE BENCHMARKS.

Benchmark Version # Untested # Tested % Untested # CCs # Partial CCs
Methods Methods Methods

classmate 1.5.1 8 292 2.7 0 0
commons-collections 4.3 331 2336 12.4 4 4
commons-math 3.6.1 767 5276 12.7 3 4
commons-lang3 3.9 104 2561 3.9 0 0
fastjson 1.2.62 112 1448 7.2 0 0
findbugs 3.0.1 6976 1132 86.0 11 59
gson-parent 2.8.5 64 411 13.5 0 0
javacc 7.0.5 1787 582 75.4 9 0
jgrapht-core 1.3.1 329 1558 17.4 1 2
joda-time 2.10.5 241 2602 8.5 18 11
jsoup 1.10.1 114 604 15.9 0 0
ph-commons/ph-commons 9.3.9 2682 3731 41.8 8 16
plexus-utils 3.3.0 476 545 46.6 0 0
quartz-core 2.3.1 939 1298 42.0 3 2
soot 4.0.0 23516 2998 88.7 40 744
velocity-engine-core 2.1 477 1146 29.4 3 3
woodstox-core 6.2.0 551 1628 25.3 7 4

Total 39474 30148 107 849

https://comby.dev/
https://comby.dev/


implementations exist at least one level higher in the class
hierarchy than the sibling classes where the untested method
is located. Static analysis framework findbugs also exhibits this
pattern—perhaps the pattern occurs often in this domain.

To evaluate the overall potential utility of (P)CCs, we
manually generated tests for uncovered sibling methods in
two benchmarks, soot and ph-commons/ph-commons, and sub-
mitted Pull Requests (PRs) for each. The PR submitted to
ph-commons/ph-commons was quickly merged by the project
authors, while the PR for soot still requires additional work
to meet unrelated project requirements.

Potential Impacts and Future Work: We anticipate that
our sibling test detection and generation approach can con-
tribute to developer productivity. Most importantly, it can free
developers from the burden of creating highly similar tests for
related classes, while ensuring that these classes continue to be
meaningfully tested with at least somewhat appropriate tests.
Our tool can be used both when developers initially create
new classes, as well as during routine maintenance—when
a developer touches an untested class, they may benefit from
generating related tests for it. Once we have created machinery
for test generation, we will apply it and poll developers about
the usefulness of generated tests. Finally, we intend to release
our tool as open-source software.

V. RELATED WORK

We discuss related work in the areas of code clones,
refactoring tools, and test generation.

a) Code Clones: There is a broad consensus that code
clones account for a significant amount of code, perhaps 5–
10% of codebases [5]; Kapser and Godfrey investigate clones
in the Apache web server [6], while Casazza et al identify
clones in the Linux kernel [7]. With the increasing acceptance
of unit tests, our work helps developers mitigate issues with
clone maintenance by helping them ensure that clones are at
least tested. Our approach does not detect clones; it simply
combines information from the class hierarchy (i.e. which
methods are implemented) with test coverage data to identify
methods that are easily testable by adapting existing tests.

b) Refactoring: At the moment, our SIBLING-
CLASSTESTDETECTOR tool is simply a detector—it
recommends methods that could easily be testable, presumably
with tests that are similar to already-existing ones. The easiest
way to extend coverage to such methods is to clone existing
tests. Such clones could then be reasonable candidates for
refactoring. Meszaros [8] has written extensively about
refactoring in the context of unit tests. Thus, an alternative
to cloning tests would be to refactor them and to use the
refactored tests for all of the sibling method implementations.

Due to its design, SIBLINGCLASSTESTDETECTOR may
identify refactorable cloned methods in the main program (not
tests). This is because it locates sibling method implementa-
tions which share the same specification. Such implementa-
tions may be at risk of inconsistent changes; Juergens et al [9]
found that inconsistent updates to clones are frequent, and that
such updates cause higher-than-usual rates of software faults.

Sibling methods may also be refactoring candidates. Clone
detection has been extensively studied, surveyed by Roy et
al. [10]. Identifying potential clones is a side-effect of this
work; our goal is to identify methods that can easily be tested.

c) Test Generation: While the high-level goal is
similar—to improve the quality of test suites—our work differs
in focus from automatic test generation [11]. Malburg and
Fraser’s EvoSuite [3] uses a modified search-based approach
over the space of test cases to identify potential new tests,
and constraint solving to generate tests. The JQF approach by
Padhye et al [12] combines fuzz testing and property-based
testing to generate test cases. The FrUITeR framework [13]
can be seen as a way of generating UI tests for target mobile
apps from source apps, which is analogous to our approach
of generating unit tests from those of sibling classes. We use
domain knowledge about OO system design to find methods
that are likely to be easily testable; the insight is that sibling
methods should be testable using similar tests. We believe
that information that is incidentally provided by developers
can inspire the creation of useful tests, and we hope that the
research community will follow.

VI. CONCLUSIONS

Based on our observations about OO systems and sibling
classes, we presented an approach for identifying untested
methods that are suitable for adaptation of existing tests from
their siblings. We identified three conditions for methods to
be (Partially) Completable Candidates and implemented them
in our prototype SIBLINGCLASSTESTDETECTOR tool, which
uses the output from the JaCoCo coverage measurement tool
as well as the Soot program analysis framework. Our tool
detected (P)CCs in 11 of 17 open-source Java benchmarks.
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