
Surveying the Rust Verification Landscape
Alex Le Blanc

University of Waterloo
Canada

a6leblan@uwaterloo.ca

Patrick Lam
University of Waterloo

Canada
patrick.lam@uwaterloo.ca

ABSTRACT
Rust aims to be a safe programming language applicable to systems
programming applications. In particular, its type system has strong
guardrails to prevent a variety of issues, such asmemory safety bugs
and data races. However, these guardrails can be sidestepped via
the unsafe keyword. unsafe allows certain otherwise-prohibited
operations, but shifts the onus of preventing undefined behaviour
from the Rust language’s compile-time checks to the developer.
We believe that tools have a role to play in ensuring the absence
of undefined behaviour in the presence of unsafe code. Moreover,
safety aside, programs would also benefit from being verified for
functional correctness, ensuring that they meet their specifications.

In this research proposal, we explore what it means to do Rust
verification. Specifically, we explore which properties are worth
verifying for Rust; what techniques exist to verify them; and which
code is worth verifying. In doing so, we motivate an effort to ver-
ify safety properties of the Rust standard library, presenting the
relevant challenges along with ideas to address them.

1 INTRODUCTION
Rust is a modern programming language which aims to be er-
gonomic and suitable for high-performance systems programming
while making it harder to write bugs. As the language designers
put it, as quoted in the Rust Book [Klabnik and Nichols 2024]:

The Rust programming language helps you write
faster, more reliable software.

Specifically, Rust has a number of features that are novel to widely-
deployed programming languages, notably its ownership-based
type system used for memory management and to guarantee race
freedom. Multi-million line Rust codebases exist; even in 2020, the
Servo and TiKV projects exceeded 2 million lines of code [Ander-
son 2020], in addition to the Rust compiler itself (another million
lines). Unlike C/C++, Rust aims to limit undefined behaviour to
code specifically marked as unsafe; and, unlike Java, Rust does not
pretend that unsafe code does not exist.

Amazon is interested in verifying the Rust standard library1 and
aims to incite community participation. While the Rust authors’
goal is to enable developers to write “faster, more reliable” soft-
ware, we are specifically interested in contributing techniques to
this effort that strengthen specific aspects of Rust’s “more reliable”
aspiration and understanding human factors related to carrying
out this verification.

In this work, our goal is to sound out the surrounding landscape.
We explore a programme for “verifying Rust”—what might it mean
1https://model-checking.github.io/verify-rust-std/intro.html

HATRA ’24, 20 October 2024, Pasadena, CA, USA
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

to verify some nontrivial body of Rust code? Does that mean that
Rust code should not crash? Or should it have certain specific
functional correctness properties? Are we talking about all Rust
code, or just code written in Safe Rust? Is the standard library
a reasonable place for us to start? What are the advantages and
disadvantages of Amazon’s Kani tool and others in its space? What
exists in other languages?

Specifically, in this research proposal, we consider three funda-
mental questions: what properties should be verified; how should
they be verified; and what code should be verified?

We start (Section 2) by exploring which properties are worth
verifying. Rust generally aims to prevent memory safety errors
and race conditions, but as a systems programming language, it
also explicitly allows programmers to use Unsafe Rust, bypassing
safeguards. We also discuss properties beyond generic safety prop-
erties, namely functional correctness or domain-specific properties.
Although our goal is to verify Rust, we also survey (Section 3) the
situation of program verification in C/C++/Java, as well as existing
tools for verifying Rust and the techniques they use.

We also investigate (Section 4) which code is worth verifying.
Rust applications rely on libraries, and almost always on the Rust
standard library. Applications, libraries, and the standard library
have different verification needs: one might expect that verifying
domain-specific properties is more relatively valuable for appli-
cation code than verifying memory safety of unsafe code. The
standard library, by contrast, is a heavy user of unsafe code, and
its safety is assumed by the vast amounts of code that depend on
it, so that verifying memory safety is especially important there.
We then describe (Section 5) our proposed approach to verifying
Rust and anticipated challenges. Finally, we discuss (Section 6) ad-
ditional long-term objectives related to human factors, beyond just
the verification of Rust code.

2 RUST, PROPERTIES, AND UNSAFE CODE
We first explore the question of what properties we focus on. One
could take an empirical approach and focus on techniques that ad-
dress the most common types of Rust bugs, or perhaps the most im-
portant bugs; in a related vein, Shirzad and Lam [2024] investigated
Rust bug fix patterns, and specifically those related to borrowing.

However, one of Rust’s primary design goals is to be a “safe”
programming language, while also supporting low-level features
needed for systems programming. Thus, per the Rustonomi-
con [Rust team 2016] (part of Rust’s official documentation), the
subset of Rust known as Safe Rust is designed to prevent undefined
behaviour, providing various safety guarantees. For instance, by
design, Safe Rust programs ought to be memory safe and free of
data races. The Rustonomicon includes the sentence:

Safe Rust is the true Rust programming language.
1

https://model-checking.github.io/verify-rust-std/intro.html

HATRA ’24, 20 October 2024, Pasadena, CA, USA Alex Le Blanc and Patrick Lam

Unsafe Rust differs from Safe Rust in that undefined behaviour
can happen. Because Safe Rust is free of undefined behaviour, even
buggy programs follow Rust semantics. On the other hand, there
are no semantics for any Unsafe Rust code that executes undefined
behaviour. Thus, one of the primary goals behind the research
described in this proposal is to eliminate all undefined behaviour,
by verifying Unsafe Rust. This then enables sound reasoning about
the behaviour of the entire program. In particular, we plan to start
by verifying the Unsafe Rust in the standard library.

As a caveat, to our knowledge, the “no undefined behaviour”
guarantee of Safe Rust has not been formally proven. An effort
analogous to the CompCert project [Leroy 2009] would be required
to formally show the absence of implementation bugs in the speci-
fication and compiler. Limiting the scope of such an effort to Safe
Rust is likely to be simpler than aiming to verify an optimizing C
compiler, as in CompCert’s case. However, there is empirical evi-
dence that suggests that Safe Rust’s guarantees hold in practice. Xu
et al. [2021] report, from a study of 186 Rust CVEs, that undefined
behaviour in their Rust programs always came from bugs in Unsafe
Rust code, rather than Safe Rust.

For the work that we are proposing, we believe that it is rea-
sonable to assume that (putting aside language specification and
implementation bugs) a Rust programmer must use Unsafe Rust
to get undefined behaviour—either directly, or by interacting with
Unsafe Rust. In contrast to Safe Rust, Unsafe Rust explicitly includes
constructs that can trigger undefined behaviour if used inappropri-
ately.

Contrast Rust’s situation with C and C++, where any line of
code may inadvertently trigger undefined behaviour. Rust has a
significant advantage here: it is feasible to audit Rust code for the
program locationswhichmay contain undefined behaviour, because
such locations must be associated with some usage of the unsafe
keyword.

As an example of undefined behaviour in Rust, the Rustonomi-
con sketches2 an implementation for a struct that we call MyVec.
This struct could include a make_room function (in Safe Rust) that
modifies the MyVec’s capacity, along with unsafe code that relies on
the capacity being accurate. A client with access to make_room can
trigger undefined behaviour in the unsafe code. make_room does
not have to be accessible by clients; if it is inaccessible, then MyVec’s
unsafety is encapsulated, all of its clients are sound, and undefined
behaviour is impossible. If it is accessible, then only MyVec clients
that use make_room appropriately are sound, and a verifier must
check that all calls to that method (1) meet necessary preconditions
and (2) do not misuse returned values.

Encapsulating unsafety. Within a module that contains Unsafe
Rust, undefined behaviour may be triggered by errors in the unsafe
code, or by safe code that nevertheless has access to directly break
invariants that the unsafe code depends on. As we have seen in the
example above, it is possible for an Unsafe Rust-containing module
to provide access to functions that break its invariants; clients of
that module can—if they break the safety contract—indirectly break
the invariants and cause unsafe behaviour, but they cannot break
them directly.

2Rustonomicon, section 1.3, “Working with Unsafe”: https://doc.rust-lang.org/nomicon/
working-with-unsafe.html

Some libraries encapsulate unsafety, so that clients can never
trigger undefined behaviour. That is, for those libraries, the required
safety conditions on the client are nil. As we have seen, though,
other libraries (including the Rust standard library), do not. Ozdemir
[2019] names the phenomenon of poorly-encapsulated safety prop-
erties “Abstraction Escape” and proposes a static analysis to detect
simple cases of it, but does not empirically estimate how often it
occurs. Astrauskas et al. [2020] report that unsafe Rust code (in
their sample set) is typically well-encapsulated. Qin et al. [2020]
define the notion of “interior unsafe” (i.e., a safe function that en-
capsulates an unsafe function) and find that 58% of sampled interior
unsafe functions in the Rust standard library require conditions to
ensure safety but do not check these conditions, relying on being
called correctly. Note that this is not a bug—in Rust, the onus is
on the caller to ensure documented safety conditions for calling
unsafe fns, and the callee is entitled to ensure that they hold.

It is possible that safety encapsulation holds much more often
for arbitrary libraries than for the Rust standard library. That is, the
standard library may well expose more low-level implementation
details than other libraries. This question is an important one in
terms of understanding how humans use Rust’s safety mechanisms,
but it is one that needs to be empirically investigated.

Specification language design for unsafety. Libraries that expose
(rather than encapsulate) safety are required to label relevant func-
tions as unsafe fns, and to document (in natural language) the re-
quired safety conditions. unsafe fnsmust be called from unsafe {}
blocks in the caller. The meaning of unsafe fn is that the function
contract includes (safety-related) requirements that the caller is
responsible for ensuring, and furthermore, that neither the com-
piler nor the callee are responsible for. (In some cases, either the
compiler or the callee may fail fast and refuse to compile or execute
non-conforming code.) Dually, implementations of functions in
traits declared as unsafe traitmust satisfy requirements that the
compiler is not responsible for enforcing. If an Unsafe Rust-using
library imposes usage constraints on its client, and the client vio-
lates them, then Rust calls the client’s use of the library unsound,
and the client has triggered undefined behaviour. In turn, the client
may encapsulate the unsafety, or it may pass the buck to its own
callers, by exposing its own unsafe fns.

Verifying that client usages of unsafe fns are sound requires
designers to state, and verifiers to check, some properties that go
beyond the expressive capabilities of the Rust type system. We
are not aware of efforts to ensure that C code meets the required
postconditions in analogous cases.

An interesting point for specification language design is that
specifications for unsafe fns may, somewhat unusually, restrict
what can happen after the function returns, in addition to document-
ing (as usual) required preconditions and ensured postconditions.
To some extent, these restrictions occur in other languages too. One
example is that in C, after returning from free(x), the caller must
no longer access x. Similarly, in Rust, value x that has been through
ManuallyDropped<t>::drop(x) must no longer be accessed. As
another example, somewhat analogous to the C restrict qualifier,
the as_mut implementation on pointer returns a value that Rust
will assume is unique, but that may actually have aliases; its post-
condition requires that there be no accesses to the returned value

2

https://doc.rust-lang.org/nomicon/working-with-unsafe.html
https://doc.rust-lang.org/nomicon/working-with-unsafe.html

Surveying the Rust Verification Landscape HATRA ’24, 20 October 2024, Pasadena, CA, USA

through other pointers (which the type system does not prevent
from existing) while the returned value remains in scope.

In the absence of safety encapsulation and in the presence of
Unsafe Rust-using libraries, even verifying the absence of undefined
behaviour may require arbitrary reasoning power and properties;
the reason for using unsafe is that the library developer believes
that the required reasoning power is more than what Rust’s type
system provides.

The proposed verification efforts for Rust will require some
thought about human aspects of verification, namely a notation
that allows library developers to formally specify the needed post-
conditions, and that client code can be verified against. [Cui et al.
2024] identified 19 classes of safety properties that various parts of
standard library API documentation specified as requirements for
callers to unsafe APIs. We believe that this notation could well be
specialized for the use case of safety properties, and might turn out
to be unnecessary for verifying general properties of Rust code.

Beyond generic safety properties. So far, we have discussed
generic safety properties guaranteed by a lack of undefined be-
haviour, such as memory safety and data race freedom. These prop-
erties ought to hold in all programs, and violations of these proper-
ties mean that a program is not guaranteed to satisfy any properties
at all. However, a lack of undefined behaviour is not enough.

Another way for Rust programs to go wrong is by panicking. For
instance, Rust programs panic when they call unwrap() on a None
value. Prusti [Astrauskas et al. 2022] verifies that Rust programs
do not panic due to integer overflows—overflows do not panic on
release builds and are explicitly listed in the Rust documentation
as not being undefined behaviour, but are likely to be undesired
behaviour. Prusti apparently does not aim to verify absence of all
panics, and for instance, does not detect unwrapping a None.

Classically, program verification efforts consider module or func-
tion preconditions and postconditions (Hoare triples), as well as
invariants; we have mentioned safety-related postconditions above,
and there are also safety-related preconditions. More generally,
there can be functional correctness properties, which we refer to
as domain-specific properties. An example precondition for MyVec is
that calling insert() with an insertion index is only valid if the
insertion index is less than the current length of the MyVec, promis-
ing a panic if the precondition is violated. Such properties encode
specifications, which may be implicit or written in natural language.
Verifying the Rust standard library could also be construed to re-
quire encoding and verifying these domain-specific properties, but
writing a complete set of properties is at best an art, and we do not
believe that there is consensus on what this set of properties should
encompass.

Formany programs, total correctness is desirable, requiring proof
of termination. Researchers have also developed a vast array of
techniques to verify termination of programs [Cook et al. 2006;
Cousot and Cousot 2012; Zhu and Kincaid 2021].

3 EXTANT VERIFICATION TOOLS AND
APPROACHES

We survey parts of the software verification landscape that are rele-
vant to our efforts to verify Rust. We focus on Java and C/C++, im-
perative languages (like Rust) that have mature verification ecosys-
tems, sharing important language features with Rust, while also
having certain key differences we can learn from. We also briefly
discuss Dafny to touch on the interesting case of languages that
have built-in verification features. Then, we discuss some of the
many Rust verification efforts by others, including the techniques
that existing tools use.

3.1 Other Languages
Java. As defined in the Java Language Specification and Java Vir-

tual Machine Specification, Java guarantees memory safety, though
not race freedom (which is highly challenging to ensure statically in
the presence of unrestricted aliasing). Featherweight Java [Igarashi
et al. 2001] is an influential work in formally reasoning about Java
and enables proofs of Java’s type safety.

The real situation for Java is not as straightforward and is closer
to Rust than one might think. Evans [2020] discusses Unsafe Java
features—which exist and are in the Oracle API documentation but
not in the official specifications—and how they are used in practice,
ubiquitously, by libraries to achieve better performance. As with
Rust, we believe that most developers do stick to “safe Java” and
that the unsafe uses are encapsulated within libraries. Mastrangelo
et al. [2015] found that 3% of top-ranked Java artifacts (as of the
date of their study) directly used the version of Unsafe available
then, and 25% of artifacts directly or indirectly depend on unsafe
code. One difference with Rust appears to be that Rust libraries
impose usage conditions on clients for their uses to be sound, and
hence to ensure safety, while it appears to us that Java libraries aim
to be unconditionally safe, or in other words, to encapsulate safety.

Nevertheless, almost all Java verifiers focus on the verification
of “safe” Java code (examples include JBMC [Cordeiro et al. 2018],
KeY [Ahrendt et al. 2014], and OpenJML [Cok 2011]). To our knowl-
edge, the only tool that acknowledges the existence of unsafe Java
code is SafeCheck [Huang et al. 2019], which only slightly miti-
gates the dangers of unsafe Java by adding run-time checks for
safety violations and hence improving diagnosability of crashes
caused by unsafe code. It does not carry out any static checking of
either generic safety properties or domain-specific properties. This
is similar to ASan for C/C++ [Serebryany et al. 2012] or ERASan
for Rust [Min et al. 2024]; these dynamic approaches can termi-
nate programs that attempt to trigger undefined behaviour, but not
proactively prevent it before runtime.

We also draw an analogy between Java native code and Rust
intrinsics, which pose the same kinds of challenges for program
analysis and verification. The approach in Java is generally to hard-
code the behaviour of the intrinsics and rely on a consensus agree-
ment on this behaviour. Sometimes it is possible to provide a mock
implementation of the intrinsic in Java or Rust, but there is no
guarantee that the real implementation is faithful; we cannot see
any static way of providing guarantees.

3

HATRA ’24, 20 October 2024, Pasadena, CA, USA Alex Le Blanc and Patrick Lam

C/C++. Rather than being safe by default, the C language is en-
tirely unsafe, meaning that verifiers, regardless of whether they
focus on generic safety or domain-specific properties, must al-
ways consider a broader range of undefined behaviour. One of
the more popular tools is CBMC [Clarke et al. 2004], a bounded
model checker, whose strengths align particularly well with verify-
ing unsafe and concurrent C code—it is less reliant on invariants
than symbolic execution approaches.

Other tools take the deductive approach to verification of C code,
such as VST [Appel 2011] andVCC [Cohen et al. 2009]. VST (Verified
Software Toolchain) is a formal verification tool that allows users
to produce machine-checkable proofs for programs, focusing on
both memory safety and functional correctness. On the other hand,
VCC takes a modular approach and translates annotated C code
into BoogiePL, which is used to generate verification conditions
that can be solved by Z3 [De Moura and Bjørner 2008]. VCC also
verifies both memory safety and functional correctness, but it places
a particular focus on concurrent code. Both tools, like effectively
any other deductive tool, have the potentially costly requirement of
needing function contracts and loop invariants, but in return they
support unbounded verification, allowing for stronger guarantees
of correctness.

C++ has additional features (e.g., bounds-checking for certain
types, more expressive type system including uniqueness). But
these features are easy to override—escape hatches are ubiquitous.
It therefore seems that most C++ verification tools are extensions
of C tools which support C++ features, but which do not trust the
stronger type constraints.

Dafny. Some languages are designed specifically for verification,
such as Dafny [Leino 2023]. Dafny supports a rich specification
language and static verification of specifications. While Dafny can
compile to existing languages, we consider Dafny and languages
like it to be out of scope in our discussion of verification of code in
existing language ecosystems.

Having discussed Java and C/C++, the situation for Rust is closest
to Java’s, except that we suspect unsafe code to be much more
widespread in Rust (given that its “safe” mode is more restrictive
than Java’s). Mastrangelo et al. [2015] found that 25% of surveyed
Java artifacts depended on unsafe code, whereas Evans et al. [2020]
found that over half of surveyed Rust crates depended on unsafe
code. Rust’s unsafe mode is quite similar to C in its power (e.g., it
allows manipulating raw pointers), although unsafe Rust code is
easy to identify, unlike C code with undefined behaviour, which
may be anywhere. Understanding how other languages deal with
these challenges can give us insight into how we can do the same
for Rust.

3.2 Rust Verification Tools and Techniques
There exist a variety of tools for the verification of Rust code, as well
as verification frameworks for the implementation and semantics
of the Rust language itself, and we survey them here. Many Rust
verification tools aim to check properties of safe Rust code, e.g. lack
of panics, assertions, and function contracts/invariants. Other tools
verify unsafe Rust code and its usage.

Intermediate representations. A verification tool’s workflow nor-
mally consists of taking source code annotated with function con-
tracts according to some specification, partly compiling the code
(mostly via rustc), generating some verification conditions, and
solving them (e.g. via an SMT or SAT solver). When partly com-
piling, the tool is in fact lowering the code to an intermediate
representation (IR), typically a mid-level IR (MIR) or, at a lower
level, an IR at the level of the LLVM IR.

The LLVM IR is the last IR before an executable is produced.
The main advantage of using a lower-level IR like this is that other
languages also use it (e.g., C), allowing for the straightforward reuse
of verification backends from other languages for Rust. Indeed, this
is the case for several tools, such as SMACK [Baranowski et al.
2018] and SeaHorn [Gurfinkel et al. 2015], which were originally
developed for verification of C (or more generally LLVM-based)
code, but can be used on Rust code due to this shared IR. Bara-
nowski et al. [2018] show how to verify a lack of overflows in Rust,
while an example of Seahorn usage3 shows the verification of as-
sertions embedded in the Rust code. The downside of the LLVM
IR approach is, due to being lower-level, that information about
the original structure and semantics of the program is not readily
available [VanHattum et al. 2022].

At a higher level, the Kani project by VanHattum et al. [2022]
specifically chose to analyze Rust’s MIR, which also allowed it to
incorporate information encoded in a program’s dynamic trait ob-
jects. Working at a higher level than the LLVM IR retains more
Rust-specific semantic information. MIR is used only by Rust, mean-
ing that reusing backends from other languages becomes a more
involved process, but it appears to us that this access to richer se-
mantic information is worthwhile. After all, bridging a Rust-specific
IR and a generic backend can be engineered, whereas how to re-
cover lost semantic information from a lower-level IR is unclear,
and may be impossible in some cases.

Survey of related tools. Prusti [Astrauskas et al. 2022] is a deduc-
tive verifier that works at MIR level, though it primarily focuses on
the verification of functional correctness of safe code. In particular,
it verifies that certain panics do not occur in safe Rust code, as well
as user-specified assertions. Creusot [Denis et al. 2022] is a more
recent deductive verifier, also focusing on safe code. It proposes a
specification language, Pearlite. The main difference between these
two tools is that Prusti specifies mutable borrows using pledges, as
opposed to the prophecies (via the final operator) used by Creusot.
This means that Creusot can support a wider range of borrowing
patterns than Prusti (which does not support, for example, rebor-
rowing in a loop [Denis et al. 2022]).

Aeneas [Ho and Protzenko 2022] puts forth a fairly novel ap-
proach in that it translates Rust programs into a pure-lambda cal-
culus, which allows for much flexibility in terms of the theorem
provers that can be used to reason about these programs. Verus [Lat-
tuada et al. 2023], on the other hand, has programmers write proofs
and specifications using Rust itself, leveraging the language’s own
type and borrow checking. This way, it can verify even unsafe code,
though it has some trouble with more complex borrowing patterns
that Aeneas can handle, such as reborrowing. Moreover, it loses out

3https://project-oak.github.io/rust-verification-tools/using-seahorn/

4

https://project-oak.github.io/rust-verification-tools/using-seahorn/

Surveying the Rust Verification Landscape HATRA ’24, 20 October 2024, Pasadena, CA, USA

on the flexibility that Aeneas has in terms of being able to reason
about programs with almost any theorem prover.

Kani [VanHattum et al. 2022] uses a bounded model checker,
translating code from the MIR into Goto-C, which is then passed to
CBMC. Besides incorporating higher-level information from Rust,
one of the main features of Kani is the verification of unsafe code,
which it achieves in part due to its CBMC backend.

Finally, some tools allow for complete formal verification of
subsets of the Rust language itself. For instance, RustBelt [Jung
et al. 2017] developed an extensible soundness proof for 𝜆Rust, a
formal description of the Rust language, minus certain features
deemed superfluous to the proof (e.g. traits). Oxide [Weiss et al.
2019] also models the key aspects of Rust, supporting certain new
features like non-lexical lifetimes. Incidentally, Rust does not have
a formal memory model, so we would not be able to verify against
an official memory model even if we wanted to.

Gillian-Rust [Ayoun et al. 2024] proposes a promising approach
to verification of both safe and unsafe Rust. It uses a separation
logic combining features of RustBelt and RustHornBelt [Matsushita
et al. 2022] to reason about unsafe Rust, and integrates that logic
with Creusot to reason about safe Rust (at much lower cost). Refine-
dRust [Gäher et al. 2024] is similar to Gillian-Rust in that it uses a
separation logic to produce proofs of correctness for both safe and
unsafe code, but differs in that these proofs are foundational (i.e.,
they are machine-checkable in a general-purpose proof assistant).
We believe that Gillian-Rust and RefinedRust can verify soundness
of the usage of unsafe libraries from safe code, which appears to be
out of scope for RustBelt. We also speculate that these tools will be
more powerful than the Kani-based approach that we propose here,
but also harder to use (e.g., due to their use of separation logic).

Approaches: bounded model checking versus symbolic execution.
In practice, Kani’s bounded model checking approach differs from
the deductive approach taken by Prusti and Creusot particularly
in its handling of loops. The bounded model checking approach
explores all behaviours of the program up to a given bound. This
approach proved to be particularly fruitful for exploring behaviours
of concurrent C programs. From the verification user’s perspective,
an advantage of the bounded model checking approach is that it
does not require loop invariants to verify loops: the verifier simply
explores all executions up to the bound. This approach also does
not necessarily sacrifice soundness, at least in cases where a fixed
bound can be shown to be sufficient. Of course, cases where this
cannot be shown represent a limitation of bounded model checking
(e.g., unbounded structures like linked lists which need verification
beyond the bounds being checked). Bounded model checking ap-
proaches should also be easily modifiable to accept loop invariants,
though most tools do not seem to currently support them (but Kani
now does). Users of deductive verification approaches can specify
loop invariants (which can be difficult) or use automatic loop in-
variant inference techniques (which do not always work). For these
reasons, the user should have the option to choose whether or not
to use loop invariants (as is the case with Kani for example)—either
approach has non-negligible disadvantages and advantages.

4 WHICH CODE TO VERIFY
We discuss which part of the Rust ecosystem we should focus our
verification efforts on. We can consider the Rust ecosystem to be
composed of three main groups of code:

(1) Client code, i.e., applications written in Rust;
(2) Third-party crates, analogous to libraries in other languages;

and
(3) The Rust standard library.
These groups are listed from least to most fundamental to the

ecosystem. That is, the standard library can be used by many crates,
and these crates can be used by many applications; but not vice-
versa. Note that verifying, in isolation, a third-party crate that
depends on some part of the standard library without having first
verified the standard library decreases our confidence in whatever
we have proven about the crate. (While the standard library has
the advantage that it is widely used, and thus much less likely to
have easily-encountered functional correctness issues, experience
has shown that security issues do still crop up in the most widely
used codebases.) Thus, even though verification of any part of the
ecosystem is important, if one is to prioritize certain parts, it is
natural to start with the standard library.

Yet, much of the existing literature focuses on the verification of
client code and third-party crates. This was the case, for instance,
with Prusti [Astrauskas et al. 2022], Kani [VanHattum et al. 2022]
(initially), SMACK [Baranowski et al. 2018], and Creusot [Denis
et al. 2022]. The few works that attempted to verify the standard
library did so on subsets of the Rust language (e.g., RustBelt [Jung
et al. 2017]). Indeed, to our knowledge, the only tool that currently
explicitly supports verification of the standard library is Kani, with
the recent addition of the verify-std feature, though the actual
verification effort is just beginning. This further supports a prioriti-
zation of the verification of the standard library.

Why have people chosen to verify client code? We speculate
that when one’s tool handles only Safe Rust, one is likely to get
further verifying client code; crates and the standard library may
contain more Unsafe Rust, and that is harder to verify. Also, as
we have stated earlier, verifying Safe Rust frees one to focus on
assertions and contracts (if one assumes the underlying Unsafe
Rust is properly encapsulated), rather than worrying about safety
properties; this focus may be attractive to some researchers.

Finally, we note that a verification effort has two main outputs:
a direct one in the form of a proof for a particular program, and oc-
casionally an indirect one in the form of a new technique. We have
already discussed how verifying the standard library maximizes
the direct output (yielding a proof that is useful to more programs),
but if we wish to maximize the total output, we should also con-
sider the indirect output. Naturally, the areas of the ecosystem that
are more challenging to verify would require more innovation to
do so. We believe that the challenges that the verification of the
standard library presents (at least in terms of memory safety and
functional correctness) are practically a superset of those of regular
crates and client code (e.g., writing function contracts for intrinsics,
which we elaborate on in Section 5). (This is not completely true,
since verifying client code may require techniques seldom-used in
library code, and vice versa, but it seems like a defensible starting
assumption.) Hence, we believe that focusing verification efforts on

5

HATRA ’24, 20 October 2024, Pasadena, CA, USA Alex Le Blanc and Patrick Lam

the standard library has the potential to yield more fruitful verifi-
cation techniques, and these new techniques could then be applied
to other parts of the ecosystem.

5 CHOOSING A TOOL AND VERIFICATION
TARGET

Having discussed some Rust verification tools as well as motivating
the verification of the Rust standard library, what remains is to
determine which tool would be best as a starting point for this task,
as well as specific verification targets within the library.

Our first strict requirement is that the tool must support the
verification of unsafe Rust code, as it is highly prevalent in the
standard library. We therefore do not consider tools that focus only
on safe code, like Creusot [Denis et al. 2022], Prusti [Astrauskas et al.
2022] and Aeneas [Ho and Protzenko 2022]. We are looking for a
tool that can handle the full complexity of the standard library (e.g.,
traits) rather than a subset language; techniques like RustBelt [Jung
et al. 2017] and Oxide [Weiss et al. 2019] would need to be extended.
Finally, our ideal tool is user-friendly: the standard library is a
nontrivially-large project, with around 229K lines of code. The
process of writing the specifications and performing the proof
would therefore preferably be as lightweight as possible (e.g., with
less annotation required and as much automation as possible); in
terms of human aspects, trading expressive power for ease-of-use
as much as possible.

We believe bounded model checking to be a good choice for our
goal. Writing annotations and function contracts can be a labour-
intensive process, especially for larger projects. Even if bounded
model checking still requires contracts, it can sometimes avoid the
challenges of writing invariants, which are needed for approaches
using symbolic execution, like Prusti [Astrauskas et al. 2022] and
Creusot [Denis et al. 2022]). It also sidesteps the difficulty of using
separation logic, required for techniques like Gillian-Rust [Ayoun
et al. 2024], Verus [Lattuada et al. 2023] and RefinedRust [Gäher
et al. 2024].

To our knowledge, the only tool that satisfies all of our criteria
is Kani [VanHattum et al. 2022]. It also has the added advantage of
supporting automated verification of some memory safety prop-
erties, which very few tools do. However, it is possible that the
boundedness fundamental to bounded model checking will prevent
some proofs from going through, e.g. for verifying linked list im-
plementations: we are trading off power for ease of use and seeing
how far the bounded model checking approach can take us. In any
case, we will focus on using and extending Kani in our efforts to
verify the standard library. The choice of verification tool, and its
power-versus-annotation burden tradeoff, is a key human factor
to consider for verification efforts. Our work will help future re-
searchers choose appropriate tools for their work, based on the
experiences that we will share.

For verifying the Rust standard library, we consider two main
classes of challenges:

(1) Supporting verification of features exclusive to the standard
library; and,

(2) Ensuring a complete verification of safety properties of un-
safe code (heavily used in the standard library).

For (1), consider intrinsics (e.g., transmute, which reinterprets
the bits of one type as another type). These functions have specifi-
cations given in natural language in the Rust documentation, but
their implementations are directly woven into the code by the Rust
compiler.

From a verification point of view, intrinsics appear as extern
functions, whose verification Kani does not currently support. Un-
der assume/guarantee reasoning, to verify these functions, we need
to (1) have contracts for them (assume) and (2) establish that the
functions indeed implement their contracts (guarantee). Natural-
language contracts for intrinsics exist in the Rust documentation;
we will translate them into a machine-readable form, seek commu-
nity consensus on the correctness of our translations, and make
them available to the verification tool. To our knowledge, tech-
niques for verifying the implementation of intrinsics do not exist
for any language, and that part of the problem is likely out of scope
of our effort; we would be satisfied with formal specifications for
intrinsics, agreed-on by the Rust community.

For (2), we need to improve the verification of unsafe code, which
is highly prevalent in the standard library. While Kani is one of the
few tools that does support the verification of unsafe code, there
is still a wide range of undefined behaviour it does not detect (e.g.,
data races, mutation of immutable data, breaking lifetime-related
aliasing rules). As stated in Rust’s documentation4, any program
containing undefined behaviour has no semantics, meaning that
guarantees given by Kani may not necessarily hold. Thus, it is clear
that extending the range of undefined behaviour that Kani detects
is crucial to gain better confidence in Kani’s proofs.

As mentioned in Section 1, Amazon has initiated an effort to
verify the Rust standard library, and invites community participa-
tion in this effort. They recently released a set of challenges to be
solved by the Rust verification community5, consisting of specific
high-priority parts of the standard library that they would like
to see verified, including transmute and its uses, inductive data
types, raw pointer arithmetic operations, and use of raw pointers in
intrinsics. We have chosen to start with the transmute challenge,
as it seems both reasonably achievable and is a high-value target.
Indeed, transmute is heavily used throughout the standard library,
while also being highly prone to causing undefined behaviour, such
as creating instances of types with invalid states. As per the Rusto-
nomicon6, “This is really, truly, the most horribly unsafe thing
you can do in Rust”. Specifications for the transmute function it-
self would likely include things like checking that the output of
transmute is valid with respect to the type the input value has
been reinterpreted as.

6 HUMAN-RELATED OUTCOMES
By this point, we have motivated the verification of unsafe code in
Rust’s standard library, as well as the use of Kani for this task. Here,
we discuss outcomes desired from this verification effort, beyond
the inherent value of the verification itself. In particular, we focus

4Rustonomicon, section 16.2, "Behaviour considered undefined": https://doc.rust-lang.
org/reference/behavior-considered-undefined.html
5Verify Rust Std Lib, section 3, “Challenges”: https://model-checking.github.io/
verify-rust-std/challenges.html
6Rustonomicon, section 4.4, “Transmutes”: https://doc.rust-lang.org/nomicon/
transmutes.html

6

https://doc.rust-lang.org/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
https://model-checking.github.io/verify-rust-std/challenges.html
https://model-checking.github.io/verify-rust-std/challenges.html
https://doc.rust-lang.org/nomicon/transmutes.html
https://doc.rust-lang.org/nomicon/transmutes.html

Surveying the Rust Verification Landscape HATRA ’24, 20 October 2024, Pasadena, CA, USA

on the interaction between human behaviour and Rust verification.
Part of our proposal includes documenting our verification efforts,
reflecting on the resulting learnings about Rust verification, and
sharing them as an experience report. We plan on answering ques-
tions related to specification languages, developer use of safe and
unsafe Rust, as well as Kani and its use.

Specification languages. We hope to learn more about how spec-
ification languages come into play, as they are a key part of the
verification process that humans interact with. For instance, we
will investigate the relationship between safety properties in plain
text and formalized specification languages, particularly with re-
spect to the completeness of the plain text properties we encounter
(i.e., how often are there missing safety properties that need to be
added?). Moreover, in the case of the standard library, what kind of
specification language is needed to express functional correctness
of safe code? In other words, from a human aspects point of view,
what improvements to the specification language can be made to
bring the verification of safe code closer to full-functional correct-
ness? On the other hand, what does a specification language for
safety properties look like, and how specific must it be to safety
properties?

Use of safe/unsafe. By examining lots of Rust code, we hope
to understand the conditions under which developers mark safe
code as unsafe, and to what extent. This might happen, for instance,
when the developer makes the boundaries of the unsafe block much
larger than they need to be, encompassing some safe code in the
process. This naturally has ramifications in terms of verification, as
verification of safe code can benefit frommore assumptions that can
be made about the code. After all, that safe code will have passed
the rigorous compiler checks for safe code.

On the subject of safety properties, we also seek to understand
how often clients fail to respect the explicit safety properties that
they are bound to uphold. In other words, how often does API
misuse occur, and are there patterns in the nature of the misuse?
If some stated safety properties are violated a lot more often by
clients than others, then understanding the underlying reason could
help in establishing some solution. Perhaps stronger checks should
be implemented in the APIs for these properties, or maybe the
property is generally poorly communicated in documentation. We
fundamentally believe that optimizing the affordances of the specifi-
cation language—an extremely human aspect of enabling reasoning
about the code—will contribute to developers writing code that
respects necessary safety properties.

As we are primarily focusing on verification of the standard
library, we also seek to understand if there is ameaningful difference
in the way unsafe code is used in the standard library as opposed to
regular libraries. This is important not only because it sheds some
light on a potential threat to generalizability for this project, but
also because characterizing these differences (if they exist) can help
future verification efforts on the standard library to adjust their
approaches accordingly.

Kani. As for Kani specifically, by extensively using and even-
tually extending Kani, we will gain an understanding of which
properties can be verified by a model-checking approach such as

Kani, and which ones cannot. We plan to augment its existing doc-
umentation with our learnings about its abilities and shortcomings,
as well as adding capabilities to Kani as needed.

Finally, it is well-understood that usability (or lack thereof) is a
major obstacle for the widespread use of software verification in
general. If the tools that verify code are easier to use, then more
code will be verified. Following our work, we will have a better
understanding of which properties are infeasible to verify via Kani.
For each of these difficult properties, we also more generally aim
to evaluate the cost of verifying them (i.e., the usability of other
approaches that allow their verification), as well as the benefit
(i.e., how much the lack of verification of this property results in
bugs). After we publicize this information, researchers and practi-
tioners will be able to make more informed decisions about which
approaches to use, and which properties are worth verifying.

7 CONCLUSION
In this research proposal, we explored the current Rust verifica-
tion landscape. We first identified two main classes of properties
to verify—generic safety and domain-specific properties—and dis-
cussed specific properties from these two classes that are worth
verifying. Next, we surveyed verification approaches in C/C++ and
Java, and then categorized and compared existing Rust techniques.
We discussed which parts of the Rust ecosystem are highest-priority
for verification, motivating a focus on the standard library. Finally,
we motivated the use of Kani for this verification, exploring the
challenges inherent to the verification of the standard library and
suggesting ways to solve them.

Our exploration has yielded a set of questions and challenges,
including:

• verifying sound use of unsafe code in Rust (i.e. do clients
respect safety properties required to use the unsafe code);

• how far bounded model checking can go in verifying unsafe
Rust; and

• what specifications should be given to extern functions in
the standard library.

We look forward to discussing these challenges and their solutions
with the community.

ACKNOWLEDGMENTS
This material is based upon work supported in part by an Amazon
Research Award. We thank the HATRA reviewers and Michael
Coblenz for detailed reviews and discussions which helped improve
this work.

REFERENCES
Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel, Christoph Gladisch,

Sarah Grebing, Reiner Hähnle, Martin Hentschel, Mihai Herda, Vladimir Klebanov,
et al. 2014. The KeY platform for verification and analysis of Java programs. In
Verified Software: Theories, Tools and Experiments: 6th International Conference,
VSTTE 2014, Vienna, Austria, July 17-18, 2014, Revised Selected Papers 6. Springer,
55–71.

Brian Anderson. 2020. The Rust Compilation Model Calamity. https://pingcap.medium.
com/the-rust-compilation-model-calamity-1a8ce781cf6c. (January 2020). Accessed
on 14 July 2024.

Andrew W Appel. 2011. Verified Software Toolchain: (Invited Talk). In European
Symposium on Programming. Springer, 1–17.

7

https://pingcap.medium.com/the-rust-compilation-model-calamity-1a8ce781cf6c
https://pingcap.medium.com/the-rust-compilation-model-calamity-1a8ce781cf6c

HATRA ’24, 20 October 2024, Pasadena, CA, USA Alex Le Blanc and Patrick Lam

Vytautas Astrauskas, Aurel Bílỳ, Jonáš Fiala, Zachary Grannan, Christoph Matheja,
Peter Müller, Federico Poli, and Alexander J Summers. 2022. The Prusti project:
Formal verification for Rust. InNASA Formal Methods Symposium. Springer, 88–108.

Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller, and Alexander J.
Summers. 2020. How do programmers use unsafe Rust? Proc. ACM Program. Lang.
4, OOPSLA, Article 136 (nov 2020), 27 pages. https://doi.org/10.1145/3428204

Sacha-Élie Ayoun, Xavier Denis, Petar Maksimović, and Philippa Gardner. 2024. A
hybrid approach to semi-automated Rust verification. https://arxiv.org/pdf/2403.
15122. (March 2024).

Marek Baranowski, Shaobo He, and Zvonimir Rakamarić. 2018. Verifying Rust pro-
grams with SMACK. In Automated Technology for Verification and Analysis: 16th
International Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018,
Proceedings 16. Springer, 528–535.

Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A tool for checking ANSI-C
programs. In Tools and Algorithms for the Construction and Analysis of Systems: 10th
International Conference, TACAS 2004, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29-April 2,
2004. Proceedings 10. Springer, 168–176.

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal,
Thomas Santen, Wolfram Schulte, and Stephan Tobies. 2009. VCC: A practical
system for verifying concurrent C. In Theorem Proving in Higher Order Logics:
22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009.
Proceedings 22. Springer, 23–42.

David R Cok. 2011. OpenJML: JML for Java 7 by extending OpenJDK. In NASA Formal
Methods: Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20,
2011. Proceedings 3. Springer, 472–479.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. Termination Proofs
for Systems Code. In PLDI. 415–426.

Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel, and Marek Trtik.
2018. JBMC: A bounded model checking tool for verifying Java bytecode. In
International Conference on Computer Aided Verification. Springer, 183–190.

Patrick Cousot and Radhia Cousot. 2012. An Abstract Interpretation Framework for
Termination. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’12). Philadelphia, PA, USA, 245–258.

Mohan Cui, Shuran Sun, Hui Xu, and Yangfan Zhou. 2024. Is unsafe an Achilles’ Heel?
A Comprehensive Study of Safety Requirements in Unsafe Rust Programming. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering.
1–13.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Inter-
national conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 337–340.

Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022. Creusot: a foundry for
the deductive verification of Rust programs. In International Conference on Formal
Engineering Methods. Springer, 90–105.

Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is Rust used safely by
software developers?. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. 246–257.

Ben Evans. 2020. The Unsafe Class: Unsafe at Any Speed. https://blogs.oracle.com/
javamagazine/post/the-unsafe-class-unsafe-at-any-speed. (May 2020).

Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer.
2024. Refinedrust: A type system for high-assurance verification of Rust programs.
Proceedings of the ACM on Programming Languages 8, PLDI (2024), 1115–1139.

Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A Navas. 2015. The
SeaHorn verification framework. In International Conference on Computer Aided
Verification. Springer, 343–361.

Son Ho and Jonathan Protzenko. 2022. Aeneas: Rust verification by functional transla-
tion. Proceedings of the ACM on Programming Languages 6, ICFP (2022), 711–741.

Shiyou Huang, Jianmei Guo, Sanhong Li, Xiang Li, Yumin Qi, Kingsum Chow, and
Jeff Huang. 2019. SafeCheck: Safety Enhancement of Java Unsafe API. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). 889–899.
https://doi.org/10.1109/ICSE.2019.00095

Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. 2001. Featherweight Java: a
minimal core calculus for Java andGJ. ACMTransactions on Programming Languages
and Systems (TOPLAS) 23, 3 (2001), 396–450.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt:
Securing the foundations of the Rust programming language. Proceedings of the
ACM on Programming Languages 2, POPL (2017), 1–34.

Steve Klabnik and Carol Nichols. 2024. The Rust Programming Language. No Starch
Press. Accessed at https://doc.rust-lang.org/book/ on 14 July 2024.

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi
Zhou, Jon Howell, Bryan Parno, and Chris Hawblitzel. 2023. Verus: Verifying
rust programs using linear ghost types. Proceedings of the ACM on Programming
Languages 7, OOPSLA1 (2023), 286–315.

K. Rustan M. Leino. 2023. Program Proofs. MIT Press.
Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7

(2009), 107–115. http://xavierleroy.org/publi/compcert-CACM.pdf

Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias Hauswirth,
and Nathaniel Nystrom. 2015. Use at You Own Risk: The Java Unsafe API in
the Wild. In OOPSLA 2015: Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications.
695–710.

Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer. 2022.
RustHornBelt: a semantic foundation for functional verification of Rust programs
with unsafe code. In Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation (PLDI 2022). Association
for Computing Machinery, New York, NY, USA, 841–856. https://doi.org/10.1145/
3519939.3523704

Jiun Min, Dongyeon Yu, Seongyun Jeong, Dokyung Song, and Yuseok Jeon. 2024.
ERASAN : Efficient Rust Address Sanitizer. In 2024 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 239–239. https:
//doi.org/10.1109/SP54263.2024.00258

Alex Ozdemir. 2019. Unsafe in Rust: The Abstraction Safety Contract and Public Escape.
https://cs.stanford.edu/~aozdemir/blog/unsafe-rust-escape. (2019).

Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. 2020. Understand-
ing memory and thread safety practices and issues in real-world Rust programs. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2020). Association for Computing Machinery, New York,
NY, USA, 763–779. https://doi.org/10.1145/3385412.3386036

Rust team. 2016. The Rustonomicon: What Unsafe Means. https://doc.rust-lang.org/
nomicon/safe-unsafe-meaning.html. (2016). Accessed: 2024-07-12.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov.
2012. AddressSanitizer: A fast address sanity checker. In 2012 USENIX annual
technical conference (USENIX ATC 12). 309–318.

Mohammad Robati Shirzad and Patrick Lam. 2024. A study of common bug fix patterns
in Rust. Empirical Software Engineering 29, 2 (February 2024).

Alexa VanHattum, Daniel Schwartz-Narbonne, Nathan Chong, and Adrian Sampson.
2022. Verifying dynamic trait objects in Rust. In Proceedings of the 44th International
Conference on Software Engineering: Software Engineering in Practice. 321–330.

Aaron Weiss, Olek Gierczak, Daniel Patterson, and Amal Ahmed. 2019. Oxide: The
essence of Rust. arXiv preprint arXiv:1903.00982 (2019).

Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and Michael R Lyu. 2021.
Memory-safety challenge considered solved? An in-depth study with all Rust
CVEs. ACM Transactions on Software Engineering and Methodology (TOSEM) 31, 1
(September 2021), 1–25. https://doi.org/10.1145/3466642

Shaowei Zhu and Zachary Kincaid. 2021. Termination Analysis without the Tears. In
PLDI.

8

https://doi.org/10.1145/3428204
https://arxiv.org/pdf/2403.15122
https://arxiv.org/pdf/2403.15122
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://doi.org/10.1109/ICSE.2019.00095
https://doc.rust-lang.org/book/
http://xavierleroy.org/publi/compcert-CACM.pdf
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1109/SP54263.2024.00258
https://doi.org/10.1109/SP54263.2024.00258
https://cs.stanford.edu/~aozdemir/blog/unsafe-rust-escape
https://doi.org/10.1145/3385412.3386036
https://doc.rust-lang.org/nomicon/safe-unsafe-meaning.html
https://doc.rust-lang.org/nomicon/safe-unsafe-meaning.html
https://doi.org/10.1145/3466642

	Abstract
	1 Introduction
	2 Rust, Properties, and Unsafe Code
	3 Extant Verification Tools and Approaches
	3.1 Other Languages
	3.2 Rust Verification Tools and Techniques

	4 Which Code to Verify
	5 Choosing a Tool and Verification Target
	6 Human-related Outcomes
	7 Conclusion
	Acknowledgments
	References

