
Enhancing Security through Modularization: A
Counterfactual Analysis of Vulnerability Propagation

and Detection Precision
Mohammad Mahdi Abdollahpour∗, Jens Dietrich†, Patrick Lam‡
∗University of Waterloo; mohammadmahdi.abdollahpour@uwaterloo.ca

†Victoria University of Wellington; jens.dietrich@vuw.ac.nz
‡University of Waterloo; patrick.lam@uwaterloo.ca

Abstract—In today’s software development landscape, the use
of third-party libraries is near-ubiquitous; leveraging third-party
libraries can significantly accelerate development, allowing teams
to implement complex functionalities without reinventing the
wheel. However, one significant cost of reusing code is security
vulnerabilities. Vulnerabilities in third-party libraries have allowed
attackers to breach databases, conduct identity theft, steal sensitive
user data, and launch mass phishing campaigns. Notorious
examples of vulnerabilities in libraries from the past few years
include log4shell, solarwinds, event-stream, lodash, and equifax.

Existing software composition analysis (SCA) tools track the
propagation of vulnerabilities from libraries through dependencies
to downstream clients and alert those clients. Due to their design,
many existing tools are highly imprecise—they create alerts for
clients even when the flagged vulnerabilities are not exploitable.

Library developers occasionally release new versions of their
software with refactorings that improve modularity. In this
work, we explore the impacts of modularity improvements on
vulnerability detection. In addition to generally improving the
nonfunctional properties of the code, refactoring also has several
security-related beneficial side effects: (1) it improves the precision
of existing (fast and stable) SCAs; and (2) it protects from
vulnerabilities that are exploitable when the vulnerable code is
present and not even reachable, as in gadget chain attacks.

Our primary contribution is thus to quantify, using a novel
simulation-based counterfactual vulnerability analysis, two main
ways that improved modularity can boost security. We propose a
modularization method using a DAG partitioning algorithm, and
statically measure properties of systems that we (synthetically)
modularize. In our experiments, we find that modularization can
improve precision of Software Composition Analysis (SCA) tools
to 71%, up from 35%. Furthermore, migrating to modularized
libraries results in 78% of clients no longer being vulnerable
to attacks referencing inactive dependencies. We further verify
that the results of our modularization reflect the structures that
are already implicit in the projects (but for which no modularity
boundaries are enforced).

Index Terms—Software Supply Chain, Vulnerability, Modular-
ization, Simulation-based Counterfactual Analysis

I. INTRODUCTION

In recent years there has been a remarkable shift towards the
reuse of software components, particularly through the adoption
of third-party libraries. These libraries are fundamental in the
construction of modern software applications—they embody the
collective advancements offered by shared infrastructure and
functionalities. Libraries belong to large-scale ecosystems, with
prominent examples Maven for Java [1], npm for JavaScript [2],

and pypi for Python [3]. The Maven repository alone contains
more than 13.5 million artifacts [4], serving as the foundation
for most Java software systems.

Despite the benefits that these repositories bring, the reliance
on third-party libraries is not without risk. The use of vulnerable
components, for instance, has risen significantly in prominence
as a security concern. For instance, on the OWASP Top 10
(security risks) list [5], the usage of vulnerable components
climbed to rank 6 in 2021 from rank 9 in 2017. At the same
time, the number of Common Vulnerabilities and Exposures
(CVEs) reported each year continues to increase, per the
MITRE CVE database [6]. This trend highlights a critical
challenge in software development: while libraries can acceler-
ate development and offer powerful, ready-made functionality,
they also introduce potential security vulnerabilities that can be
exploited by malicious entities. Developers have an unenviable
choice [7] between constantly upgrading their libraries (and
dealing with breaking changes); or being subject to newly-
discovered vulnerabilities in their libraries.

Software Composition Analysis (SCA) tools [8, 9] aim to
identify problems caused by library use, in particular the use
of vulnerable libraries. Most extant SCA tools rely on project
metadata, such as pom.xml files. They flag vulnerabilities
in systems by finding depended-upon libraries that appear
in security databases (NVD, GHSA, etc). In particular, they
assume that if a library is vulnerable, all of its direct and
indirect clients are vulnerable as well. This is easy to implement
and scales well. However, the granularity of this analysis
is extremely coarse, and this approach yields many false
positives—it raises alerts for potential vulnerabilities, regardless
of whether or not the vulnerable dependencies are ever used.
Consequently, developers are liable to expend substantial
resources addressing alerts that do not represent genuine threats
to their system. GitHub’s Dependabot [10] and Synopsys’ Black
Duck [11] are SCA tools that demonstrate this problem—they
issue warnings based solely on dependency presence, without
contextual usage analysis.

For instance, consider CVE-2022-45688 [12]. This is a
simple denial-of-service vulnerability in one of the most pop-
ular JSON parser libraries for Java—org.json:json:20220924.
Although this is a JSON library, it also contains the utility
XML::toJSONObject to convert XML to JSON. While this

1



utility is a marginal feature of this library, it contains a vulnera-
bility: it is possible to craft XML input that triggers a stack over-
flow error. Not surprisingly, for most clients using this library
to parse and write JSON, this vulnerability is not exploitable, as
XML::toJSONObject is not reachable starting from client
entry points. Therefore, a SCA notification is a false positive
for most clients. For example, the July 2023 Oracle Critical
Patch Update Advisory 1 contains the following line dismissing
this false positive: “Tools (JSON-java): CVE-2022-45688 [VEX
Justification: vulnerable_code_not_in_execute_path]“.

Precision issues of current SCAs are well-understood and
have been comprehensively studied [8, 9, 13, 14]. A common
solution is to move to more fine-grained analyses, often call-
graph-based [14, 15, 16, 17, 18]. Commercial SCAs based on
call-graph analysis are available 2. However, such analyses
carry much higher computation costs. Even the simplest call
graph analysis, Class Hierarchy Analysis, needs to process a lot
of data, and more sophisticated analyses can come with a high
computational complexity [19]. What is more, call-graph-based
analyses are unsound due to the presence of dynamic language
features—they are soundy at best [20]. Empirical studies have
shown significant gaps in call-graphs constructed for Java [21],
JavaScript [22] and WebAssembly [23] programs.

Soundiness is not just a theoretical concern. Some critical
vulnerabilities exploit dynamic language features, and the mere
presence of vulnerable classes in the class path is sufficient
to exploit a vulnerability, such that a soundy analysis might
well report an exploitable class as, in principle, unreachable.
Examples include the numerous critical vulnerabilities exploit-
ing deserialization, discovered around 2015 (example: CVE-
2015-6420 [24], NVD severity base score: 9.8 CRITICAL)
and exploited in the wild in a ransomware attack on the San
Francisco public transport system [25]. A related more recent
example, not relying on deserialization but only reflection, is
CVE-2022-25845 [26] in the popular fastjson JSON parser,
also with a NVD severity base score of 9.8 CRITICAL. The
activation of those vulnerabilities uses call chains containing
dynamic language features like deserialization, reflection,
dynamic proxies, methods in Unsafe, native methods, etc.
Such call chains can be referred to as gadget chains.

The question is whether there is a way to improve precision
but to avoid the performance overhead and the soundness
issues of call-graph analysis. If the vulnerable dependencies
are unused (to build and/or run the program), then a trivial
alternative is simply to remove those dependencies. This
approach (bloated dependency analysis) has been studied [27]
but only addresses a small part of the issue. In particular,
this would not solve the issue for CVE-2022-45688, discussed
above, as the vast majority of clients will use some functionality
from org.json.

On the other hand, we hypothesize that many extant libraries
lack coherent modularizations. Indeed, library developers have

1https://www.oracle.com/security-alerts/cpujul2023.html
2Examples of call-graph based SCAs include sonatype (https://help.sonatype.

com/en/call-flow-analysis.html), endorlabs (https://www.endorlabs.com/) and
coana (https://www.coana.tech/)

been known to release new versions of libraries, refactored
to include improved modularizations (some examples can be
found in Section VII-B). Many libraries, of course, are already
modularized, and we ignore those for the purpose of this study—
there are more than enough still-unmodularized libraries in
the wild. In this work, we explore the effect of breaking up
libraries on isolating vulnerabilities. For instance, the XML-
related functionality of json.org could be moved into a separate
project (perhaps using Maven modules), and most clients would
not depend on it, stopping the propagation of CVE-2022-45688.
(The XML-related functionality does depend on the main
JSON functionality, but not vice versa). Developers decide
when to carry out modularizations by considering a range of
software engineering issues, including maintainability, the cost
of requiring clients to update, etc. A key contribution of this
work is in showing an extra benefit of modularization: it can
improve security as well.

A challenge to exploring the effects of library modularization
is that the straightforward approach requires us to find libraries
that have been modularized and that have known vulnerabilities.
To overcome this challenge, we instead carry out a simulation-
based counter-factual analysis: if libraries were modularized
(by simulation), would this improve the precision of SCA tools
and reduce vulnerability propagation? We study a particular
modularization method based on DAG partitioning [28] to
automatically segment a Java Archive (JAR) into smaller
coherent artifacts. We verify how well the computed partitioning
aligns with the existing structure of the libraries in our dataset.
Better alignment between the partitioning and existing structure
strengthens our belief in our conclusions.

Overall, our work examines the implications of third-party
library vulnerabilities on software projects and, specifically,
evaluates how smaller, modular libraries might enhance the
effectiveness of SCA tools and improve client security. We
focus our explorations around the following research questions:

• RQ1: To what extent does the use of more modular
libraries reduce the number of false positives flagged by
metadata-based software composition analysis?

• RQ2: To what extent does the use of more modular
libraries improve the security of the libraries’ clients,
by reducing vulnerability propagation (e.g. via gadget
chains)?

• RQ3: How well does the proposed modularization method
used in the counterfactual analysis reflect the current
project structures?

By addressing these questions, we provide insights into the
security challenges and opportunities associated with the use of
third-party libraries in software development. The contributions
of this research include:

• Novel Modularization Method: We introduce a method
to divide a library into smaller, coherent modules while
ensuring that the project remains compilable.

• Counterfactual Analysis: We assess the security benefits
of modularization, offering insights into how it could
potentially strengthen software security.

2

https://www.oracle.com/security-alerts/cpujul2023.html
https://help.sonatype.com/en/call-flow-analysis.html
https://help.sonatype.com/en/call-flow-analysis.html
https://www.endorlabs.com/
https://www.coana.tech/


• Empirical Findings: We provide empirical data that
can help library maintainers and software repository
administrators develop better security policies.

• Large-Scale Dataset: With over 83,237 records of ⟨CVE,
Library, Client⟩ tuples compiled, we provide a rich dataset
that serves as a foundational resource for further research
in this area.

Data availability statement.
We have made our tools and dataset available at https://

zenodo.org/doi/10.5281/zenodo.13381698.

II. BACKGROUND

We define some terms that we use later, along with an
example of a gagdet chain attack.
GAVs. Maven [29] is a build automation tool used primarily
for Java projects. It simplifies build processes like compilation,
documentation, packaging, testing, deployment, and distribution
of software projects. Maven Central [1] is a widely used
repository of Java and other JVM languages’ libraries and
artifacts. It acts as the central storage location for these projects,
providing developers easy access to millions of libraries which
they can include and use in their own software projects. In our
context, a Maven “GAV” refers to Group ID, Artifact ID, and
Version, which together uniquely identify a Maven project or
dependency. The pom.xml file, or Project Object Model XML,
is the main configuration file for a Maven project, detailing
how the project is built, its dependencies, and its build profiles.
This file serves as the blueprint for managing project builds
and dependencies within the Maven ecosystem.
Vulnerability lists. CVE (Common Vulnerabilities and Expo-
sures) [30] and CWE (Common Weakness Enumeration) [31]
are key concepts in the field of cybersecurity. CVE is a
list of publicly disclosed computer security flaws. When
someone refers to a CVE, they mean a specific security
vulnerability identified in this standardized list. Each entry
provides a detailed (unstructured plaintext) explanation of a
vulnerability, helping organizations to discuss and manage
security issues. CWE, on the other hand, is a category system
for software weaknesses and vulnerabilities. It provides a
unified, measurable set of criteria for assessing the severity
of software issues and aids in the prioritization of software
security remediation efforts. The website snyk.io [32] maintains
a CVE database that not only categorizes and details these
vulnerabilities but also includes links to patches for some of the
records, thereby helping developers and security professionals
to quickly mitigate known threats.
Gadget chains and deserialization vulnerabilities. CVE-
2015-6420 in commons-collections-3.2.1 is an example of
a deserialization attack. The commons-collections library
may remain dormant within the application, yet its mere
presence in the classpath makes it exploitable. Attackers can
exploit this CVE by crafting a stream of serialized objects
that instantiate specific classes from commons-collections,
known as gadgets. These include dynamic data structures
such as org.apache.commons.collections.map.LazyMap
and reflection-based utilities like

org.apache.commons.collections.functors.InvokerTransformer.
During deserialization, when an application processes
incoming streams, these classes get loaded and instantiated,
triggering a chain of method calls initiated by the JVM’s
deserialization process, and critically, not by the application
code itself. This process can be manipulated to execute
arbitrary code remotely, such as embedding scripts or making
reflective calls to Runtime::exec. The widespread adoption
of commons-collections at the time of the discovery made
it a prime target for attackers, as evidenced by the 2016
cyberattacks on San Francisco’s public transport system, as
we mentioned earlier.

III. DATA COLLECTION

This section describes the systematic approach that we
used to compile the comprehensive dataset underpinning our
study on library vulnerabilities and their impacts. Essentially,
we need a collection of vulnerabilities in libraries, along
with clients that use the vulnerable libraries. We collected
records of known vulnerabilities from the Snyk database, drawn
from the Maven ecosystem, and gathered the corresponding
patches and client dependencies. To obtain detailed information
about the vulnerabilities, our methodology involves several key
steps: identifying relevant CVE records, determining the latest
vulnerable versions, analyzing patch commits, and compiling a
list of client projects that depend on these vulnerable libraries.
Each step is crucial for establishing a solid foundation for our
subsequent analyses.

A. Collecting CVE records

Because our aim is to perform a fine-grained analysis
of vulnerabilities and their propagation, we require a set
of libraries that have disclosed vulnerabilities with publicly
available patches. These patches will help us pinpoint the root
causes of the vulnerabilities, which is essential for our analysis.

Our initial step utilizes the Snyk database, which includes
a comprehensive collection of formatted CVE (Common
Vulnerabilities and Exposures) records for various software
repositories. Entries on the CVE list at https://www.cve.org
include a plaintext summary of the vulnerability and may
include a formatted range of versions; the Snyk database
includes more fine-grained and curated information, e.g. a
patch commit, and thus specific location information about
the vulnerability. We focus our search on the Maven section
of this database, starting with the most recent records. Each
Snyk record specifies one or more version ranges for a specific
artifact (GA), formatted as “[a.b.c, x.y.z)”, where “a.b.c” is the
initial vulnerable version and “x.y.z” is the version in which the
vulnerability is resolved. We require libraries to use semantic
versioning [33] and parse and compare version numbers using
the SemVer library3.

B. Version Matching

A minor challenge is identifying the latest vulnerable version
of an artifact from the specified version range. This is not trivial

3https://github.com/maxhauser/semver, version 2.3.0, “Any” style.

3

https://zenodo.org/doi/10.5281/zenodo.13381698
https://zenodo.org/doi/10.5281/zenodo.13381698
https://www.cve.org
https://github.com/maxhauser/semver


because there is no straightforward way to infer the exact prior
version of a fix, and developers’ versioning strategies vary.
Additionally, older versions of an artifact may be removed
from Maven Central.

To overcome this, we acquire a complete list of all versions
of an artifact from Maven Central by parsing its maven-
metadata.xml file. We then extract the version immediately
preceding the fixed version (as identified in the Snyk database)
as the latest vulnerable version for that CVE. If the fixed
version is not listed, we discard the CVE record.

We thus obtain a set of vulnerable GAVs by combining the
Group and Artifact information for the libraries from the Snyk
records and the vulnerable Versions that we have identified.

C. Finding the Root of Vulnerabilities

In this step, we analyze the patch commits provided by
Snyk. We exclude repositories not using Git or not hosted
on GitHub. We clone the repositories and programmatically
inspect (using PyDriller [34]) the differences in the Java files
modified in each commit. We discard records without Java
file modifications or those modifying only test files. Using
javaparser [35], we extract the name of the outer class in
the modified Java file, then match this to the corresponding
class file in the downloaded JAR from Maven Central. We also
discard records for which we find no match.

D. Collecting Clients

Given a set of vulnerable libraries, we need a set of client
projects that use these libraries. We thus query the libraries.io
database [36], focusing on Java projects hosted on GitHub
that are not forks. We exclude projects that share an owner
with the vulnerable library, under the belief that such projects
are already somewhat modularized (they have at least one
library/client separation). We also exclude clients not adhering
to semantic versioning as evaluated by the SemVer library. We
retain those client projects that depend on the same vulnerable
GAV as identified earlier.

E. Combining with existing datasets

To augment our dataset, we integrated additional data sourced
from prior studies [18, 37, 38, 39] and enriched our dataset with
manually analyzed CVE patches detailed by another research
group [13]. These sources used a granular classification of
vulnerability roots, specifically at the function level. To align
this data with our analysis, we performed post-processing to
map each method to its respective outer class, normalizing
issues with inner classes. We encountered issues with missing
JAR files for some GAVs referenced in these datasets; we
excluded from our study such records, which are also not
present in Maven Central.

After completing these steps, we downloaded the JARs for all
necessary upstream and downstream GAVs for future analysis,
culminating in a dataset of 83,237 unique ⟨CVE, library GAV,
client GAV⟩ records.

IV. METHODOLOGY

We describe our methodology for evaluating the positive
impacts of modularization on vulnerability analysis and propa-
gation. At its core is a simulation-based counterfactual analysis
to systematically examine how modularization could influence
key outcomes, particularly focusing on two main aspects: the
reduction in false security alerts and the enhanced safety of
software deployments that exclude vulnerable parts of libraries,
thereby mitigating risks associated with attacks on unused code.
However, we first describe our class-level dependency graph-
based approach for evaluating whether a class is vulnerable to
a dependency or not; it is more fine-grained than approaches
relying solely on library-level metadata, but more efficient than
full callgraph-based approaches. We then discuss our modular-
ization technique. Our analysis of its effectiveness begins by
assessing the baseline state—where no modularization has been
applied—to establish initial metrics regarding security alerts
and deployment safety. Subsequently, we modularize, and then
measure these metrics again. This comparative analysis aims to
quantify the analysis effectiveness and security enhancements
attributable directly to modularization. Finally, we measure
how well our modularization corresponds to the implicit
modularization encoded in the Java package hierarchy of the
libraries.

A. Vulnerability Analysis

Software Composition Analysis (SCA) is the principal
methodology for identifying vulnerabilities within client sys-
tems. SCA tools are typically metadata-based. That is, they
analyze dependency manifest files of a project—usually the
pom.xml file in Maven-based Java projects. The tool cross-
references each dependency against a database of library
versions known to harbor vulnerabilities, facilitating the detec-
tion of potential security risks. However, this broad approach
often results in a high rate of false positives, leading to the
complications previously discussed.

In contrast, some studies [13, 15, 17], as well as some
commercial tools, use call-graph construction for vulnerability
analysis. This method provides a higher degree of accuracy
by thoroughly examining the interactions between software
components. However, it is challenging to scale, making it
impractical for frequent use in large software systems.

To bridge the gap between these methods, we propose an
intermediary solution that employs a class-level dependency
graph. This graph is constructed using references from the
constant pool of Java class files [40]. A constant pool is a
collection of constants that Java compilers write and Java
Virtual Machines (JVMs) read, including literals and symbolic
references necessary for the class’s operations. In particular, a
class must refer to other classes by name; unless the name is
dynamically constructed, the name of the class being referred
to will occur in the constant pool. The constant pool approach
also works properly with inheritance and dynamic dispatch:
subtype relations show up as dependencies between classes
through information recorded in constant pools.

4



JSONStringer HTTPTokener

HTTP JSONML

XML*

JSONMLParserConfiguration

XML.ParserConfiguration

XML.XsiTypeConverter

JSONObject*

JSONPropertyName JSONPointerException

JSONException

JSONPropertyIgnoreJSONString

PropertyCookie

CookieList

CDL

Fig. 1: Class-level dependency graph for the org.json library, color-coded based on modularization results. Nodes are classes,
except that nodes with asterisked labels are condensed groups of multiple classes within a single SCC. Nodes marked in red
indicate vulnerabilities. Edges represent dependencies (computed at constant pool level) between nodes.

In this context, if class A includes a reference to class B
in its constant pool, we designate class A as “dependent” on
class B and draw a directed edge from A to B. To simplify the
analysis, we identify strongly connected components (SCCs)
within the graph and collapse each SCC into a single node.
This process transforms the graph into a directed acyclic graph
(DAG), which is easier to analyze and manipulate.

For each pair of a vulnerable library and a downstream client
in our dataset, we construct the class-level dependency graph by
analyzing the classes contained in the JAR files of both entities.
This allows us to identify the relationships and dependencies
among classes across the two JARs. In the combined DAG, we
mark the classes that are the root causes of vulnerabilities (as
identified in our data collection) and employ graph traversal
algorithms to identify all nodes that depend, either directly or
indirectly, on these compromised classes.

B. Modularization

Our research seeks to explore the potential benefits associated
with releasing software libraries in a modular format. Given the
sheer volume of libraries available and the intricacies involved,
manually refactoring each library into constituent modules is
not feasible. The process of modularization itself is inherently
subjective, and could vary significantly based on the developer’s
perspective. We use an off-the-shelf modularization algorithm
and verify the reasonableness of its proposed modules (which
we call “alignment” later).

1) Modularization Algorithm: One of the primary challenges
in this research is the development of a modularization
technique that simulates the decision-making process of human
refactoring as closely as possible. Additionally, it is essential
that the interdependencies among the modules are structured
such that selecting a specific module does not necessitate
dependencies on the entire set. A final requirement is ensuring
that when a library is split into smaller modules, each module
remains compilable and functionally coherent. More formally:

to ensure compilability, the class-level dependency graph must
remain a directed acyclic graph after modularization.

To navigate these complexities, we utilize dagP [28], a
specialized algorithm for partitioning directed acyclic graphs.
In this algorithm, the main objective is to minimize the
connections (or edge cuts) between different parts of the
graph (promoting functional coherence), while ensuring that
the overall structure remains acyclic.

The dagP algorithm comprises three phases: coarsening,
initial partitioning, and refinement, each maintaining the graph’s
acyclic nature and balance while minimizing edge cuts. In
coarsening, the graph is simplified by merging vertices into
clusters without forming cycles, continuing until a complexity
threshold is met. The initial partitioning phase then divides the
simplified graph into parts, followed by a refinement phase that
optimizes these partitions as the graph’s original complexity is
reintegrated, ensuring balanced and minimal edge cuts.

In our counterfactual analyses, we utilize a dynamic sizing
strategy that employs a pseudo-logarithmic function to partition
libraries according to the size of their dependency graphs.
Under this strategy, smaller libraries undergo minimal or no
division, while larger libraries are segmented into multiple
modules. Detailed specifications of the formula can be found
in the replication package. We have experimented with slight
modifications to size thresholds, and found that they do not
significantly alter the outcomes of our experiments.

To obtain a proposed modularization, we used the dagP
authors’ implementation of their algorithm, which ran in 7
minutes on the dependency graphs that we constructed from our
dataset of 3,298 GAVs. We assume that each GAV corresponds
to one module before modularization, and split it into the
number of modules specified by our formula. The median
library size is 288 classes, and our formula instructs dagP to
split these libraries into a median of 4 modules. dagP generates
a balanced modularization: taking each library, we computed

5



the mean size of the generated modules as a ratio of the library
size, and found that the median ratio was 0.25.

Figure 1 illustrates the result of our modularization strategy
applied to the org.json library. In this graph, asterisked
nodes JSONObject* and XML* represent all classes in their
respective SCCs. This library contains a vulnerability attributed
to the XML.ParserConfiguration and XML classes. (For the
illustration, we chose the XML class as the representative of its
SCC.) Post-modularization, we can identify three distinct and
coherent modules: one predominantly handling XML-related
functions, another dealing with Web-related functionalities, and
a third focused on the core JSON-related functionalities of
the library. By isolating the JSON functionalities, clients can
avoid references to the XML module, enhancing security and
eliminating security alerts.

C. Impacts of Modularization

We continue with a counterfactual analysis designed to
measure the potential security benefits of modularization.

1) False Positives in Metadata-based SCA Alerts: We
evaluate how modularization affects the effectiveness of
metadata-based SCA tools. We first identify vulnerable libraries
within the dependencies of various client software. Metadata-
based SCA tools generally issue security alerts for all clients
using these libraries. However, the validity of these alerts
varies; not all clients use the vulnerable segments of the
compromised libraries. Despite this, there remains a risk of
certain attack types exploiting such vulnerabilities, which
we explore further in subsequent sections. Nevertheless, not
all developers prioritize these risks highly enough to justify
the cost of refactoring. Therefore, we aim to determine how
much enhanced modularity in dependencies could mitigate
unnecessary development costs associated with addressing these
false positive alerts.

To address RQs 1 and 2, we construct a module-level
dependency graph. This graph is a condensed version of
the class-level dependency DAG detailed in Section IV-A.
The condensation process is based on the output from the
modularization algorithm provided by dagP.

Figure 2 illustrates a module-level dependency graph with
three scenarios where a client references a library with newly-
created modules. Table I compares security status across the
pre-modularization scenario and three post-modularization sce-
narios. Pre-modularization, metadata-based SCA tools would
report that any client that declares a dependency on the library
(as a whole) would be vulnerable, due to the vulnerability
in module F. In Scenario 1, the client was secure pre-
modularization, but SCA tools would report a false positive.
Post-modularization, the client remains not vulnerable, and
SCA tools would find that there are no direct or transitive
references to any module that links to a vulnerability. Tools
would thus benefit from the modularization and now report
the correct answer, “not vulnerable” for Scenario 1, since
the client’s pom.xml would lack references to any vulnerable
modules. In Scenario 2, the client references module A, which
then transitively references (at the class level) a vulnerable class

A CB

FD

2

3

Client

Library
1

E1

E2

Fig. 2: Scenarios of relationships (as dotted lines) between a
client and its (modularized) library. Library modules shown
as nodes A–F. F (red hexagon) has a known vulnerability. E
contains classes E1 directly or indirectly referencing vulnerable
classes in F, in yellow to indicate potential vulnerability. E also
contains classes E2 (green) that do not reference vulnerable
classes in F. A also vulnerable (yellow) due to class-level
references to classes in E1. D shown in green, indicating safety:
it lacks any class-level paths leading to specific vulnerable
classes in E, despite module-level dependency. B and C in
gray, signaling complete safety, with no references to any
vulnerable modules.

found in module F (via a class in E1). This makes the client
vulnerable, and SCA tools report a true-positive vulnerability
post-modularization. In Scenario 3, the client references module
D, which does not have any class-level paths to the vulnerable
class in F—only to parts of E (specifically E2) that do not
reference vulnerable parts of F. This client is safe, at a class
level, due to the absence of direct vulnerability, but still triggers
security alerts from SCA tools post-modularization, which will
be false positives. Modularization does not eliminate these.

To answer RQ1, we calculate the number of false positives
before and after modularization. In this context, a “false
positive” refers to a scenario where safe6 clients receive security
alerts from metadata-based Software Composition Analysis
(SCA) tools. Specifically, we need to identify Figure 2-like
clients that fall into Scenario 3 (or a mix of Scenarios 1 and 3).
Clients are linked to modules composed exclusively of classes
that neither directly nor transitively reference any vulnerable
classes. However, these classes may depend on safe classes
within modules that are otherwise (marked as) vulnerable. This
assessment is how metadata-based SCA tools typically perform
vulnerability checks based on package dependency structures.

TABLE I: Comparing the security status of the client pre- and
post-modularization. The scenarios are depicted in Figure 2

Pre/Post
Modularization Scenario Class-level Safety SCA Report

Pre — Mixed Vuln
Post 1 Safe Safe
Post 2 Vuln Vuln
Post 3 Safe Vuln (FP)

2) Secure Deployment: Vulnerable dependencies still pose
security risks even if not actively used by an application. We

6



briefly present an example here; Section II presented another.
CVE-2022-25845, found in the Alibaba FastJSON parser

library4 (fastjson-1.2.80), translates JSON markup into Java
objects. This vulnerability exploits classes within the classpath
that have properties allowing script execution during object
instantiation. These classes do not need to be used directly by
the application; their presence in the classpath alone is enough
for exploitation. Consequently, a bloated classpath can increase
the risk of such vulnerabilities being exploited.

To address RQ2, we identify situations where the client
interacts only with modules that contain no classes linked
to vulnerabilities in other modules, like Scenario 1 from
Figure 2. That client requires only Modules B and C at the
deployment site. Both modules are secure. Because neither
module references vulnerabilities from other modules, the client
deployment is not vulnerable to exploits like gadget chain
attacks that leverage inactive vulnerabilities in Module F.

3) Alignment of Proposed Modularization with Current
Structure: We aim to explore how closely our synthetic
modularization aligns with the existing structures, thereby
gauging both the reliability of our counterfactual simulations
and the potential refactoring effort required by developers
to adopt these modular designs. This step is crucial for
ensuring that the proposed modularization strategies are not
only theoretically sound but also practically feasible.

Our evaluation compares the current packaging structure
of the libraries to the post-modularization structure. Specif-
ically, we examine the distribution of packages across the
resulting modules. If most packages are consolidated into
a few modules, this indicates a high-quality modularization
algorithm and minimal refactoring costs. Conversely, packages
consistently spread across multiple modules indicates that the
synthetic modularization diverges significantly from the original
developers’ intentions, suggesting poor simulation quality and
implying that substantial refactoring effort would be needed to
realign the codebase with the algorithmic modularization.

V. RESULTS

We first delve into the prevalence and impact of security vul-
nerabilities within the Java ecosystem. Our goal is to quantify
the extent of these vulnerabilities across various libraries and
assess the potential risks posed to client applications dependent
on them. We begin by examining vulnerable Java Archive
(JAR) files to understand the inherent vulnerabilities within the
libraries themselves. We then explore the interactions between
these libraries and client applications to gauge the broader
implications of these vulnerabilities on application security.

A. Preliminary Analysis

Our analysis utilizes a comprehensive dataset which includes
3,812 unique dependency GroupId, ArtifactId, and Version
(GAV) combinations. Along with 7,498 records that pair
Common Vulnerabilities and Exposures (CVE) identifiers
with dependency GAVs, when expanded to include client

4https://github.com/alibaba/fastjson

applications, our dataset consists of 83,237 unique records
of ⟨CVE, dependency GAV, client GAV⟩, covering 40,450
unique client GAVs. Examining the 7,498 records of ⟨CVE,
dependency GAV⟩ reveals a median library size of 288 classes,
of which 275 are public. This indicates that nearly all classes
in these libraries are accessible to external clients, which
potentially increases the surface area for security exploitation.

In Java libraries, 95% of classes are defined with
access modifier “public”. Public library classes can
be seamlessly used by clients, and when they are, their
vulnerabilities can be exploited by attacks on the clients.

Our vulnerability tracing (Section IV-A) uses a class-level
dependency graph to identify transitively vulnerable classes.
Tracing paths backward from vulnerability roots, we assess
the contamination spread within each library by specific
vulnerabilities. That is, we consider class A vulnerable if class
C is named in a CVE, class B refers to C, and A refers to B.

Our findings show that typically only one class (median)
is the root cause of each vulnerability, affecting 14 classes in
total, including 13 public classes. If we calculate the impacted
class-level API surface we observe that only 10.35% (median)
of the public API is affected by a known CVE5.

Additionally, the median number of steps to reach a vulner-
able class in the library from the API surface is two. That is,
in our dataset, we observed that client code potentially reaches
vulnerabilities only indirectly, often requiring traversal through
two other classes. This contrasts with our previous observation
where we found that clients could potentially interact directly
with vulnerabilities through the libraries’ API; here, we measure
how often they do interact. This finding focuses on scenarios
where an attacker uses client code—as it currently exists—to
access vulnerabilities in libraries. The requirement to start with
existing client classes and to then pass through other classes to
reach vulnerabilities mitigates immediate risks to some extent.

Exploiting a vulnerability from an existing client
class is often challenging—crafting the exploit usually
requires finding a path through at least two other classes
starting from any client class.

Turning our focus to the records of 83,237 ostensibly-
vulnerable clients, our initial class-level dependency analysis
finds that over 65% of client applications are in fact unaffected
by vulnerabilities (a “soundy” number, modulo dynamic
features and unused code attacks)—each such client transitively
refers to 0 actually vulnerable classes, but may refer to other
classes in the vulnerable dependency. A closer look reveals that
about 35% of the 83,237 clients, and 55% of the unaffected
clients, do not appear to use any classes at all from the
vulnerable dependencies declared in their project object model
(pom.xml), which may reflect over-declarations or outdated

5Note that median does not have the distributive property over division.

7

https://github.com/alibaba/fastjson


maintenance of dependency records. When we exclude the
55% of clients that do not use any classes from vulnerable
dependencies, our findings indicate that more than 54% of the
remaining client applications are vulnerable to either direct or
indirect exposure to vulnerable classes from dependencies—
there is a path from the client to the vulnerability, and a user
of these clients could potentially trigger the vulnerability. This
emphasizes the need for more robust dependency management
and proactive vulnerability assessments in the Java ecosystem.

While a metadata-based approach may seem to suffer
from a high false positive rate, removing unused
dependencies from the denominator greatly increases
the potential client vulnerability rate reported by
metadata-based approaches (as measured using class-
level dependencies) from 35% to 54%.

These observations underscore the complexity of Java’s
security landscape. Understanding both direct and indirect
paths to vulnerabilities is crucial for security.

B. Security Improvements from Modularization

We next explore the security enhancements of modularization
through a counterfactual approach. Our counterfactual approach
evaluates the impact of a proposed modularization on properties
of interest. We first establish a security baseline, analyzing
outcomes prior to modularization using our data on vulnerabil-
ities. We then apply the modularization from Section IV-B and
compare pre- and post-modularization metrics. Our analysis
includes two stages: we initially focus on vulnerabilities internal
to the libraries, irrespective of their interactions with client
applications; next, we examine the impact of modularization
on the interplay between libraries and clients. We specifically
assess the reduction in false security alerts and the percentage of
clients eliminating (used and unused) vulnerable dependencies.

C. RQ1: Precision of Metadata-based SCA Alerts

We investigate the potential improvements to precision from
modularizing libraries as described in Section IV-C. After
modularization, security alert precision improves significantly.
Specifically, 71% of clients who trigger security alerts (28,913
of 40,720) are now correctly identified as interacting with
vulnerable parts of their dependencies, up from 35% before
modularization (the same 28,913, but out of 83,237). Further-
more, post-modularization, 94.5% of clients considered safe6

do not trigger any false security alerts.

Post-modularization, we observe that metadata-based
SCA yields a precision of 71%, up from 35%.

These findings support our claim that organizing dependen-
cies into smaller, more coherent modules leads to a substantial
improvement in the performance of security analyses. By

6Not considering attacks that utilize dynamic features or inactive vulnera-
bilities (e.g., gadget chains).

limiting the scope of each module, it becomes easier to audit
and secure the code, reducing the likelihood of vulnerability
propagation. Moreover, this modular approach can lead to
quicker updates and patches, as each module can be updated
independently. Note that, after modularization, clients are less
likely to require updates, as they are now dependent on a
smaller part of the library. Modularization not only enhances
security but also improves the maintainability of the software.

We also investigated the impact of modularization on the
distribution of vulnerabilities. Recall that the median number
of vulnerabilities per library was 1 and each library was split
into 4 modules (median). One can estimate that 1 in 4 of the
new modules would contain a (known) vulnerability.

What is interesting, though, is investigating the proportion
of newly-formed modules with classes that contain or depend
on classes with vulnerabilities (perhaps transitively). Thus,
the vulnerability may be in the same module, or it may be in
another module. That proportion is 49%. Returning to Figure 2,
we have one module containing a vulnerability (F), and 2 more
modules with classes that depend on vulnerabilities (A, E);
felicitously, the 3/6 proportion lines up with the 49%.

Post-modularization analysis shows an enhancement
in managing vulnerabilities: only 49% of the newly-
created modules include classes that contain or depend
on vulnerable classes, highlighting the positive impact
of modular design on software security.

D. RQ2: Secure Deployment

We showed that modularization improves the performance
of existing static SCA approaches by vastly reducing the false
positive rate. We now investigate the potential of modularization
in protecting against attacks that use dynamic Java features
(e.g. gadget chain attacks). Modularization can thus enhance
the security of client deployments: post-modularization, clients
need to carry fewer unused classes in their classpath.

Pre-modularization, all clients in our dataset are vulnera-
ble to attacks exploiting dormant vulnerabilities—those that
client code does not reference, either directly or indirectly.
Modularization implies that some of the library code can be
dropped from the client’s class path. Our findings demonstrate
a significant shift post-modularization: 78.26% of clients that
do not reference vulnerable code are no longer susceptible to at-
tacks targeting inactive vulnerabilities during their deployment.
(Conversely, 21.74% of clients that do not reference vulnerable
classes still do reference modules containing vulnerable code.).
Moreover, after removing unused modules, the number of
public methods in the library modules that are referenced by
the clients (the public attack surface) is reduced by 63.98%.

Modularization can reduce the likelihood of a client
including dormant vulnerabilities to less than 22% of
the original value and can decrease the overall public
attack surface by 64%.

8



Fig. 3: Distribution of package splits post-modularization across
libraries.

Our results emphasize the importance of modularity in
reducing the overall exposure to security risks. Modularization
reduces the amount of code that clients need to deploy, thus
decreasing the likelihood of including and being made to
execute unnecessary, possibly-vulnerable code. Needing to
deploy less code yields faster and more secure deployments.

E. RQ3: Alignment of Modularization with Current Structure

We have shown that our proposed modularization improves
the performance of SCA tools and helps secure deployments
against gadget chain attacks. Any form of refactoring, including
modularization, implies developer effort. Central to our analysis
is a novel modularization strategy designed to maintain the
compilability of the library post-modularization. In this research
question, we investigate whether our automatic modularization
is similar to one that developers might propose, versus being
an unrealistic and arbitrary division of the library.

Java code is already organized hierarchically into “packages”,
reflected in the directory hierarchy of Java sources. Packages
are a form of modularization proposed by the library developers,
but have no impact on SCA tools or deployment safety.

We thus explore the alignment between our proposed
modularizations and existing library packages in our dataset.
High alignment will support the validity of our counterfactual
analysis and implies that less refactoring will be required to
obtain modules similar to what our algorithm proposes.

The primary metric that we use for this assessment is the
rate at which Java packages are distributed across multiple
modules. Specifically, we measured the maximum number
of modules into which each package is divided. The results,
illustrated in Figure 3, reveal that half of the library developers’
provided Java packages are contained within a single module
in our modularization, with an average of 85% of packages
not exceeding distribution across two modules. This figure
demonstrates a rapid shift towards fewer modules as the module
count increases, indicating that most packages are minimally
divided across the libraries in our dataset.

Fig. 4: Distribution of module sizes normalized with respect
to their parent library.

The output of our proposed modularization algorithm
for Java libraries closely aligns with existing program
structures—achieving it requires minimal refactoring—
affirming the reliability of our simulation.

The findings suggest that our modularization closely mirrors
existing program structures, affirming the reliability of our sim-
ulation. Moreover, the alignment implies minimal refactoring
costs, as the proposed project structure largely corresponds
with the pre-modularization setup. Our use of constant pool
references to construct dependency graphs further ensures that
projects remain compilable under our modularization.

We also analyzed the structure of the modularized outputs.
On average, module sizes are about 25% of the original library
size, indicating a reasonable balance in granularity. Figure 4
displays the size distribution of modules across the surveyed
libraries: we computed, for each library, the mean of its class
count per module divided by total class count—its normalized
module size ratio—and show a histogram of ratios.

Finally, we assessed the extent to which client applications
utilize all dependency modules. We found that only 6% of client
applications use functionalities from all proposed modules for
their library. That is, 94% of clients can bring in less than the
full library once it has been modularized. This further supports
the case for developers to embrace modularization.

VI. THREATS TO VALIDITY

We discuss a number of threats to the validity of our
conclusion that modularization leads to better results for SCA
tools and more secure software deployments.

We analyzed a set of vulnerabilities in libraries available in
Maven, processed by Snyk, which have all of the information
we need to perform further analysis—notably, links to the
commits where the vulnerability was fixed, which allowed us
to find the classes that are at the root of the vulnerability. A
threat to external validity is that this set may be unrepresentative.
However, it is hard to characterize the universe of even known
vulnerabilities, leaving aside yet-unknown 0-days.

9



Our conclusion about SCA tools applies to tools that use
metadata-based approaches. Some SCA tools use callgraphs;
they are more computationally expensive than metadata-
based tools, but report fewer false positives, so our approach
would not eliminate as many false positives. However, it still
contributes to callgraph-based approaches by shrinking the
callgraph. Modularization additionally helps versus gadget
chain attacks.

In this work, we proposed one specific modularization
approach (as implemented by dagP). We do not consider
unwillingness to modularize a threat to validity—we are saying
that if a library is modularized, then it will have better security.
We carefully chose our modularization to be feasible—it is
scalable and automatic, and preserves compilability. However,
our modularization might not match the modularization that
developers would implement. We mitigated this threat by
showing that our modularization matched the package-based
modularization implicit in our subject libraries, and we believe
that other modularizations will be similar to ours. We also
believe that any reasonable modularization will put firewalls
between vulnerable and non-vulnerable code, thus improving
security. We hope that our work contributes evidence encour-
aging developers to increase the modularity of their libraries.

A software engineering concern that is not a threat to validity
is usability of modularized code. Longer dependency lists
(e.g. with 5 modules versus 1) can be more complicated for
developers, and increase the risk of unnecessary or stale de-
pendencies, but modern tools excel at managing dependencies.

VII. RELATED WORK

A. Software Composition Analysis

Software composition analysis (SCA) is a static analysis that
models vulnerability propagation from upstream to downstream
projects via dependencies. Its underlying assumption is that any
vulnerability in a dependency can be propagated to any part of
a downstream dependent package, without considering that the
vulnerable code may be unreachable. Because of this, SCA is
prone to false positives. Precision has been widely identified
as a crucial aspect for the acceptance of program analyses
in industry [41, 42]. In the context of SCA, Pashenko et al.
found that “developers complain that dependency tools produce
many false-positive and low-priority alerts” [43]. Imtiaz et al.
found that differences in accuracy of SCA tools can often be
attributed to the vulnerability database they are using [8]. The
use of vulnerability databases is orthogonal to our approach.

Others have tried to quantify SCA tools’ precision. Most
of this work is based on call graph analysis, first proposed
by Hejderup et al for this purpose [16]. Mir et al. found
that “less than 1% of packages have a reachable call path
to vulnerable code in their dependencies” [14]. However,
those results must be interpreted with caution. Their analysis
uses a call graph constructed with OPAL [44], based on the
less-accurate (but scalable) class hierarchy analysis (CHA,
[45]). CHA is imprecise and suffers from recall issues, as it
cannot model many dynamic language features [21] which
are exploited in vulnerabilities. More precise methods (e.g.

VTA, context-sensitive methods) retain similar limitations:
they typically aim to reduce call graph size, not to handle
dynamic features [21]. Vulnerability CVE-2015-6420 can be
exploited by deserializing objects from an incoming stream.
The call graph path from application classes to vulnerable
classes in an exploit is highly obfuscated, and unlikely to be
detected by fully-static techniques. Dynamic language feature
modelling [46, 47, 48, 49] is not widely used by SCA tools,
perhaps due to analysis complexity [21] or the need to have
executable code [50].

In a similar approach to ours, Wu et al. [13] used call-
graph analysis to investigate the reachability of vulnerable
functions in Java projects. They found that most of the
vulnerable functions (i.e., 86.1%) cannot be accessed by the
corresponding downstream projects. Zhao et al. [9] evaluated
multiple Software Composition Analysis (SCA) methods,
finding that most existing tools perform poorly. The reported
precisions for standard tools ranged between 0.363 and 0.621.

B. Program Modularization

A large body of research aims to modularize software, aiming
at splitting larger programs into smaller units to improve quality.
Existing approaches are based on formal concept analysis [51],
genetic algorithms [52], constraint-solving [53], clustering [52,
54] and cut-based debloating [55].

A purely graph-theoretical approach similar to our work
has been proposed by Shah et al [56]. Their objective differs
from ours: they aim to reduce instances of architectural anti-
patterns [57] rather than security vulnerabilities.

Modularization is frequently done in practice. Several
runtime module system for Java have been proposed and
deployed, including OSGi [58] and Jigsaw (with several JSRs
leading up to this) [59, 60, 61]. Jigsaw is part of Java 9,
requiring heavy refactoring of the Java standard library. Popular
open source projects have been modularized, often aiming for
build time modularity using Maven modules. Examples include
JUnit (between versions 4 and 5)7, log4j8 and OpenMRS9.

VIII. CONCLUSION

In this work, we quantitatively demonstrated security benefits
from improved modularization in library vulnerabilities on
libraries’ clients, with a novel large-scale dataset drawn from
the Maven ecosystem. Using a simulation-based counter-
factual analysis, we showed that smaller, modular libraries can
enhance client security by improving SCA tool precision and
helping to protect against gadget chain attacks. Our approach
used the off-the-shelf dagP algorithm to find a proposed
modularization; its output increased the precision of security
alerts reported by existing metadata-based tools to 71% (from
35%), while decreasing the likelihood of including dormant
vulnerabilities to 22% of the initial value. We also showed that
our modularization aligned with the implicit package-based
modularization in our dataset’s libraries.

7https://junit.org/junit5/docs/5.9.0/user-guide/index.html
8https://logging.apache.org/log4j/2.x/manual/api-separation.html
9https://www.gregoryschmidt.ca/writing/openmrs-3-modularity-principles

10

https://junit.org/junit5/docs/5.9.0/user-guide/index.html
https://logging.apache.org/log4j/2.x/manual/api-separation.html
https://www.gregoryschmidt.ca/writing/openmrs-3-modularity-principles


REFERENCES

[1] The Apache Software Foundation, “Maven Central
Repository.” [Online]. Available: https://repo.maven.
apache.org/maven2/

[2] npm, Inc., “npm: Node Package Manager.” [Online].
Available: https://www.npmjs.com/

[3] Python Software Foundation, “PyPI: The Python Package
Index.” [Online]. Available: https://pypi.org/

[4] F. R. Olivera, “MvnRepository.” [Online]. Available:
https://mvnrepository.com/repos/central

[5] OWASP, “OWASP Top Ten.” [Online]. Available:
https://owasp.org/www-project-top-ten/

[6] MITRE, “Published CVE Records.” [Online]. Available:
https://www.cve.org/About/Metrics

[7] P. Lam, J. Dietrich, and D. J. Pearce, “Putting the
semantics into semantic versioning,” in Onward! Essays,
2020.

[8] N. Imtiaz, S. Thorn, and L. Williams, “A comparative
study of vulnerability reporting by software composition
analysis tools,” in Proceedings of the 15th ACM/IEEE
International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), 2021, pp. 1–11.

[9] L. Zhao, S. Chen, Z. Xu, C. Liu, L. Zhang, J. Wu,
J. Sun, and Y. Liu, “Software composition analysis
for vulnerability detection: An empirical study on Java
projects,” in Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2023, pp. 960–972.

[10] GitHub, “Dependabot.” [Online]. Available: https:
//docs.github.com/en/code-security/dependabot

[11] Synopsis, “Black Duck.” [Online]. Available:
https://www.synopsys.com/software-integrity/
software-composition-analysis-tools/black-duck-sca.
html

[12] “CVE-2022-45688,” 2022, https://nvd.nist.gov/vuln/detail/
CVE-2022-45688.

[13] Y. Wu, Z. Yu, M. Wen, Q. Li, D. Zou, and H. Jin,
“Understanding the threats of upstream vulnerabilities
to downstream projects in the Maven ecosystem,” in Proc.
ICSE 2023, 2023, pp. 1046–1058.

[14] A. M. Mir, M. Keshani, and S. Proksch, “On the
effect of transitivity and granularity on vulnerability
propagation in the Maven ecosystem,” in 2023 IEEE
International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2023, pp. 201–211.

[15] H. Park, C. Park, S. Yoo, and K. Kim, “Detecting vul-
nerable Java classes based on the analysis of Java library
call graph,” in iThings/GreenCom/CPSCom/SmartData.
IEEE, 2018, pp. 1872–1879.

[16] J. Hejderup, A. van Deursen, and G. Gousios, “Software
ecosystem call graph for dependency management,” in
ICSE-NIER 2018, 2018, pp. 101–104.

[17] B. B. Nielsen, M. T. Torp, and A. Møller, “Modular
call graph construction for security scanning of Node.js
applications,” in Proceedings of the 30th ACM SIGSOFT

International Symposium on Software Testing and Analy-
sis, 2021, pp. 29–41.

[18] T. H. M. Le and M. A. Babar, “On the use of fine-grained
vulnerable code statements for software vulnerability
assessment models,” in Proceedings of the 19th Inter-
national Conference on Mining Software Repositories,
2022, pp. 621–633.

[19] N. Heintze and D. McAllester, “On the cubic bottleneck in
subtyping and flow analysis,” in Proc. LICS 1997. IEEE,
1997, pp. 342–351.

[20] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták,
J. N. Amaral, B.-Y. E. Chang, S. Z. Guyer, U. P.
Khedker, A. Møller, and D. Vardoulakis, “In defense
of soundiness: a manifesto,” Commun. ACM, vol. 58,
no. 2, p. 44–46, jan 2015. [Online]. Available:
https://doi.org/10.1145/2644805

[21] L. Sui, J. Dietrich, A. Tahir, and G. Fourtounis, “On
the recall of static call graph construction in practice,”
in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing
Machinery, 2020, p. 1049–1060. [Online]. Available:
https://doi.org/10.1145/3377811.3380441

[22] M. Chakraborty, R. Olivares, M. Sridharan, and B. Has-
sanshahi, “Automatic root cause quantification for missing
edges in JavaScript call graphs,” in 36th European
Conference on Object-Oriented Programming (ECOOP
2022). Schloss-Dagstuhl-Leibniz Zentrum für Informatik,
2022.

[23] D. Lehmann, M. Thalakottur, F. Tip, and M. Pradel,
“That’s a tough call: Studying the challenges of call
graph construction for WebAssembly,” in Proceedings
of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2023, pp. 892–903.

[24] “CVE-2015-6420,” 2015, https://nvd.nist.gov/vuln/detail/
CVE-2015-6420.

[25] I. Sayar, A. Bartel, E. Bodden, and Y. Le Traon, “An
in-depth study of Java deserialization remote-code execu-
tion exploits and vulnerabilities,” ACM Transactions on
Software Engineering and Methodology, vol. 32, no. 1,
pp. 1–45, 2023.

[26] “CVE-2022-25845,” 2022, https://nvd.nist.gov/vuln/detail/
CVE-2022-25845.

[27] C. Soto-Valero, N. Harrand, M. Monperrus, and B. Baudry,
“A comprehensive study of bloated dependencies in
the Maven ecosystem,” Empirical Software Engineering,
vol. 26, no. 3, p. 45, 2021.

[28] J. Herrmann, M. Y. Ozkaya, B. Uçar, K. Kaya, and
U. V. Catalyuurek, “Multilevel algorithms for acyclic
partitioning of directed acyclic graphs,” SIAM Journal on
Scientific Computing, vol. 41, no. 4, pp. A2117–A2145,
2019.

[29] The Apache Software Foundation, “Apache Maven.”
[Online]. Available: https://maven.apache.org/

[30] MITRE, “Common Vulnerabilities and Exposures.”
[Online]. Available: https://cve.mitre.org/

11

https://repo.maven.apache.org/maven2/
https://repo.maven.apache.org/maven2/
https://www.npmjs.com/
https://pypi.org/
https://mvnrepository.com/repos/central
https://owasp.org/www-project-top-ten/
https://www.cve.org/About/Metrics
https://docs.github.com/en/code-security/dependabot
https://docs.github.com/en/code-security/dependabot
https://www.synopsys.com/software-integrity/software-composition-analysis-tools/black-duck-sca.html
https://www.synopsys.com/software-integrity/software-composition-analysis-tools/black-duck-sca.html
https://www.synopsys.com/software-integrity/software-composition-analysis-tools/black-duck-sca.html
https://nvd.nist.gov/vuln/detail/CVE-2022-45688
https://nvd.nist.gov/vuln/detail/CVE-2022-45688
https://doi.org/10.1145/2644805
https://doi.org/10.1145/3377811.3380441
https://nvd.nist.gov/vuln/detail/CVE-2015-6420
https://nvd.nist.gov/vuln/detail/CVE-2015-6420
https://nvd.nist.gov/vuln/detail/CVE-2022-25845
https://nvd.nist.gov/vuln/detail/CVE-2022-25845
https://maven.apache.org/
https://cve.mitre.org/


[31] ——, “Common Weakness Enumeration.” [Online].
Available: https://cwe.mitre.org/

[32] Snyk, “Snyk Security Database.” [Online]. Available:
https://security.snyk.io/

[33] Preston-Werner, Tom, “Semantic Versioning.” [Online].
Available: https://semver.org/

[34] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller:
Python framework for mining software repositories,” in
ESEC/FSE 2018, ser. ESEC/FSE 2018. New York,
NY, USA: Association for Computing Machinery, 2018,
p. 908–911. [Online]. Available: https://doi.org/10.1145/
3236024.3264598

[35] Viswanadha, Sreenivasa and Gesser, Júlio Vilmar,
“JavaParser.” [Online]. Available: https://javaparser.org/

[36] J. Katz, “Libraries.io Open Source Repository and
Dependency Metadata,” Jan. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3626071

[37] C. Xu, B. Chen, C. Lu, K. Huang, X. Peng, and Y. Liu,
“TRACER: finding patches for open source software
vulnerabilities,” arXiv preprint arXiv:2112.02240, 2021.

[38] G. Nikitopoulos, K. Dritsa, P. Louridas, and D. Mitropou-
los, “CrossVul: a cross-language vulnerability dataset with
commit data,” in ESEC/FSE, 2021, pp. 1565–1569.

[39] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dan-
gremont, “A manually-curated dataset of fixes to vulnera-
bilities of open-source software,” in 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories
(MSR). IEEE, 2019, pp. 383–387.

[40] T. Lindholm, F. Yellin, G. Bracha, A. Buckley, and
D. Smith, The Java Virtual Machine Specification: Java
SE 22 Edition. Oracle, February 2024, https://docs.oracle.
com/javase/specs/jvms/se22/html/index.html.

[41] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon,
and C. Jaspan, “Lessons from building static analysis
tools at Google,” Communications of the ACM, vol. 61,
no. 4, pp. 58–66, 2018.

[42] D. Distefano, M. Fähndrich, F. Logozzo, and P. W.
O’Hearn, “Scaling static analyses at Facebook,” Com-
munications of the ACM, vol. 62, no. 8, pp. 62–70, 2019.

[43] I. Pashchenko, D.-L. Vu, and F. Massacci, “A qualita-
tive study of dependency management and its security
implications,” in Proceedings of the 2020 ACM SIGSAC
conference on computer and communications security,
2020, pp. 1513–1531.

[44] M. Eichberg and B. Hermann, “A software product line
for static analyses: the OPAL framework,” in Proceedings
of the 3rd ACM SIGPLAN International Workshop on the
State of the Art in Java Program Analysis, 2014, pp. 1–6.

[45] D. Grove, G. DeFouw, J. Dean, and C. Chambers,
“Call graph construction in object-oriented languages,”
in Proceedings of the 12th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, 1997, pp. 108–124.

[46] B. Livshits, J. Whaley, and M. S. Lam, “Reflection
analysis for Java,” in Proc. APLAS 2005. Springer,
2005, pp. 139–160.

[47] G. Fourtounis, G. Kastrinis, and Y. Smaragdakis, “Static
analysis of Java dynamic proxies,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2018, pp. 209–220.

[48] Y. Li, T. Tan, and J. Xue, “Understanding and analyzing
Java reflection,” ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), vol. 28, no. 2, pp. 1–50,
2019.

[49] G. Fourtounis and Y. Smaragdakis, “Deep static modeling
of invokedynamic,” in 33rd European Conference on
Object-Oriented Programming (ECOOP 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[50] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati,
and M. Mezini, “Taming reflection: Aiding static
analysis in the presence of reflection and custom
class loaders,” in Proc. ICSE 2011, ser. ICSE ’11.
New York, NY, USA: Association for Computing
Machinery, 2011, p. 241–250. [Online]. Available:
https://doi.org/10.1145/1985793.1985827

[51] P. Tonella, “Concept analysis for module restructuring,”
IEEE Transactions on software engineering, vol. 27, no. 4,
pp. 351–363, 2001.

[52] G. Antoniol, M. Di Penta, and M. Neteler, “Moving to
smaller libraries via clustering and genetic algorithms,” in
Seventh European Conference on Software Maintenance
and Reengineering, 2003. Proceedings. IEEE, 2003, pp.
307–316.

[53] M. Hall, N. Walkinshaw, and P. McMinn, “Supervised
software modularisation,” in 2012 28th IEEE International
Conference on Software Maintenance (ICSM). IEEE,
2012, pp. 472–481.

[54] N. Anquetil, C. Fourrier, and T. Lethbridge, “Experi-
ments with hierarchical clustering algorithms as software
modularization methods,” in Proceedings of the Working
Conference on Reverse Engineering, 1999.

[55] C. Blumschein, F. Niephaus, C. Stancu, C. Wimmer,
J. Lincke, and R. Hirschfeld, “Finding cuts in static
analysis graphs to debloat software,” in Proc. ISSTA 2024,
ser. ISSTA 2024. Association for Computing Machinery,
2024.

[56] S. M. A. Shah, J. Dietrich, and C. McCartin, “On the
automation of dependency-breaking refactorings in Java,”
in Proc. ICSM 2013. IEEE, 2013, pp. 160–169.

[57] J. Dietrich, C. McCartin, E. Tempero, and S. M. A. Shah,
“On the existence of high-impact refactoring opportunities
in programs,” in Proc. ACSC 2012, 2012, pp. 37–48.

[58] R. S. Hall and H. Cervantes, “An OSGi implementation
and experience report,” in Proc. CCNC 2004. IEEE,
2004, pp. 394–399.

[59] A. Buckley, “JSR 277: JavaTM Module System,” 2006,
https://jcp.org/en/jsr/detail?id=277.

[60] ——, “JSR 294: Improved Modularity Support in the
JavaTM Programming Language,” 2007, https://jcp.org/
en/jsr/detail?id=294.

[61] M. Reinhold, “JSR 376: JavaTM Platform Module Sys-
tem,” 2017, https://www.jcp.org/en/jsr/detail?id=376.

12

https://cwe.mitre.org/
https://security.snyk.io/
https://semver.org/
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3236024.3264598
https://javaparser.org/
https://doi.org/10.5281/zenodo.3626071
https://docs.oracle.com/javase/specs/jvms/se22/html/index.html
https://docs.oracle.com/javase/specs/jvms/se22/html/index.html
https://doi.org/10.1145/1985793.1985827
https://jcp.org/en/jsr/detail?id=277
https://jcp.org/en/jsr/detail?id=294
https://jcp.org/en/jsr/detail?id=294
https://www.jcp.org/en/jsr/detail?id=376

	Introduction
	Background
	Data Collection
	Collecting CVE records
	Version Matching
	Finding the Root of Vulnerabilities
	Collecting Clients
	Combining with existing datasets

	Methodology
	Vulnerability Analysis
	Modularization
	Modularization Algorithm

	Impacts of Modularization
	False Positives in Metadata-based SCA Alerts
	Secure Deployment
	Alignment of Proposed Modularization with Current Structure


	Results
	Preliminary Analysis
	Security Improvements from Modularization
	RQ1: Precision of Metadata-based SCA Alerts
	RQ2: Secure Deployment
	RQ3: Alignment of Modularization with Current Structure

	Threats to Validity
	Related Work
	Software Composition Analysis
	Program Modularization

	Conclusion

