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Abstract Rust is a relatively new programming language which allows pro-
grammers to write programs that have low-level control over resources while
still ensuring high-level safety guarantees (for programs written in safe Rust).
Rust’s ownership framework enables programs to meet these two seemingly-
contradictory goals. The Rust compiler’s Borrow-Checker component enforces
the ownership framework requirements that ensure Rust’s safety guarantees.

Rust is popular: as of 2022, it has ranked first, for the seventh consecutive
year, in Stack Overflow’s annual Developer Survey as the most-loved program-
ming language. The number of Rust developers is growing as the need for faster
and safer software increases.

Yet, to our knowledge, no research has sought to identify the most pervasive
bug fix patterns within Rust programs. In this project, we introduce Ruxanne,
a tool for analyzing and extracting fix patterns in Rust. Ruxanne implements
a novel embedding of Rust code into fixed-sized vectors. Using Ruxanne, we
mined the top 18 most-starred Rust projects in GitHub to discover the most
common bug fix patterns committed to their repositories. We analyzed 87,726
code changes drawn from 57,214 commits across these 18 projects. After clus-
tering the code changes, and conducting a manual analysis, we identified 20
groups of cross-project bug fix patterns, which we categorize as (1) general
patterns and (2) borrow-checker-related patterns. Among the general patterns,
the most frequently observed pattern is when the user either adds or removes
struct fields. In the case of borrow-checker-related patterns, the most common
pattern we encountered is when the user removes a clone() call. We describe
all detected patterns and their implications to automated program repair.
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1 Introduction

Rust is a relatively new programming language (Klabnik and Nichols, 2019)
which allows programmers to write programs that have low-level control over
resources, while still ensuring high-level safety guarantees (for programs writ-
ten in safe Rust). What distinguishes Rust from other systems programming
languages (e.g. C/C++) is its ownership framework, which is an integral part
of Rust. The ownership framework keeps track of references to different mem-
ory locations, and will free them once they go out of scope. If a program passes
the compiler’s checks, it meets several safety properties by construction; e.g. it
has no dangling references or double-frees. Such properties must be manually
ensured (or not!) in languages like C/C++. Moreover, not only does ownership
remove the need for a garbage collector in the runtime environment, it frees
the programmer from the responsibility to ensure certain safety-related proper-
ties (Qin et al., 2020). Due to the memory and thread safety guarantees that
Rust provides, many software companies have adopted Rust in production.
For example, Dropbox decided to migrate to Rust for developing their storage
system, since they were not completely satisfied with the features provided by
AWS’s S3 or Golang (Moss, 2021).

Bugs have long been an unavoidable part of computer programming, pre-
dating Grace Hopper’s literal debugging session in 1947; even today, bug-free
software remains an aspirational aim for software engineering research. One
step towards that aim has been studying common bug patterns (and their
corresponding fixes) across multiple software systems. Research efforts catego-
rizing common bug patterns date back to at least 1975, where Endres (1975)
tried to categorize bug patterns in operating system implementations.

In this work, with the help of our tool, Ruxanne, we empirically analyze the
most popular Rust projects in GitHub. Our goal is to discover common bug
patterns that afflict these projects. Although we are motivated by a desire to
develop automated program repair tools, we believe these insights can also be
of broader service. Automated program repair (APR) (Le Goues et al., 2019;
Liu et al., 2018) tools try to find bug locations in the source code (using a fault
localization module) and then generate patches to fix them, possibly without
human intervention, so that the modified program meets desired specifications
(implicit or explicit). A powerful automated program repair system has many
useful applications and could significantly simplify debugging, thus reducing
software development cost (Le Goues et al., 2012). A set of common bug fix
patterns can be a useful input to an APR system: it tells how to fix recurring
buggy structures, thus reducing the search space for patch generation (Jeffrey
et al., 2009). Yet, to the best of our knowledge, no research has sought to
identify the most pervasive bug fix patterns in Rust programs.

https://orcid.org/0000-0002-6297-8229
https://orcid.org/0000-0001-8278-5400


A Study of Common Bug Fix Patterns in Rust 3

In this work, we introduce Ruxanne, a tool for analyzing and extracting fix
patterns in Rust. Ruxanne uses a novel embedding of Rust code into fixed-sized
vectors. Through Ruxanne, we mined the top 18 most-starred Rust projects
in GitHub to discover the most common bug fix patterns committed to their
repositories. We analyzed 87,726 code changes drawn from 57,214 commits
across these 18 projects. After clustering the code changes, and conducting
a manual analysis, we discovered 20 groups of cross-project bug fix patterns,
which we categorize as (1) general patterns and (2) borrow-checker-related pat-
terns. We describe each of these patterns. The most common general pattern
is addition or removal of struct fields, while the most common borrow-checker-
related bug fix pattern is removing a call to the clone() function. Our patterns
can serve as knowledge to be embedded into the design of novel Rust auto-
mated program repair tools; we present some specific potential applications of
these patterns below.

If we observe undesired behaviour from a program, then there is likely a
fault within the program1. But where is the fault? Fault localization (Wong
et al., 2016) is the process of automatically finding faulty statements in a
program. If a fault localization tool knows about the common bug patterns
that can appear in the underlying programming language, it can prioritize
candidates based on their bug-producing potential. That would result in a
more robust tool—one that leverages historical data.

Moreover, knowing that certain code patterns in a programming language
are more susceptible to bugs enables projects to set policies that avoid such
patterns. For instance, in the context of C and C++, Cannon et al. (1991)
recommend that, if at least one of the if/else sections is a compound statement,
requiring braces, then both sections should have braces (i.e. they should be
fully bracketed). This recommendation presumably comes from qualitative
experience, as it pre-dates large-scale empirical studies. A project can choose
to require that contributions follow such recommendations. Research such as
ours can help formulate data-driven recommendations that reduce the number
of patterns empirically linked to bugs. Monperrus espouses the claim that the
fewer frequent bug patterns we keep in our software, the lower cost we can
expect to pay for software maintenance (Monperrus, 2014).

Moving further afield, researchers have been exploiting deep learning tech-
niques to create program modifier models, which can then be used for specific
goals (e.g. bug fixes) (Alon et al., 2019b, 2018; Raychev et al., 2016; Bielik
et al., 2016). However, most extant learning tools take fixed-size vectors as
inputs. The process of compressing a variably-sized program to a fixed-sized
vector is called code embedding (Chen and Monperrus, 2019). Unlike with
image data, it is challenging to compress programs into vectors without any
semantic information loss. Current approaches try to define the dimensions of
the fixed-sized vectors in a way that accounts for all possible abstract syntax
tree forms. That results in a large, sparse space for the inputs. Assuming that
the deep learning model we are trying to develop is used for bug fixing, then

1 At the extreme, a fault could be caused by moths or other hardware malfunctions.
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knowledge about common bug fix patterns can help prune the dimensionality
of the input space, which can help create more efficient embeddings.

Many studies have investigated detecting and categorizing bug fix patterns
in general (Islam and Zibran, 2021; Madeiral et al., 2018; Pan et al., 2009), or
for a specific programming language (Yang et al., 2022; Hanam et al., 2016;
Campos and Maia, 2019). In this work, we study common bug patterns that
appear in Rust projects. The Rust compiler’s Borrow-Checker component en-
forces ownership rules and hence many of Rust’s safety properties. Because of
the Borrow-Checker’s importance in Rust, we split the patterns that we present
into two groups: (1) non-borrow-checker related patterns (General Patterns),
and (2) borrow-checker related patterns (BC-Related Patterns).

Research Questions We formulated three research questions (RQs) which
guided our empirical study about Rust bug patterns:

– RQ1. Does our code embedding approach capture the most im-
portant aspects of bug-fixing program changes?

– RQ2. What are the general fix patterns in Rust, and how often
do they apply?

– RQ3. What are borrow-checker related fix patterns in Rust, and
how often do they apply?

Contributions This paper makes the following primary contributions:

– To the best of our knowledge, this work is the first to exploit a code anal-
ysis pipeline to automatically mine Rust open source projects and extract
common cross-project bug fix patterns.

– This work proposes a novel method to encode key AST information in fixed
size datapoints using a semi-automatically derived weighting scheme.

– Keeping in mind the key role of the borrow checker in Rust, this work
specifically identifies bug fix patterns that are related to Rust’s ownership
framework in addition to general bug fix patterns for Rust.

– This work finds that the most frequently observed general pattern is the
addition or removal of struct fields and that the most frequently observed
BC-related pattern is the removal of a clone() call.

Data Availability Statement The datasets generated and analyzed during
the current study are available in the Zenodo repository, https://zenodo.
org/record/8052979.

2 Methodology

In this section, we provide an overview of our methodology, with full details
to appear in later subsections. Ruxanne uses a pipeline for finding classes of
pervasive patterns in Rust programs. This pipeline parses program versions,
computes differences between them, embeds them in fixed-size datapoints,
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and then clusters these datapoints. After conducting a manual analysis on the
obtained clusters, we refine them to obtain our proposed bug fix patterns.

We define a code change to be a modification to a program’s source code
that changes the program’s abstract syntax tree (AST). A change pattern is
a set of code changes that serves a specific purpose. Purposes include rectify-
ing program behaviour with respect to a specific functional or non-functional
requirement (bug-fixing patterns) and changes that support bug-fixes (fix-
induced patterns) as well as improving code readability or maintainability
(refactoring patterns). In this work, we are interested in bug-fixing and fix-
induced patterns. Thus, from now on, whenever we refer to code patterns, we
mean bug-fixing and fix-induced patterns.

Our approach for automatically finding pervasive code patterns aims to find
clusters of similar code patterns, using existing implementations of appropri-
ate clustering algorithms. Work in this vein generally makes the assumption
that clusters correspond to classes of change patterns (Hanam et al., 2016;
Campos and Maia, 2019; Yang et al., 2022). We thus want to associate code
changes with datapoints; one of our contributions is a fixed-size embedding
which highlights the important parts of a code change.

We implemented Ruxanne completely in Python. Our target repositories
were the top 18 most-starred open source Rust projects on GitHub as of August
2021. We mined (using Pydriller) all the bug related commits and ran them
through our pipeline; Section 2.1 describes how we extracted fixed-size data-
points from the code changes, and Section 2.2 describes our mining method-
ology in depth. Then, we applied the DBSCAN clustering algorithm (Ester
et al., 1996) on the resulting datapoints. Section 2.3 describes clustering in
detail, justifies our choice of DBSCAN for clustering, and explains how we
tuned it to improve cluster quality.

2.1 Code Embedding

To compute the contents of a change, we need two code revisions: the revision
before the change, and the revision after it. After parsing these two revisions,
we will have two ASTs. Tree diff algorithms can compute the differences be-
tween two arbitrary trees. When the trees are programs’ abstract syntax trees,
we call their diff an ASTDiff. An ASTDiff may include an arbitrary number
of semantic changes, although a best practice is to include only one semantic
change in a commit. Because that best practice is not universally followed,
we are interested in finding the most important change within an ASTDiff,
and embedding that change in our datapoints. Section 2.1.1 describes our
program parsing process, and how we obtained ASTDiff from code changes.
Sections 2.1.2 and 2.1.3 provide a detailed explanation of how we select the
most important semantic information out of an ASTDiff, which then allowed
us to obtain clusters that contained similar datapoints.
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2.1.1 Parsing Programs

Syn2 is a Rust crate built for the Rust procedural macro implementation.
However, it includes a parser which is suitable for our purposes; we simply
had to write a preprocessor to transform Syn AST output into Python dictio-
naries. Syn handles all of Rust. Each of our datapoints specifies whether any
Syn non terminal (NT) is present or absent, i.e. containing one dimension per
non terminal. However, we are also interested in change patterns that involve
the borrow checker (BC), so we add a dimension reflecting the presence of a
set of BC-related elements (BCE) that we identified, e.g. clone, Rc, Box. The
full list of BCE elements can be found in our replication package3.

We parse two versions of a changed Rust file in a commit: the file before
the commit and after it. This yields two Syn trees. Using the PLY tool4 (a
Python implementation of lex and yacc), we wrote a simple transformer from
the serialized Rust AST to Python dictionaries. The change that transforms
the first tree to the second one is the fix that was applied in the commit. To
find this difference, we use dictdiffer5, a Python library to find the diff of two
Python dictionaries. Its output, in our context, is the ASTDiff.

2.1.2 Path Extraction

The output of dictdiffer is a list of diffs, where each diff has three parts.
The first part specifies the modification type:

– ‘add’: A new structure has been added to the tree;
– ‘remove’: A structure has been dropped from the tree;
– ‘change’: The content of a sub structure of the first tree has changed.

The second part identifies the context of the modification, that is, the path
from the root of the tree to the subtree in which the modification has occurred.
The third part is the content of the change—terminals and non terminals.
Ruxanne looks for changes within each root-level scope (the Rust book6 calls
these root-level scopes the items of a crate). That is, our assumption is that
each change pattern occurs within one root-level scope. In this work, we chose
to not handle patterns that involve changes in multiple functions or multi-
ple files. However, our tool detects both continuous and non-continuous line
changes within one scope.

Looking at the tree encoded in the content part of each diff, we realized
that each path to a leaf represents one element contributing to the change. A
Depth First Search allows us to collect all paths, and we return only the paths
that we store in our datapoints (i.e. touching NT ∪ BCE).

2 https://crates.io/crates/syn
3 https://zenodo.org/record/7388618
4 https://www.dabeaz.com/ply/
5 https://dictdiffer.readthedocs.io/en/latest/
6 https://doc.rust-lang.org/reference/items.html
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fn sample() {

// ...

-- let receiver = foo(arg1, tail, head)

++ let receiver = foo(arg1, &tail, head.clone())

// ...

}
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Fig. 1 The ASTDiff (left) corresponds to the code change in the yellow box (top right). A
DFS of the ASTDiff finds three paths of nonterminals (Paths 1–3), shown in three different
colors at right. The paths summarize (1) the addition of the ExprReference & before tail;
(2) the change from a read of head to a method call (represented by ExprMethodCall), and
(3) specifically a call to distinguished method clone().

Running example: path extraction. Figure 1 illustrates path extraction on a
simple change, starting from the ASTDiff. The change (shown in the top right
corner of the Figure) replaces tail with &tail and head with head.clone().
After the change, the second argument passes a borrow of tail rather than
sending the ownership of tail to the callee; and, the third argument sends
a clone of head to the callee instead of sending head itself. A DFS on this
tree yields three different paths, which we label “Path 1” through “Path 3”
and show in red, green, and blue. A path represents a sequence of involved
non terminals, e.g. the one starting with ExprReference in Path 1. It is crucial
to record the order of nodes in the path, so that we can record that order in
our datapoint embedding.

Note that the tree depicted in Figure 1 is not an AST; rather, it repre-
sents an ASTDiff. The paths in the ASTDiff capture the changes in the code
structure between the two versions, allowing us to analyze and extract relevant
information for further processing. The number of paths in the ASTDiff does
not directly correspond to the number of changed elements in the source code.
Instead, it is determined by the structural differences between the ASTs of the
two code versions.

In our example, the change adds a & borrow operator to the variable
tail, which gives rise to an ASTDiff path introducing a new parent node
(ExprReference) for tail. The change also adds a call to clone(). This ad-
dition gives rise to two ASTDiff paths: one showing that the head node now
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belongs to an ExprMethodCall, and one indicating the new sibling node for
head representing the clone(). (Among the terminals, we only keep the distin-
guished terminal clone in our paths, as it is a BC-related keyword.) One path
for the & borrow operator and two for the call to clone() result in three paths
in the ASTDiff, even if the change only appears to include two modifications.

Code Embedding. A key question is how to transform these paths to a fixed
size datapoint. We need fixed-size datapoints, as they are a requirement for
well-known centroid-based and density-based clustering algorithms (Xu and
Wunsch, 2005). First, we need to define a fixed set of columns. The number of
columns controls the amount of information we can embed in the datapoints.

The most naive approach would be to only report the observed non ter-
minals within the diff. That yields a fully order-insensitive representation. In
such an embedding, for instance, there is no difference between two nested
if statements and two if statements beside each other. On the other hand,
theoretically, for full order-sensitiveness, we would need to embed all possi-
ble combinations of items from NT ∪ BCE as our dimensions, which yields a
combinatorial explosion; this could potentially be reduced somewhat, but is
still impractical. While we can implement a specific workaround to distinguish
nested ifs (and we have done so), the general point about the large dimension-
ality of fully order-sensitive embedding still holds.

A reasonable workaround would be to pass from the full set of non ter-
minals to a smaller set of categories (e.g. a category for larger entities like
class or function definitions, and a category for smaller entities like statements
and expressions), and then to record all possible combinations of these cat-
egories (similar to Hanam et al. (2016)). That ad-hoc approach reduces the
number of dimensions and provides more reasonable and syntactically-correct
combinations. However, it would still yield a sparse dataset.

We propose a novel representation. Similar to the naive approach, we define
the columns of our dataset as the set of items NT ∪ BCE collected from Syn.
However, to account for order-sensitivity, we introduce two additional steps.
Firstly, we record the number of occurrences of items from NT ∪ BCE within
each distinct root-level scope (e.g. structs, functions, impl blocks, etc). This
captures the varying occurrence counts resulting from different element orders
in the program. Secondly, we incorporate a weighting scheme, designed semi-
automatically, to prioritize non terminals that we consider more salient for
Rust bugs.

Running example: computing fixed-sized vectors. Figure 2 depicts the fixed-
sized vectors, as described in this subsection, for the change from Figure 1. All
of the columns in this vector belong to scope ItemFn—that is, these non ter-
minals occur within a function. The Figure also depicts the essence of change,
to be described immediately below.
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Context
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Path
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Ident
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Ident
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ASTDiff Occurrences data

Element ItemFn Local ExprCall ExprReference Path Ident ExprMethodCall clone other

# 1 1 1 1 2 3 1 1 0

Weighted data
Multiply

Element ItemFn Local ExprCall ExprReference Path Ident ExprMethodCall clone other

weight 0.0004 2.21e-05 8.68e-05 1 2.60e-05 2.76e-05 4.75e-05 1 ...

Essence of change
Result

Element ItemFn Local ExprCall ExprReference Path Ident ExprMethodCall clone other

value 0.0004 2.21e-05 8.68e-05 1 5.20e-05 8.28e-05 4.75e-05 1 0

Visualizing Essence

Fig. 2 Multiplying the number of occurrences of items observed in the tree by their respec-
tive weights results in the essence of change, visualized with a circle pack figure at bottom
right. All non terminals here occur within scope ItemFn.

2.1.3 Weighting Scheme

Our main requirement is that our datapoints summarize the key changes in
ASTDiffs—a datapoint should foreground the most important change in a diff.
For instance, the blue path (Path 3) in Figure 1 could be described as a change
in a local variable declaration; a change in a function call; calling a method
of one of the function arguments; or calling clone() on one of the function
arguments. The last description, in our opinion, is the most useful one, and we
designed our weighting scheme to embed this value judgment. We made two
observations about changes. First, we saw that items (non terminals or BC-
related elements) that occur closer to AST leaves tend to be more semantically
important. Second, and relatedly, items closer to the root tend to be repeated
in all the paths within one ASTDiff (e.g. ItemFn, Local, ExprCall in Figure 1).
We thus want to prioritize items that tend to occur closer to leaves and de-
prioritize items that tend to occur closer to roots.

To design our weighting scheme, we collected empirical data about loca-
tions of item occurrences in a corpus. Specifically, we mined 20 of the most
recent bug related commits of the same projects described in Table 1, and ran
them through our pipeline. We recorded the total number of occurrences of
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Table 1 We chose the 18 most-starred Rust projects on GitHub as target repositories for
mining.

Project Name Stars(k) LOC # Commits Avg. Code Churn
denoland/deno 85.9 146055 8026 49.22
tauri-apps/tauri 52.5 50014 3041 31.67
alacritty/alacritty 42.4 30124 2036 27.53
sharkdp/bat 37.6 9496 2457 59.13
starship/starship 29.3 34888 2379 25.1
rust-lang/rustlings 30.6 5067 1466 8.92
meilisearch/meilisearch 30.2 25981 4029 279.7
sharkdp/fd 24.9 6542 1068 12.2
swc-project/swc 24.2 346501 5884 44.34
yewstack/yew 24.5 44295 2280 21.79
xi-editor/xi-editor 19.6 39292 2105 28.67
AppFlowy-IO/AppFlowy 28.4 57646 3321 29.49
firecracker-microvm/firecracker 19.6 82021 3620 58.26
nushell/nushell 21.1 163562 6088 22.38
ogham/exa 19.5 10852 1558 11.99
SergioBenitez/Rocket 18.7 68952 2135 19.75
rustdesk/rustdesk 30.2 48115 2620 72.81
tokio-rs/tokio 17.9 121400 3101 28.87

each item. Then, if #i is the number of occurrences of i, we gave i a weight
of 1/#i. Because items that occur closer to the root also occur more often,
per our observation, this gives higher weights to items that occur infrequently,
i.e. closer to the leaves. Items that occur often and have lower weights are, we
believe, less important in describing a change.

Furthermore, as we wanted to make sure that our tool captures patterns
related to the Rust borrow checker, we manually increased the weights of
the BCE items. The manual adjustment is why we characterize our weighting
scheme as semi-automatically designed. The final weights can also be found in
our replication package.

Multiplying the number of occurrences of all observed items in a change by
their respective weights results in a vector of numbers. We call this vector the
essence of change. In this vector, the value for each item shows its importance
in the change.

Running example: essence of change. Figure 2 shows a complete example for
computing the essence of change. The essence of change vector essentially
serves as our embedding vector. The Figure shows the process for transform-
ing the patch illustrated in Figure 1 from fixed-size datapoints (computed as
described in the previous subsection) into the essence of change vector. To
better illustrate the essence vector, Figure 2 also graphically presents it using
a circle pack figure. The radius of each circle corresponds to the importance
of the item inside it.

https://orcid.org/0000-0002-6297-8229
https://orcid.org/0000-0001-8278-5400


A Study of Common Bug Fix Patterns in Rust 11

2.2 Mining Repositories

Now that we have set up our code analysis pipeline, we can start mining the
Rust repositories. We target the top 18 most-starred Rust projects on GitHub,
at the time of data collection. Table 1 summarizes our benchmarks. Because
we are interested in changes, we computed (using process metrics provided
by our mining library) the average code churn of the files within the projects.
swc-project/swc, nushell/nushell, and denoland/deno are the projects with the
most LOCs. Unsurprisingly, we captured a lot of instances from these projects
in our final clusters.

We used the Pydriller (Spadini et al., 2018) library to mine software repos-
itories. Pydriller provides APIs to extract commits from a Git repository and
to search through different revisions of files. Algorithm 1 shows how we used
Pydriller to run the target repositories through our code analysis pipeline and
populate two databases: one for borrow-checker related patterns (which involve
items in BCE) and one for general patterns (which don’t). For each repository,
we search all commits that include bug-fixing related keywords within their
commit messages. Here, we chose bug-fixing related keywords based on the set
introduced in Zhang et al. (2018), excluding ‘nan’ and ‘inf’.

Next, we collect a pair of revisions for each Rust file. The pair includes the
state of the file before the commit and after the commit (fa, fb). After parsing
each revision and computing the ASTDiff, we can compute the fixed sized
datapoint DP . If the datapoint contains borrow-checker related keywords, we
put it in the BC-related database Db; otherwise, we put it in the general
code changes database Dg. In both cases, we augment the datapoint with
the commit hash, filename, and the scope in which the change happened. For
BC-related code changes, we also store the detected BC-related keywords. In
summary, a datapoint is a tuple containing essence values for each element in
NT ∪ BCE plus metadata about the change (e.g. commit hash, filename, etc.).
Now our databases are ready for clustering and categorization.

2.3 Clustering Data

Having collected our datapoints, our next task is to cluster them so that we
can categorize bug patterns. Like Hanam et al. (2016), we use the DBSCAN
clustering algorithm for two main reasons. Firstly, in contrast to k-means, it
does not require the number of clusters in advance as an input to the algorithm.
Secondly, it is a density-based clustering method, which means that it detects
arbitrarily shaped clusters; centroid-based methods like k-means can’t detect
such clusters.

DBSCAN takes two tuneable parameters. The first parameter ϵ indicates
a radius distinguishing core points, border points, and outliers. The second
parameter Z is the minimum number of points per cluster. We ran DBSCAN
using different combinations of these two parameters. In Figure 3, we show nine
different experiments, with their respective parameter values. Each subplot
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Algorithm 1 Mining Algorithm
Input: R (target repositories)
Output: Dg (General code changes)
Output: Db (BC-related code changes)

Dg ← ϕ
Db ← ϕ
for r ∈ R do

for c ∈ ExtractCommits(r) do
if c.msg contains bug fixing related keywords then

for {fb, fa} ∈ GetModifiedRustFiles(c) do
for e ∈ ASTDiff(Parse(fb),Parse(fa)) do

DP← GetDataPoint(e)
DP← c.hash ∪ fa.name ∪ e.scope ∪DP
if IsBCRelated(e) then

DP← GetBCKeyword(e) ∪DP
Db ← Db ∪DP

else
Dg ← Dg ∪DP

end if
end for

end for
end if

end for
end for

specifies, for both Dg and Db, the number of clustered points, noise points,
and the number of clusters.

As a general rule, lower Z would allow more groups of nearby points to
be considered to be clusters, resulting in a higher number of clusters. A large
ϵ would widen the search radius, allowing more points to fall in the clusters,
which results in a reduction of the number of noise points. However, such
a choice might put points from different patterns inside the same cluster,
resulting in ineffective clustering. Alternatively, a small ϵ would tighten the
ring of search, possibly separating clusters which essentially manifest the same
code changes. Also, if ϵ is really small, the clustering algorithm might not
detect some clusters at all, resulting in a reduction of the number of clusters.

2.3.1 Manual analysis for parameter tuning

Since both large and small values of ϵ would steer us away from obtaining
meaningful clusters, we felt the need to carry out a manual analysis of clusters
for better parameter tuning. In the manual analysis, we randomly picked 50
clusters; from each cluster we randomly chose 10 datapoints. The person ana-
lyzing the cluster (the first author) then looked at the code and specified the
clusters that contained more than five datapoints showing similar patterns.
After conducting the manual analysis, we decided to use ϵ = 0.0001, Z = 5
and ϵ = 0.001, Z = 5, as our clustering parameters for Dg and Db, resulting
in 577 and 102 clusters, respectively. As a final step, we excluded clusters that
contained datapoints from fewer than 3 projects. That is because we wanted

https://orcid.org/0000-0002-6297-8229
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Fig. 3 Clustering results with nine different combinations of parameters ϵ and Z, re-
spectively separated in columns and rows. In each subplot, the two blue bars in the left
respectively indicate the number of clustered (Gc) and noise (Gn) datapoints (the number
is shown above each bar) after applying clustering on general database Dg . The two orange
bars in the right show similar data but for the borrow-checker database Db. In each subplot’s
legend, Cg and Cb show the number of clusters obtained from Dg and Db, respectively

our clusters to contain cross-project (e.g. potentially generalizable) patterns
as much as possible.

2.3.2 Manual analysis for cluster selection

Like Yang et al. (2022), and following the definitions of Cotroneo et al. (2019),
we divide the clusters in three different groups:

– bug-fix: The code change rectifies undesired behavior in the software sys-
tem, providing fixes for a specific bug type. We also include here changes
that improve program performance, as they fix the behaviour of the soft-
ware.

– fix-induced: The code change is a part of a bug-fixing code and does not
constitute the whole bug fix. For instance, introducing additional input
parameters to a method also requires adjustments in the corresponding
method invocations and does not represent the complete bug fix on its
own.

– refactoring: The software behavior remains unchanged after the code change.
These changes are made for improving the codebase’s maintainability, read-
ability, or encapsulation.
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In this work, we were only interested in the first two groups and ignored
clusters for refactoring changes. Also, we prefer reporting clusters that mani-
fest more-specific patterns. An abstract pattern as opposed to a more-specific
pattern can account for many changes in the programs. We use our judgment
to prioritize patterns that we deem more specific. For instance, we deem the
pattern ‘Changing a clone of a variable to a borrowing of it in a function
argument’ more specific than ‘Changing a statement in a function’s body’:

// First Pattern (more important): change clone to borrow

-- foo1(arg.clone);

++ foo1(&arg);

// Second Pattern (less important): change a statement in an fn

fn foo2() {

-- stmt1;

++ stmt2;

}

For our manual analysis, we analyzed all datapoints in clusters with fewer
than 50 datapoints, and randomly picked 50 datapoints from clusters with
more than 50 datapoints. Such large clusters account for 35/428 cross-project
general patterns (out of 577 general pattern clusters) and 4/49 BC-related
patterns (out of 102 BC-related pattern clusters). We exhaustively analyzed
all datapoints in the 393 small cross-project general patterns and 45 BC-related
clusters.

For each cluster, we read the code and the bug reports of the datapoints
(if available). If we judged that the members of a cluster fit into a pattern, we
wrote a natural language description of that cluster. Considering the descrip-
tions, we linked similar clusters together as possible candidates for merging,
and removed the datapoints that were not either bug-fix or fix-inducing. We re-
considered merging candidates and carried out appropriate merges. Finally, we
selected 20 of the remaining clusters—the ones that manifested more-specific
changes. Sections 3.2 and 3.3 present our clusters.

3 Results

In this section, we present the clusters of fix patterns that we found in our data
set. RQ2 is about general patterns, while RQ3 is about borrow-checker related
patterns. However, our technique fundamentally relies on our code embed-
ding approach successfully capturing the most important aspects of program
changes. We thus first evaluate the code embedding approach as our RQ1,
before continuing with RQ2 and RQ3.

https://orcid.org/0000-0002-6297-8229
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3.1 Evaluating the code embedding approach (RQ1)

Does our code embedding approach capture the most important
aspect of program changes?

As discussed in the previous section, we used an embedding mechanism
to incorporate AST information in fixed-sized datapoints which then could be
used in the DBSCAN clustering algorithm. We used heuristics (i.e. a weighting
scheme) while creating our datapoints to make the program elements repre-
senting the most important non terminals stand out from the complete set of
non terminals seen in the AST. In addition, we also incorporated BC-related
elements in our datapoints. Here we evaluate the effectiveness of our embed-
ding.

Our evaluation aims to determine whether the most important program
elements get high values in our embedding, i.e. are recognized as important.
A human analyzer (paper author) inspects the actual change in the code and
compares it to the visual representation of the respective data point. We used
circle pack figures to visualize each data point (Collins and Stephenson, 2003),
generated with the packcircles python library7. In these figures, the radius
of the circle for each non terminal shows its importance in our embedding
(Figure 2 presented an example of the circle pack figures).

We collected random samples 1000 times. In each iteration, we sampled
50 datapoints from our general and borrow-checker databases (25 each). For
each database, out of the 1000 sample sets, we picked the one that minimized
the sampling error (i.e. we are aiming to choose the sample that looks most
like the entire dataset). The sampling error is defined as the average of the
absolute differences between the sample set mean and the total mean per
column (DeGroot and Schervish, 2012). Also, these random samples are drawn
from the clustered datapoints. The reason behind this decision is the same as
why we collected a lot of noise points: the majority of the commits involve
changes in many program elements and the key changed elements are difficult
to determine.

We carried out a manual experiment for evaluating our code embedding. In
the experiment, the human analyzer looks at the change’s source code and finds
the most important element that appears in the circle pack figure, recording
its rank. A value of 1 indicates that the human analyzer concurs with the
algorithm, while 2 means that the human-identified most important element
was ranked 2 by the algorithm. After collecting all the ranks, we then calculate
Top-n Accuracy for n = 1 up to n = 5. Both authors acted as analyzer and
carried out the experiment independently. To avoid inflating our final results,
after comparing the ranks that the authors gave to each datapoint, we consider
the larger (worse) rank in our final results. That is, if the first author gave
rank 2 to datapoint D and the second author gave rank 3 to that datapoint, in
the final results we gave datapoint D a rank of 3. The authors’ answers were
the same for 45 of the 50 datapoints.

7 https://github.com/mhtchan/packcircles

https://github.com/mhtchan/packcircles
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Fig. 4 Top-n Accuracy of our proposed code embedding approach. The plot shows Top-n
Accuracy where n ∈ {1, 2, 3, 4, 5} for both general and borrow-checker related datapoints.
As shown in the plot, in more than 85% of the datapoints, the most important element is
seen at least in the first three ranks, rising to about 95% for the first five ranks.

Figure 4 shows the final results. Although we judged that our results were
acceptable—the result reported by our embedding was top-4 as ranked by
humans 88% of the time—we investigated the other 12% as well. We found
that our embedding tended to fail in change patterns where the change involves
many elements (e.g. adding a whole new impl block and implementing new
functions in it). Such failing change patterns tend to apply across projects less
often, as having many changed elements make it easier for datapoints to be
dissimilar.

3.2 Common Bug Fix Patterns (RQ2)

What are the general fix patterns in Rust, and how often do they
apply? We collected general fixes, asked DBSCAN to create clusters, and
manually analyzed them. In this subsection, we will discuss each pattern, as
well as an important aspect of its value: its actionability. By actionability, we
mean the possible usages of the pattern for bug repair. Other researchers can
also use the empirical pattern frequency numbers that we report to build their
own program repair tools, prioritizing more-frequently-repaired patterns; they
are not limited to our suggested actionability. Section 4.1 contains a global
discussion of our patterns and their value.

Our dataset includes 60583 datapoints for general fix patterns. We pro-
cessed our dataset on a server with a Xeon Gold 5120 processor (Q3-2017,
14-core 2.2 to 3.2GHz). The data collection took around 26 hours to populate
the general and BC-related databases Dg and Db. We used DBSCAN with

https://orcid.org/0000-0002-6297-8229
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Catgegory ID # Instances # Projects

Attributes
G.attr.struct 81 16
G.attr.struct.field 34 9

Struct
G.struct.field 179 17
G.struct.field.pub 23 12

Option G.option 22 12

Types

G.type.field 72 14
G.type.generic 46 14
G.type.enum.variant 39 12
G.type.tuple 6 6

Traits G.trait.bound 6 5

Match
G.match.pattern 41 12
G.match.code 8 5

Table 2 Bug Fix Pattern Categorization (General Patterns)

parameters ϵ = 0.0001 and Z = 5, resulting in 577 clusters. After manual
analysis, as described in Section 2.3.2, we ended up with 12 general patterns,
which we describe in Table 2. As shown in the table, we have separated the
patterns based on the underlying program element (Category column). We
have given each pattern a specific ID (ID column) and determined the number
of instances manifesting that fix pattern (# Instances column), as well as the
number of projects in which the pattern was seen (# Project column).

Since these patterns are general Rust patterns, analogous patterns can also
occur in other programming languages, and we will discuss such analogous
patterns when describing each pattern. We next provide a detailed description
of each of these patterns.

3.2.1 Attributes

A quite common bug fix pattern in our corpus modifies attributes. In Rust,
attributes enable developers to add metadata to program elements. Some of
the attributes—presumably the vast majority of those involved in bug fixes—
affect the semantics of the program; for instance, libraries generate different
code based on the attributes that the developer specifies.

Developers can add attributes to structs, struct fields, enum variants,
match expression arms, etc. The concept of attributes in Rust is similar to
Python’s decorators and Java’s annotations. While each language may have its
own syntax and specific use cases, the fundamental idea of attaching metadata
to code elements is shared across these languages. Some attributes, decorators,
and annotations have no run-time effect and thus could not cause bugs (if we
accept a purely operational definition of “bug”). Yang et al. (2022) reported
no bug patterns involving Python’s decorators in their Python dataset. As
we alluded to above, however, Rust has many attributes that definitely have
run-time effects. We will see some of these attributes in the following examples.

G.attr.struct Modifying the attributes of structs

// G.attr.struct.add: Adding attributes to a struct
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-- #[derive(Clone, Properties)]

++ #[derive(Clone, Properties, PartialEq)]

pub struct CounterProps {

pub destroy_callback: Callback<()>,

}

// G.attr.struct.drop: Removing attributes from a struct

-- #[derive(Serialize, Deserialize, Clone, PartialEq, Eq, Debug)]

++ #[derive(Serialize, Deserialize, Clone, PartialEq, Eq)]

pub struct Subset {

segments: Vec<Segment>,

}

// G.attr.struct.change: Changing an existing attribute of a struct

-- #[derive(Deserialize, Debug, Copy, Clone, PartialEq, Eq)]

++ #[derive(ConfigDeserialize, Debug, Copy, Clone, PartialEq, Eq)]

pub enum SearchAction {

SearchFocusNext,

SearchFocusPrevious,

SearchConfirm,

SearchCancel,

SearchClear,

SearchDeleteWord,

SearchHistoryPrevious,

SearchHistoryNext,

}

Description: In this pattern, the developer changes the attribute set of a
struct. There are three variants of this pattern: Adding attributes to the struct
(G.attr.struct.add); Removing attributes from the struct (G.attr.struct.drop);
Changing the content of an existing attribute (G.attr.struct.change). These
variants account for 58, 10, and 13 out of 81 datapoints in the cluster, respec-
tively. Thus, adding attributes is the most frequent variant.

In the specific cases above, the Add change requests that additional boiler-
plate code be generated to evaluate partial equivalence on CounterProps (new
functionality); the Remove change causes debug code to be removed (perfor-
mance fix); and the Change change requests different deserialization code be
generated. In our example, adding an attribute causes additional code to be
generated for a struct and could thus, for example, fix a compile-time error in
a dependency.

G.attr.struct.field Modifying the attributes of struct fields

// G.attr.struct.field.add: Adding attributes to struct fields

#[derive(Serialize)]

pub struct Retain {

++ #[serde(skip_serializing_if = "Option::is_none")]

https://orcid.org/0000-0002-6297-8229
https://orcid.org/0000-0001-8278-5400


A Study of Common Bug Fix Patterns in Rust 19

pub attributes: Option<Attributes>,

}

// G.attr.struct.field.drop: Removing attributes from struct fields

pub struct ExpandContext<’context> {

#[get = "pub(crate)"]

pub registry: Box<dyn SignatureRegistry>,

-- #[get = "pub(crate)"]

pub source: &’context Text,

pub homedir: Option<PathBuf>,

}

// G.attr.struct.field.change: Changing attributes of struct fields

#[derive(Serialize)]

pub struct Retain {

-- #[serde(skip_serializing_if = "Option::is_none")]

++ #[serde(skip_serializing_if = "is_empty")]

pub attributes: Option<Attributes>,

}

Description: In this pattern, the attribute set of a struct field changes. As
with G.attr.struct, there are also three subtypes of this change pattern. Out
of 34 datapoints in this cluster, 32 involve changes to a field attribute, while
two datapoints correspond to the addition and removal of a field attribute
(one for addition, one for removal). Using these attributes, the developers
can control different actions they wish to apply on struct fields, in addition
to providing meta-information. For instance, in the code snippet provided
above, the developers chose to make Serde (a serialization/deserialization tool
for Rust) call a different function (is_empty instead of Option::is_none)
to determine whether to skip serializing the attributes field. Note that
G.attr.struct.field is not a subset of G.attr.struct.

Actionability of attribute change bug fixes: Because attributes have se-
mantic effects, program repair tools can effect repairs by adjusting the set
of attributes included. Given the observation that so many of our bug fixes
change attributes, we propose that IDEs need to be able to propose relevant
attribute changes. The example for G.attr.struct.change about changing
Deserialize to ConfigDeserialize is specific to that program, but other
changes would apply more generally. Also, forG.attr.struct.drop, we demon-
strated a case where the developer removed a Debug attribute. A novel type
of performance program repair tool working with a run-time profiler could
identify unnecessary code and remove attributes that generate it.

3.2.2 Struct

A struct enables users to define a custom type that is comprised of different
types. This is a common construct across languages, and the patterns that we
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describe in this section also exist in other languages.

G.struct.field Adding/Removing a struct field

// G.struct.field.add: Adding a new field to a struct

struct SnapshotService<U, R> {

uuid_resolver_handle: R,

++ db_name: String,

}

// G.struct.field.drop: Removing a field from a struct

struct InnerListeners {

pending: Mutex<Vec<Pending>>,

-- queue_object_name: Uuid,

}

Description: A set of new fields are added to or removed from an existing
struct. A developer adds a new field to store a new piece of data in a struct.
A developer removes a field when the developer realizes that the field is not
required with respect to the behaviour they want to implement (possibly be-
cause they have moved it elsewhere).

G.struct.field.pub Modifying the access modifiers of struct fields

// G.struct.field.pub.add: Adding pub to a field

pub struct HtmlBlock {

-- content: BlockContent,

++ pub content: BlockContent,

brace: token::Brace,

}

// G.struct.field.pub.drop: Removing pub from a field

pub struct Languages {

-- pub named: HashMap<LanguageId, Arc<LanguageDefinition>>,

++ named: HashMap<LanguageId, Arc<LanguageDefinition>>,

extensions: HashMap<String, Arc<LanguageDefinition>>,

}

Description: Adding pub to a struct field makes it possible to access that
field from external modules. In the instances of this cluster, adding the pub

access modifier happened in bug fixing changes where the developer needed
to access a field which had not been marked for public access. On the other
hand, public access might be revoked if the developer realizes there are no
external accesses to the field, and that such accesses are not desirable, e.g. for
encapsulation purposes.

Actionability of struct changes: The patterns related to access modifiers
suggest an opportunity for repair tools to make sure that the accessibility
of program entities follows the user’s specifications, enhancing encapsulation,

https://orcid.org/0000-0002-6297-8229
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security, and maintainability. Additionally, the empirical numbers revealing
the frequency of struct field modifications in Rust shed light on the significance
of these bug fix patterns and emphasize the need for further exploration on
how program repair tools can effectively modify code based on changes in
struct fields to repair program behavior.

3.2.3 Option

G.option Changing field type T to T⟨Option⟩

#[ast_node("MediaRule")]

pub struct MediaRule {

pub span: Span,

-- pub media: MediaQueryList,

++ pub media: Option<MediaQueryList>,

pub rules: Vec<Rule>,

}

Description: Rust is a null-safe language, meaning that object references can-
not take on null values. If a developer wants a variable to contain the equivalent
of null, they must use the Option type. Option is essentially an enum with two
variants: Some, which indicates that a variable has a value; and None, which in-
dicates the absence of any value. In this change pattern, the developer changes
the type of a struct field to an Option of that type, hence enabling them to
store no value in that field. For instance, in the Rust project swc-project/swc (a
fast TypeScript/JavaScript compiler), the developer needed to modify the CSS
parser source code to account for empty @media queries8. As shown in the snip-
pet above, they changed type MediaQueryList to Option<MediaQueryList>,
and modified the other parts of the source code accordingly.

Actionability of adding Option to a type: This pattern occurs as a fix-
induced change—a repair tool might be carrying out a broader change and
need to make smaller changes like this one in the process. Our empirical results
suggest that this type of change does occur in practice and will need to be
part of a program repair tool’s arsenal.

3.2.4 Types

Rust is a statically-typed language, and like in other statically-typed lan-
guages, some change patterns are associated with changes in types used in
different program structures. Here, we introduce four bug fix patterns that are
associated with types in Rust:

G.type.field Changing a struct field type

8 https://github.com/swc-project/swc/commit/75a14f98b7370226115ee24eec6eb8c802bd4837

https://github.com/swc-project/swc/commit/75a14f98b7370226115ee24eec6eb8c802bd4837
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pub struct Manifest {

-- pub substitutions: HashMap<String, &’a str>,

++ pub substitutions: IndexMap<String, &’a str>,

}

Description: The type of a struct field changes. This is a common change
pattern in all statically-typed languages and can happen for various reasons.
For instance, the developer may be implementing a new feature or fixing the
behaviour of the program. Also, it can happen for refactoring purposes or for
performance enhancement.

For instance, in the Rust project starship/starship (a cross-shell prompt),
to preserve the insertion order of the substitutions field, the developer
changes its type from HashMap to IndexMap9.

G.type.generic Changing a generic type parameter

#[derive(Debug, Clone, PartialEq)]

pub struct Anchor {

-- point: Point<usize>,

++ point: Point<isize>,

side: Side,

}

Description: This is a change of the type parameter of a struct field. This
change pattern can occur for the same reasons as for G.type.field.

G.type.enum.variant Change in enum variant value type

#[derive(Debug, Clone, PartialEq, Eq)]

pub enum ResolvedDependency {

Resolved(ModuleSpecifier),

-- Err(String),

++ Err(ResolvedDependencyErr),

}

Description: In Rust, developers can specify the type of the value that an
enum variant can store. Using this feature, they can avoid having to use a
struct along with enum variants. This change pattern is associated with a
change in enum variant types.

G.type.tuple Changing the type inside a tuple

#[allow(dead_code)]

pub struct CoreState {

// Other fields

-- pending_views: Vec<ViewId>,

++ pending_views: Vec<(ViewId, Table)>,

9 https://github.com/starship/starship/commit/4de9e43cff46c834bd340d24a02fc95d85310a33
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peer: Client

}

Description: In this pattern, an extra type is added to an existing type, mak-
ing it a tuple of multiple types. Alternatively, the change might be dropping
types from the tuple and making it a smaller-arity tuple.

3.2.5 Traits

G.trait.bound TraitBound change

-- pub struct EventLoop<T: tty::EventedReadWrite> {

++ pub struct EventLoop<T: tty::EventedPty> {

poll: mio::Poll,

// Other fields

}

Description: The trait bounds are the functionalities that we require from
our parametric types. This concept more-or-less corresponds to interfaces in
other languages, although the mapping is not exact (e.g. it is possible to im-
plement traits for others’ types). This change pattern relates to modifications
in trait bounds, which can happen as part of bug fixes or for refactoring.

3.2.6 Match

In Rust, the match control flow construct is used for comparing a value against
multiple patterns, and executing the code associated with the first pattern that
matches. A pattern and its associated code are called a match arm. Match
statements are similar to switch statements in other languages, like C, al-
though Rust match statements are able to match more complicated patterns.

G.match.pattern Change in a match arm’s pattern

-- Value::Primitive(p) => {

++ UntaggedValue::Primitive(p) => {

let _ = builder.add_empty_child(p.format(None));

}

Description: In this pattern, a change occurs in an arm’s pattern. Like the
code snippet provided above, it can be a change in a match pattern’s type.
It also can be matching to a different enum variant or string. The fix pattern
can happen both for refactoring or bug-fixing purposes.

G.match.code Change in a match arm’s code

Operation::Insert(insert) => {

-- inverted.delete(insert.count_of_utf16_code_units());

++ inverted.delete(insert.utf16_size());

}
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Catgegory ID # Instances # Projects

Clone
BC.clone.drop 83 10
BC.clone.ref 4 3

Ref and Deref
BC.ref.add 17 7
BC.deref.to string.add 4 3

Mut
BC.mut.add 11 6
BC.mut.drop 42 15

Vector BC.vec.slice 8 6
Lifetime BC.lifetime.static 8 6

Table 3 Bug Fix Pattern Categorization (BC-Related Patterns)

Description: The block of code associated with a pattern in match arm can
contain multiple statements. In this fix pattern, a change happens in at least
one of these statements. Similar to the previous fix pattern, this also can be
due to refactoring or debugging purposes.

3.3 BC-Related Bug Fix Patterns (RQ3)

What are borrow-checker related fix patterns in Rust, and how often
do they apply?

We collected 27143 datapoints for borrow-checker related fix patterns. We
then applied DBSCAN with parameters ϵ = 0.001 and Z = 5, resulting in 102
clusters. After manual analysis (Section 2.3.2), we ended up with 8 borrow-
checker related fix patterns. Table 3 describes BC-related patterns, analogously
to Table 2 for general patterns. Since the Borrow-Checker is unique to Rust,
patterns in this section generally do not have direct counterparts in other
languages. We next provide a detailed description of each of these patterns.

3.3.1 Clone

BC.clone.drop Dropping clone

start_plugin_process(

-- manifest.clone(),

++ manifest,

self.next_plugin_id(),

self.self_ref.as_ref().unwrap().clone(),

);

Description: This pattern is referred to as redundant clone in Clippy Lints.
Clippy10 is a linter tool for Rust that catches common mistakes. There are more
than 500 lints included in Clippy. Since detecting whether a clone is redundant
is undecidable, Clippy conservatively estimates redundancy. By definition, re-
moving a clone that is indeed redundant does not modify functional aspects of

10 https://github.com/rust-lang/rust-clippy
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the program behaviour. (Removing a non-redundant clone introduces a com-
pile error or, worse yet, a bug.) However, a removal of a redundant clone can
greatly improve the nonfunctional property of performance, if the program
was formerly cloning large objects.

BC.clone.ref Dropping clone and adding borrowing

-- let field_id = schema.get_or_create(attribute.clone())?;

++ let field_id = schema.get_or_create(&attribute)?;

Description: Unlike the previous pattern, this pattern is not detected by
Clippy. The change happens when a developer realizes that the cloning of a
variable is unnecessary, but also wants to keep the ownership of the variable
within the current scope (rather than passing it to a callee). That is why, in
this pattern, a clone is turned into a borrow.

Like the previous pattern, this change does not affect the program be-
haviour; it is done for performance purposes. In one of the commits11 of the
project tauri-apps/tauri, changing a clone to borrowing significantly improved
CPU usage: in the commit history, developers discussed how the cloning of
types such as HashMap was expensive.

Actionability of clone removal: Like Clippy, a program repair tool can
implement clone removal by reasoning about whether the clone operation was
necessary. If the clone is unnecessary, the tool can replace it with a reference
(as seen above), thus reducing the overhead of unnecessary copying.

3.3.2 Ref and Deref

BC.ref.add Adding Borrowing

let repo = replace(&mut *contents, Processing).inner_repo();

-- let statuses = repo_to_statuses(repo, &self.workdir);

++ let statuses = repo_to_statuses(&repo, &self.workdir);

Description: This change pattern happens when the developer now needs
to take back ownership of an object that was previously passed to a callee
(or other scope) and never returned. Borrowing allows the first scope to once
again act on the object.

As an example, the commit in starship/starship excerpted above12 shows
that the developer now borrows the value of repo_dir to keep the ownership
of the object in the current scope. This object can then be used in a subse-
quent function invocation (remove_dir_all(repo_dir)), which fixes a bug.

Actionability of adding borrowing: This pattern often occurs as part of
a larger change, making it challenging to create a generalized repair tool that

11 https://github.com/tauri-apps/tauri/commit/a280ee90af0749ce18d6d0b00939b06473717bc9
12 https://github.com/starship/starship/commit/56d475578ea508631275772127f49a6949fea6b0
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covers all possible scenarios. Typically, when a reference is passed instead of
transferring ownership, the variable is used again after returning from the call.
Although it is not obvious how to create a comprehensive repair tool for such
cases, empirical results underscore the significance and prevalence of this fix,
warranting further investigation.

BC.deref.to string().add Adding a dereference before calling to string()

for p in wixobjs {

-- args.push(p.to_string());

++ args.push((*p).to_string());

}

Description: This is a change that in all instances (in our benchmarks) has
been proposed by Clippy—commit messages indicated the use of Clippy for
this fix. The change applies on an object prior to calling to_string() on that
object. In this change, a dereference operator is added to that object. The
reason behind the change is that the object is a reference type of T, where
T directly implements to_string(). Adding the dereference makes the com-
piler instead use the specialized implementation of to_string() and not go
through slower string formatting methods13. This change is aimed at improv-
ing performance; the functionality remains unchanged.

3.3.3 Mut

BC.mut.add Adding mutability

parser::Parser::new(args)

.parse_module()

-- .map_err(|e| {

++ .map_err(|mut e| {

e.emit();

()

})?

Description: This change happens when the developer needs to mutate a
variable which was previously immutable in a scope—they thus need to add
the mut keyword. We never observed this pattern in refactoring-only changes;
it always accompanied a change in program behaviour.

Actionability of adding mutability: A repair tool can use this pattern
to introduce mutability to the target variable and modify other parts of the
program accordingly. For instance, if the target variable has associated impl

blocks, the change may involve modifying method annotations to ensure that
the calling object is mutable, aligning with the desired behaviour.

13 https://rust-lang.github.io/rust-clippy/master/index.html#inefficient_to_

string
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BC.mut.drop Dropping mutability

-- let mut tx = tx.clone();

++ let tx = tx.clone();

Description: The developer drops the mut keyword before a variable, as they
do not mutate the variable (which is statically checkable). This redundant
mutability is reported by Clippy and can also be removed by it. Such a change
may help future-proof the code against unintended future changes: mutability
must be explicitly added back before the variable can be mutated.

3.3.4 Vector

BC.vec.slice Changing a Vec reference to Slice

pub fn expand_delimited_square(

-- children: &Vec<TokenNode>,

++ children: &[TokenNode],

) -> Result<hir::Expression, ParseError> {

// body

}

Description: In a struct field definition, or in the types of a function’s formal
parameters, type &Vec<T> changes to slice &[T]. Clippy can detect opportu-
nities to apply this pattern. This simplifies the code; slice types &[T] or &str
are sufficient for most use cases.

3.3.5 Lifetime

BC.lifetime.static.drop Dropping static lifetime

-- const QUEUE_SIZES: &’static [u16] = &[QUEUE_SIZE];

++ const QUEUE_SIZES: &[u16] = &[QUEUE_SIZE];

Description: This change pattern removes the static keyword from a const
variable declaration. This change can be applied using Clippy. A static lifetime
associated with a variable indicates that the variable lives for the entire lifetime
of the running program, and is not bound to a specific scope. If the presence
of static is not required, it is better that to omit it, as keeping it might create
complicated types in the program.

4 Discussion

In this work, we used Ruxanne to successfully mine 20 cross-project bug fix
patterns. We presented these patterns in two groups: 12 general patterns and
8 BC-related patterns. Clippy is able to detect 5 of the 8 BC-related pat-
terns. Fundamentally, Clippy cannot detect some of the remaining patterns.
For instance, we proposed pattern Adding mutability. In the Rust context, this
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change anticipates a future change to the code which will perform a mutation
of a previously immutable value. Predicting the future is beyond Clippy’s re-
mit. To our knowledge, the remaining patterns (3 BC-related patterns and 12
general patterns) cannot be reported by current linting tools.

In each group, we categorized the bug fix patterns based on their underlying
program element. The patterns encompass a wide variety of program elements
both in the general and BC-related groups. This supports a conclusion that
our weighting scheme is not biased towards specific program elements. Also,
our patterns are all cross-project fix patterns: each reported fix pattern has
been seen at least in three different projects.

While we introduce patterns that reflect changes at different locations in
the code, such as BC.ref.add, which by borrowing a variable instead of tak-
ing ownership enables users to use the variable in subsequent locations, we
acknowledge that it is possible that a large patch may be harder to cluster,
because it has to resemble other patches. Additionally, we believe that any
clustering-based approach will likely place larger diffs further apart for the
same reason that ours does: there is just more going on. Nevertheless, there is
nothing inherently penalizing a larger diff. Also, we point out that the related
work by Pan et al. (2009) specifically excludes diffs with seven statements or
more, while we allow larger diffs.

All of our parsing, path extraction, weighting scheme, and clustering mod-
ules, along with our final results, can be found in our replication package,
which we provide for verification, reusability and further extension. Weight-
ings can be modified to make the embedding focus on a specific set of elements
for building different code embeddings.

4.1 Patterns Present and Missing

When presenting each pattern, we discussed actionability for the most impor-
tant actions. Here, we discuss the implications of our most important patterns.
In summary, program repair tools must understand semantics of attributes and
should be performance-aware. It may also be useful for tools to be able to au-
tomatically infer immutability. Here, we discuss the top ten most popular
patterns (8 general patterns and 2 BC-related patterns).

The most common general pattern and the most popular pattern overall is
modifying struct fields with 179 datapoints. Unfortunately, struct field modi-
fications are neither interesting nor actionable; they are simply used to enable
other changes.

The most common borrow-checker-related pattern and second-most-common
pattern overall is dropping clone(). This pattern is performance-related; when
correctly applied, it has no semantic impact on the program, but reduces re-
source consumption. Rust is used in situations where performance is impor-
tant, and the number of instances of this pattern confirms that developers
do work on performance issues. This implies that program repair tools would
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benefit from being performance-aware, rather than limiting themselves strictly
to functional properties of the code.

Attribute modifications are interesting changes that account for the third-
and ninth-most popular patterns. From a language design perspective, the fact
that there are so many attribute changes marked as bug fixes illustrates the
semantic importance of attributes in Rust, and implies that program repair
must understand the effects of attributes. Yet, different attributes have differ-
ent, and often library-dependent, semantic meanings. Proposing specific repair
techniques that reason about attributes is beyond the scope of this work, but
our results suggest that they are important to develop.

The fourth- and fifth-most popular patterns, changing the type of a struct
field or of a generic type parameter, are difficult to make general statements
about; there are many unrelated idiosyncratic changes in these clusters. Such
changes look the same, but have different purposes. One example we showed
changed a HashMap to an IndexMap, preserving iteration order. That specific
nondeterminism bug could be automatically repaired upon direction from the
developer. Another change modified usize to isize, perhaps reflecting a re-
quirements change to allow signed integers. IDEs could support refactorings
that modify types. We find it difficult to propose further general work in this
direction.

The sixth-most-popular pattern is the Rust-specific change of dropping
mutability (i.e. making data immutable). Tools like ReImInfer by Huang et al.
(2012) (for a Java extension), and techniques like the one proposed in Eyolfson
(2018) for C++, aim to infer that data is immutable. In the Rust context, it
is easier to make data immutable: the semantics for immutability are clear.
Immutability is part of the core Rust language. Immutability escape hatches
in C++ complicate issues, but in Rust, the escape hatch is the clearly-marked
unsafe block. This pattern thus suggests that tools for inferring Rust im-
mutability could be viable.

We are unable to say anything meaningful about the seventh- and eighth-
most popular patterns, G.match.pattern and G.type.enum.variant. They
do not seem particularly helpful for automatic program repair.

The tenth-most-popular pattern, making a struct field pub and hence vis-
ible to external modules, suggests that tools to help developers manage visi-
bility would be helpful. Public accessibility of methods and fields very much
affects library compatibility and usability.

Conversely, we were surprised to find that Ruxanne reported no patterns
associated with certain Rust-related features. For instance, we did not observe
any patterns associated with the Rust move operator, which has been known
to plague many beginning Rust programmers. move is used to transfer the
ownership of values to a closure. In some cases (e.g. multithreading), not mov-
ing the ownership could create invalid references. Rust compiler checks prevent
such errors. Our speculation is that, since Rust enforces strict compiler checks,
programmers usually get many compile-time errors, but they only push their
code once it is free of compile errors. We would not observe patterns which do
not make it to the repository.
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To compare the importance of bugs versus compilation errors: we consider
bugs as potentially more critical. This is because a bug, if left unresolved,
can remain dormant within the system and then inadvertently get deployed,
whereas a program with compilation errors cannot be shipped by developers.

We summarize some learnings from our bug patterns:

– Rust program repair tools must understand the effects of attributes.
– Program repair tools should be performance-aware.
– Tools for inferring Rust immutability could be viable.

4.2 Usefulness of Rust Bug Patterns

Having discussed the most frequent patterns and their implications on repair
tools, we continue by discussing potential features for repair and refactoring
tools in more detail. We believe our results can help with the development of
program repair and refactoring tools for Rust. We have discussed the action-
ability of some of the general patterns and three BC-related patterns that are
not detected by Clippy.

For instance, as we have discussed, for the common pattern of Modifying
the attributes of structs, a code linter tool could search for correct attribute
lists within the codebase (Forrest et al., 2009), leveraging the assumption that
proper attribute usage can be found elsewhere in the code. Also, the linter
can analyze the usages of the struct to determine the necessity of adding the
attribute. Assuming that attributes cause additional code to be generated,
removing unnecessary attributes not only optimizes the codebase but also
eliminates unnecessary overhead and reduces binary size.

Similarly, we presented the pattern Dropping clone and adding borrowing.
As discussed, Clippy does not detect this pattern, and repetitive clones can be
computationally expensive. Using state-of-the-art methods for program repair,
one could design a tool to recognize this pattern and change variable cloning
to simple borrowing.

We believe that our insights can greatly aid researchers in creating effective
IDE tools tailored for Rust development. Moreover, the empirical frequency
numbers associated with each pattern, highlighting its prevalence, can provide
valuable guidance for the development of program repair tools.

4.3 Threats to Validity

There are two main threats to the internal validity of our work: (1) A threat
to internal validity is confounding, where changes to what shows up in the
embedding are not due to changes in the code being embedded. In this case,
the weighting scheme may contribute to confounding because we manually
adjusted the weights. Nevertheless, our weighting scheme can be readjusted
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to find different patterns, which is why we made our pipeline publicly avail-
able. (2) Our code embedding approach is based on the frequency of observed
program elements in ASTs, and we use DBSCAN as our clustering algorithm.
Other code embedding methods and clustering algorithms (e.g. SLINK) might
output new clusters that our pipeline is unable to find.

We discuss three threats to external validity: selection bias, incorrect com-
mit/bug information reported by developers, and changes to the Rust pro-
gramming language. (1) Selection bias is an issue because our benchmarks
may differ systematically from the set of Rust programs in the world. Our se-
lection of projects might be biased and therefore we might not have presented
patterns that may exist in other projects. We aimed to mitigate this threat
by choosing all of the most-starred projects, but this biases towards popular
projects by definition. (2) Another threat to external validity can be the de-
velopers reporting commits as bug fixing commits while they are not really
fixing functionality. Similarly, a commit message might not contain our tar-
get keywords while the commit is associated with bug fixing changes. This is
simply an underlying assumption of our work and may cause us to miss some
bugs; we do not believe it should be a systematic threat, and is shared by
much other work on understanding bug fixes. (3) A third threat is that Rust
is a relatively new programming language, and its syntax is prone to evolv-
ing over time. Changes in Rust’s grammar, such as the introduction of new
keywords like async/await in version 1.39, have the potential to introduce
new bug categories or modify existing ones. Thus, one must consider language
evolution as a potential external threat to the validity of our research findings;
this threat can be mitigated by redoing our analysis in the future using our
methodology with updated versions of our published artifacts.

5 Related Work

Automated program repair (APR) aims to debug faulty source code without
human involvement, sometimes using test cases to guide the repair. Before
a repair tool modifies code, it will typically use a fault localization module
to find fault locations. The fault localization modules that we are aware of
rank program statements based on suspiciousness; one example is Tarantula by
Jones and Harrold (2005). Often, suspiciousness is calculated using a statistical
model which relies on the observation that buggy statements are executed
mostly by failed test cases (Naish et al., 2009; Xie et al., 2013).

5.1 Automated Program Repair

We next discuss a number of approaches for automated program repair. First,
however, we discuss previous work that aimed to classify bugs—program repair
must have a model of what it is attempting to repair in the first place. We
then present two mindsets for program repair: search-based and pattern-based.
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Finally, we survey related work in automated patch correctness assessment,
which aims to ensure that changes by automated repair tools are valid.

Bug Classification. A foundational bug study dates back to Endres (1975),
which classified the bugs that were fixed in a particular release of IBM’s
DOS/VS operating system, written in the DOS Macro Assembler language.
Endres contended that categorizing bugs can aid in uncovering error causes,
fixing them, and preventing their recurrence. The Group B of bugs in that work
include, among others, bugs that could be prevented by the use of a different
programming language, e.g. “assignment, loading, or saving of address regis-
ters forgotten,” which is somewhat similar to our Rust-specific bug patterns.
Later on, Knuth (1989) analyzed the errors that he made in the development
of TEX, written in the WEB literate programming language. This was per-
haps one of the first works in this domain where there is a publicly-available
artifact (the TEX source code) supporting the data (i.e. the bugs identified),
unlike the proprietary DOS/VS code. Knuth includes 15 categories of errors;
the most relevant ones to this work are “language liabilities,” “mismatches be-
tween modules,” “reinforcements of robustness,” and “surprising scenarios.”
Flanagan and Felleisen (1998) described MrSpidey, an interactive static de-
bugger for Scheme (a dialect of Lisp). MrSpidey is a front-end to an ESC-style
static verification engine which aims to detect bug patterns where operators
are passed invalid arguments. The engine relies on program invariants and
presents information about attempted proofs of the invariants to the devel-
oper. Most recently, Pan et al. (2009) analyzed seven large-scale widely used
Java projects and manually extracted 27 common bug fix patterns.

Moving from bug classification to our application, program repair, we follow
the taxonomy of Liu et al. (2018) and propose two mindsets: search-based
program repair and pattern-based program repair. Our work applies to both
mindsets, but is most directly applicable to pattern-based program repair.

Search-Based Program Repair. One line of research in program repair follows
the “competent programmer” hypothesis (Gopinath et al., 2015): syntactically,
a faulty program is not that far away from its correct version. This hypothesis
suggests the search-based program repair mindset. If the hypothesis holds, we
can develop mutation operators (which change an expression or a statement)
and apply them to a list of fault locations provided by the fault localization
module. So, we loop through possible mutations; if the mutation of a statement
does not cause all expected-successful test cases to succeed, we assume that
the statement is correct and move on to the next fault location. Having a set of
bug-producing patterns, like the ones we are proposing, will help researchers
design targetted mutation operators that leverage domain specific insights.

Use of mutation operators in program repair became popular with Gen-
Prog (Forrest et al. (2009); Nguyen et al. (2009)), a program repair tool that
uses genetic programming. The main idea behind this tool is that statements
follow certain patterns in a codebase. Therefore, if we find the correct version
of a faulty statement somewhere in the program, we can use that version in
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place of the faulty original. This tool showed promising results as it managed
to find patches without any additional annotations or human involvements.

However, Arcuri and Briand (2011) observed that GenProg mostly found
patches while carrying out random initialization—that is, before GenProg’s
evolution begins. Their tools TrpAutoRepair (Qi et al., 2013) and RSRe-
pair (Qi et al., 2014) advocate that test case prioritization is necessary while
using genetic programming, as fitness evaluation is an expensive part of the
repair pipeline.

Tan and Roychoudhury (2015) used mutation repairing for fixing regression
bugs. They categorized common code changes in real-world regressions after
studying 73 program evolution benchmarks; our approach also yields a set
of common code changes, for Rust, using a different set of changes. Tan and
Rovehoudhury used their categorization to design mutation operators, and
drew from those operators to repair faulty program locations.

Pattern-based Program Repair and Mining Bug Fix Patterns. The main intu-
ition in pattern-based program repair methods is that bug fixes follow certain
patterns. Thus, having a collection of common bug fix patterns is a crucial step
for developing such repair tools. For this mindset, the search is for a program
fix (i.e. a delta) rather than for a correct program.

Pan et al. (2009) used a bug fix pattern extractor tool to automatically
parse and detect bug patterns within bug fix hunks with fewer than seven
statements. They ignored larger bug fix hunks—they claimed that such hunks
tended to exhibit random changes rather than having patterns that they could
derive meaning from. Though they analyzed Java projects, their reported pat-
terns were not specific to Java, in the same way that our general patterns are
not specific to Rust. Martinez and Monperrus (2015, 2012) exploited the fre-
quency of observed patterns to introduce a heuristic patch searching method.
In their empirical evaluation, they concluded that choosing repair actions prob-
abilistically (weighted by frequency) can help with reducing the search space,
hence creating a more effective repair tool.

Hanam et al. (2016) conducted similar research, but for finding pervasive
bug fix patterns in JavaScript. They performed a large-scale study of bug fix
patterns by mining 105K commits from 134 server-side JavaScript projects.
Like us, they used the DBSCAN clustering algorithm and divided bug fixing
change types into 219 clusters, from which they extracted 13 pervasive cross-
project bug fix patterns.

Yang et al. (2022) proposed a mining approach to detect Python bug fix
patterns by studying fine-grained fixing code changes. They also examined how
many bugs could be fixed using automated bug fixing approaches. Moreover,
they evaluated the fix patterns that they detected and concluded that 37% of
the buggy codes could be matched by the fix patterns they had found.

We would characterize our work as the Rust version of what was done
in Hanam et al. (2016) and Yang et al. (2022) for JavaScript and Python,
respectively, but with additional infrastructure to create a representation of
the Rust code using fixed-size vectors. Like Hanam et al. (2016), we used
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DBSCAN to cluster fixes. Moreover, similar to Yang et al. (2022), we intro-
duced patterns in two different categories. In our case, there were general and
language-specific patterns. The Rust language-specific patterns were related
to the borrow checker (BC patterns). However, unlike our paper, Yang et al.
(2022) needed to do a much more elaborate manual analysis, as they had only
collected general information about the single hunk changes (e.g. the number
of variables, or arguments).

Automated Patch Correctness Assessment. The final step in automated pro-
gram repair is to validate the proposed changes. One substantial challenge is
overfitting, where synthesized patches may pass test cases but fail to be cor-
rect. Automated patch correctness assessment (APCA) aims to inspect the
correctness of generated patches using dynamic and static analyses. While our
project has a different objective than APCA, we share similarities in design de-
cisions with APCA systems, particularly in feature extraction. Ye et al. (2021)
propose ODS, an overfitting patch detection system, which assumes that code
features capturing universal correctness properties can be utilized to classify
overfitting patches across program repair systems and software projects. ODS
extracts 202 manually crafted code features by comparing fixed and buggy
code, and employs supervised learning to build a distributional model for clas-
sifying unseen patches, achieving over 70% accuracy in evaluations on De-
fects4J, Bugs.jar, and Bears suites. Similarly, our feature extraction involves
manual crafting of features. In another study, Tian et al. (2022) present an
enhanced APCA model that transforms the problem into a question-answering
scenario and incorporates a neural architecture to learn semantic correlations
between bug reports and commit messages. Additionally, Lin et al. (2022) in-
troduce Cache, a neural-based context-aware AST embedding method that
captures both the changed part and the unchanged part (context code) of
patches. Evaluation results demonstrate that context knowledge significantly
enhances the performance and accuracy of systems that attempt to automat-
ically assess patch correctness (which is not our goal).

5.2 Code Embedding

Recent advances in deep learning have motivated researchers to build models
for various types of data. Machine learning models require a numerical rep-
resentation of the data to feed into the model. To realize this mapping for
natural language text, researchers have proposed word embedding to embed
word information in fixed size vectors. As programming languages are not
that different from natural languages (Hindle et al., 2016), similar mappings
have been suggested for computer programs (Chen and Monperrus, 2019).

Alon et al. (2019b) presented code2vec, a neural model for representing
code snippets as fixed size vectors. In their approach, they extracted flattened
paths from the AST, and stored all the leaf-to-leaf paths. The intuition behind
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this decision was that leaf-to-leaf paths tend to encode more semantic infor-
mation than root-to-leaf paths. They associated a fixed size vector with each
path, and fed these as inputs to a neural network that learns how to aggregate
all these paths to a single embedding. Our code embedding approach is simpler
than code2vec’s, as we have a specific (and simpler) goal—we aim to cluster
bug patterns, not predict method names. Moreover, unlike us, code2vec does
not offer a general code embedding method, since the final embedding depends
on the output layer of the neural network. That is, if we change the goal of
method name prediction, the embeddings would be completely different. Also,
unlike many embeddings, our code embedding is interpretable: our columns
are associated with non terminals. We have used the interpretability in our
experiments. In code2vec, the layout of the final vector is a parameter of the
system and is not related to the underlying programming language. Building
on the same ideas, as a subsequent work, the same authors also introduced
code2seq (Alon et al., 2019a), an approach for transforming a code snippet to a
sequence encoding. They evaluated their work on three seq2seq use cases: (1)
method name prediction, (2) code captioning, and (3) code documentation.
code2seq proved to have a better understanding of syntactical structure of the
code and outperformed previous neural machine translation systems.

Hoang et al. (2020) introduced CC2Vec, a neural network model that uses
log messages accompanying code changes to learn representations capturing se-
mantic information. By addressing challenges in distinguishing between added
and removed code and incorporating an attention mechanism, CC2Vec outper-
forms previous techniques for code change representation. The model employs
a hierarchical attention network, which incorporates a multi-level bidirectional
GRU recurrent neural network, to encode information about changed code to-
kens, lines, and hunks into vectors representing added and removed changes.
These vectors are then combined and fed into a hidden layer for predicting the
target function. Evaluation across log message generation, bug fixing patch
identification, and just-in-time defect prediction tasks demonstrates the su-
perior performance of CC2Vec compared to the previous state-of-the-art ap-
proach in all three tasks.

Our work is more like that of Hanam et al. (2016). However, our novel pro-
gram embedding approach differs from theirs on certain key decisions. Their
work introduced the Feature Properties table, which is a categorization for pro-
gram elements. Embedding programs based on this table resulted in an order-
sensitive embedding. However, it made the datapoints sparse; our datapoints
are more dense than theirs. Specifically, we have over 11× fewer dimensions
than they do.

5.3 Refactoring tools for Rust

Clippy is widely known as the best code refactoring tool for Rust. It can iden-
tify over 600 common mistakes and offer automated fixes. As discussed in
Section 3.3, we found that Clippy can detect and address five of our borrow-
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checker-related patterns. Beyond Clippy, Sam et al. (2017) introduced a refac-
toring tool that uses the Rust compiler infrastructure to perform various refac-
toring operations, including renaming variables, arguments, fields, functions,
methods, structs, and enumerations, as well as inlining local variables, and
reifying and eliding lifetime parameters. In a more advanced use case, Ling
et al. (2022) proposed CRustS, a tool designed for refactoring C2Rust output.
C2Rust is a C to Rust transpiler that converts C code into Rust syntax but
retains the unsafe semantics of C. By relaxing the constraint of preserving
semantics during transformations, CRustS increases the proportion of trans-
formed code that successfully passes the safety checks of the Rust compiler.

5.4 Code Patterns in Rust

To our knowledge, our work is the first to use an automated mining and code
analysis pipeline to find pervasive patterns in Rust open source projects, even
if previous studies have (manually) investigated common bug patterns in Rust.

Qin et al. (2020) conducted the first empirical study on real-world Rust
program behaviours. They manually inspected 850 unsafe code usages and 17
bugs across five open-source Rust projects, five Rust libraries, two online secu-
rity databases, and the Rust standard library. They analyzed the motivation
behind unsafe code usage and removal, in addition to recording 70 memory-
safety issues and 100 concurrency bugs. They also provided Rust programmers
with some suggestions and insights to develop better Rust programs. Using
the results of their manual analysis, they designed two bug detectors, and pro-
vided recommendations for developing more bug detectors in the future. Our
approach to finding bug patterns has similar implications to their work but,
due to automation, can operate at a far larger scale.

Li et al. (2021) present MirChecker, a fully automated bug detection frame-
work for Rust. This framework works by carrying out static analysis on Rust’s
Mid-level Intermediate Representation (MIR). The tool exploits the insights
obtained from manually observing existing bugs (by studying reported CVEs)
in Rust code bases. Using custom abstract domains that consider both numer-
ical (e.g. integer bounds) and symbolic (e.g. modelling memory) information,
the framework detects errors using constraint solving techniques. MirChecker
detected 33 new bugs, including 16 memory safety faults, across 12 Rust crates.
While MirChecker automatically detects bugs, the bug classes that it detects
must be manually programmed into the system, and our work is complemen-
tary to MirChecker in potentially proposing novel classes of bugs that need to
be fixed.

6 Conclusion

In this project, we developed Ruxanne, a tool for mining bug fix patterns
in Rust. Using this tool, we mined the top 18 most starred Rust projects in
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GitHub to discover common bug fix patterns within their code changes. At
the heart of Ruxanne, we used a novel code embedding approach to embed the
most important aspects of a code change in a fixed sized datapoint. We pro-
cessed 87,726 datapoints drawn from 57,214 commits across these 18 projects.
After using the DBSCAN clustering algorithm, and a subsequent manual anal-
ysis, we obtained 12 clusters of general fix patterns and 8 clusters of borrow-
checker related fix patterns. We found that the most common general pattern
was adding or removing fields, while the most common borrow-checker related
pattern was removing a clone() call.
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