
Abstract Debugging with GobPie

Karoliine Holter
University of Tartu

Tartu, Estonia

Juhan Oskar Hennoste
University of Tartu

Tartu, Estonia

Simmo Saan
University of Tartu

Tartu, Estonia

Patrick Lam
University of Waterloo

Waterloo, Canada

Vesal Vojdani
University of Tartu

Tartu, Estonia

Abstract

GobPie is an IDE integration designed to enhance the usability and
explainability of the abstract interpretation-based static analyzer
Goblint. GobPie features abstract debugging, a novel approach to
presenting static analysis results, which complements traditional
debugging methods by making program analysis results visible. Its
goal is to help resolve rare but real software issues. Unlike tradi-
tional debugging, which proceeds step-by-step to observe concrete
states, abstract debugging uses static analysis results to simulate
the same steps, o�ering insights into all possible execution paths.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging; Automated static analysis.

Keywords

Automated Software Veri�cation, Abstract Interpretation, Explain-
ability, Visualization, Data Race Detection

ACM Reference Format:

KaroliineHolter, JuhanOskarHennoste, Simmo Saan, Patrick Lam, andVesal
Vojdani. 2024. Abstract Debugging with GobPie. In Proceedings of the 2nd

ACM International Workshop on Future Debugging Techniques (DEBT ’24),

September 19, 2024, Vienna, Austria. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3678720.3685320

1 Introducing GobPie

GobPie1 is a Visual Studio Code extension designed to provide
an intuitive user interface for Goblint1, an abstract interpretation-
based static analyzer for C code. GobPie lets developers explore
Goblint’s results directly within the IDE, using both the code editor
and debugger as visualization interfaces. The analysis integration
leverages the MagpieBridge framework [7] to support the Language
Server Protocol (LSP), while the abstract debugger communicates
through the Debug Adapter Protocol (DAP). Goblint has a server
mode that communicates with GobPie via IPC sockets, allowing the
analyzer to remain active throughout the editing session without
needing to restart for each analysis [2].

1 https://github.com/goblint/GobPie and https://github.com/goblint/analyzer

DEBT ’24, September 19, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1110-7/24/09
https://doi.org/10.1145/3678720.3685320

GobPie’s visualization makes Goblint’s warnings about potential
safety property violations visible in the code editor and o�ers an
abstract debugging feature for identifying the causes of these po-
tential issues. Thus, on one hand, GobPie facilitates the interactive
use of Goblint to explore the warnings and the abstract program
states in a robust and professional user interface. On the other hand,
the abstract debugging feature can be seen as an augmentation of
a debugger with sound static analysis results, bringing a formal
veri�cation tool into a setting already familiar to developers.

2 Abstract Debugging with GobPie

In this demo, we show a �x to a race condition using GobPie, where
we use GobPie’s debugger interface to navigate Goblint’s static
analysis results. GobPie implements the concept of abstract debug-
ging [4]. An abstract debugger operates similarly to a conventional
debugger, presenting the same well-known user interface. However,
unlike traditional debuggers, which allow step-by-step execution
of a program to observe changes in the concrete state, the abstract
debugger simulates these steps using results from static analysis.
Instead of working with concrete states, the abstract debugger en-
ables users to observe abstract states, which represent information
from all possible executions. The user can explore potential issues
that may arise in di�erent execution scenarios without the need
for speci�c input values.

The abstract debugger navigates an Abstract Reachability Graph
(ARG) of the program, which models an over-approximation of
the possible concrete states. This navigation mimics the execution
of statements in a traditional debugger, with stepping operations
functioning similarly. The features of the abstract debugger using
the built-in user interface of the IDE are summarized below, high-
lighting its ability to step through all execution scenarios and the
similarities it shares with traditional debugging.

Stepping and Breakpoints. GobPie’s abstract debugging supports
all basic stepping operations—step into, step over, step out, and
step back—and the ability to set breakpoints. As Goblint’s analysis
is path- and context-sensitive, as well as thread-modular, a single
breakpoint may correspond tomultiple abstract states, whichmeans
that the program point could be reached by taking di�erent paths
in the program.

Displaying multiple program states at once. The main advantage
of the abstract debugger is its ability to display multiple program
states simultaneously, facilitating the debugging of all possible
execution paths in parallel. As DAP does not have dedicated support
for displaying multiple program states at once, the functionality
for displaying di�erent threads is repurposed for showing di�erent

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

32

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0008-3725-4131
https://orcid.org/0009-0006-0682-5929
https://orcid.org/0000-0003-4553-1350
https://orcid.org/0000-0001-8278-5400
https://orcid.org/0000-0003-4336-7980
https://doi.org/10.1145/3678720.3685320
https://github.com/goblint/GobPie
https://github.com/goblint/analyzer
https://doi.org/10.1145/3678720.3685320


DEBT ’24, September 19, 2024, Vienna, Austria Karoliine Holter, Juhan Oskar Hennoste, Simmo Saan, Patrick Lam, and Vesal Vojdani

Figure 1: A screenshot of the abstract debugger on a �awed

program. There is a breakpoint at the warning location. Step-

ping back will reveal the cause.

states of the same breakpoint. The screenshot in Fig. 1 shows all four
states as separate threads in the “Call Stack” view on the bottom left,
even though in reality, there are two threads with two contexts each.
Repurposing the thread display feature is a reasonable compromise
because Goblint’s thread-modular analysis focuses on the local view
of a single thread, referred to as the ego thread, while handling other
threads as if they run freely [9]. Thus, while stepping, we see the
abstract states from the perspective of the ego thread. In this way,
GobPie reuses the existing infrastructure to provide a visualization
tool for debugging multi-threaded C programs, ensuring that users
can navigate and analyze multiple thread-modular states without
requiring a completely new interface.

Overview of Additional Features. Several additional features ap-
pear in the demonstration. The call stack for each observable state
is visible in the bottom-left corner of Fig. 1, displaying the function
calls and thread creations leading to the current program point.
Besides regular breakpoints, GobPie supports conditional break-
points that pause only at states that meet a set condition, e�ectively
�ltering the states to be explored. Variable values are displayed in
the “Variables” view using abstract domain values. For example,
interval domain values are shown for local variables such as cache
and action. For the shared (global) variables, the local view of the
ego thread shows the potential values if they were to be read at
the current program point. Additionally, the raw values of Goblint
analyses’ abstract domains are displayed, such as the information
about the non-value analyses like the set of currently held locks,
labeled with <mutex>. The debugger can also evaluate side-e�ect-
free C expressions added to a list of watch expressions, which are

automatically evaluated at each program point change. This is illus-
trated in the “Watch” panel beneath the “Variables” view in Fig. 1,
where the expression action == PUBLISH is displayed.

Related work. Related work on static analysis-based debuggers
using DAP for source code includes Gillian’s symbolic debugger [5]
based on symbolic execution, SecC integration of a debugging fea-
ture [3] into its autoactive veri�er of C programs based on symbolic
execution, and TLC model checker tool’s VS Code extension debug-
ger [6] based on TLA+ models and speci�cations.

Some static analysis based debuggers leverage DAP for debug-
ging the static analysis itself. These include VisuFlow [1], which
allows tracing the source code of a static analyzer simultaneously
with the program based on data �ow analysis, cross-level debug-
ging for static analysis [10], and a GDB-like interface to the abstract
interpretation of the program [8].

3 Demonstration

In this demonstration, we showcase GobPie and its abstract debug-
ging capabilities through some use cases and introduce its features.
We have also included a video showcasing how to debug and �x a
data race in the source code of SMTP Relay Checker using GobPie:
https://youtu.be/KtLFdxMAdD8.

Acknowledgments

This research was co-funded by the European Union and the Esto-
nian Research Council via project TEM-TA119.

References
[1] Lisa Nguyen Quang Do, Stefan Krüger, Patrick Hill, Karim Ali, and Eric Bod-

den. 2018. VisuFlow: A Debugging Environment for Static Analyses. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Companion
(ICSE-Companion). ACM, New York, NY, USA, 89–92. https://doi.org/10.1145/
3183440.3183470

[2] Julian Erhard, Simmo Saan, Sarah Tilscher, Michael Schwarz, Karoliine Holter,
Vesal Vojdani, and Helmut Seidl. 2022. Interactive Abstract Interpretation: Rean-
alyzing Whole Programs for Cheap. arXiv:2209.10445 [cs.PL]

[3] Gidon Ernst, Johannes Blau, and Toby Murray. 2021. Deductive Veri�cation via
the Debug Adapter Protocol. In Proceedings of Formal Integrated Development
Environment (F-IDE). arXiv:2108.02968 [cs.LO]

[4] Karoliine Holter, Juhan Oskar Hennoste, Patrick Lam, Simmo Saan, and Vesal
Vojdani. 2024. Abstract Debuggers: Exploring Program Behaviors Using Static
Analysis Results. In Proceedings of the 2024 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Re�ections on Programming and Software
(Onward! 2024). ACM. To appear.

[5] Nat Karmios, Sacha-Élie Ayoun, and Philippa Gardner. 2023. Symbolic Debugging
with Gillian. In Proceedings of the 1st ACM International Workshop on Future
Debugging Techniques (DEBT 2023). ACM, New York, NY, USA, 1–2. https:
//doi.org/10.1145/3605155.3605861

[6] Markus Alexander Kuppe. 2021. TLA+ for Visual Studio Code: Add TLCDebugger.
https://github.com/tlaplus/vscode-tlaplus/pull/214

[7] Linghui Luo, Julian Dolby, and Eric Bodden. 2019. MagpieBridge: A General
Approach to Integrating Static Analyses into IDEs and Editors (Tool Insights
Paper). In 33rd European Conference on Object-Oriented Programming, ECOOP
2019 (LIPIcs, Vol. 134). Schloss Dagstuhl - LZI, Dagstuhl, Germany, 21:1–21:25.
https://doi.org/10.4230/LIPIcs.ECOOP.2019.21

[8] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. 2024. Easing Mainte-
nance of Academic Static Analyzers. arXiv:2407.12499 [cs.PL]

[9] Michael Schwarz, Simmo Saan, Helmut Seidl, Kalmer Apinis, Julian Erhard, and
Vesal Vojdani. 2021. Improving Thread-Modular Abstract Interpretation. In Static
Analysis (LNCS, Vol. 12913). Springer, Cham, 359–383. https://doi.org/10.1007/
978-3-030-88806-0_18

[10] Mats Van Molle, Bram Vandenbogaerde, and Coen De Roover. 2023. Cross-
Level Debugging for Static Analysers. In Proceedings of the 16th ACM SIGPLAN
International Conference on Software Language Engineering (SLE 2023). ACM, New
York, NY, USA, 138–148. https://doi.org/10.1145/3623476.3623512

Received 2024-06-21; accepted 2024-07-22

33

https://youtu.be/KtLFdxMAdD8
https://doi.org/10.1145/3183440.3183470
https://doi.org/10.1145/3183440.3183470
https://arxiv.org/abs/2209.10445
https://arxiv.org/abs/2108.02968
https://doi.org/10.1145/3605155.3605861
https://doi.org/10.1145/3605155.3605861
https://github.com/tlaplus/vscode-tlaplus/pull/214
https://doi.org/10.4230/LIPIcs.ECOOP.2019.21
https://arxiv.org/abs/2407.12499
https://doi.org/10.1007/978-3-030-88806-0_18
https://doi.org/10.1007/978-3-030-88806-0_18
https://doi.org/10.1145/3623476.3623512

	Abstract
	1 Introducing GobPie
	2 Abstract Debugging with GobPie
	3 Demonstration
	References

