
Enhancing Security through Modularization
A Counterfactual Analysis of Vulnerability Propagation and Detection Precision

7 Oct 2024

 Mohammad M. Abdollahpour*, Jens Dietrich^, Patrick Lam*
 * University of Waterloo
 ^ Victoria University of Wellington

PAGE 2

tl;dl: more modular libraries can
lead to more secure software

3rd-party libraries are awesome!

PAGE 3

But they come at a cost:
Security vulnerabilities!

PAGE 4

Software Composition Analysis
(SCA) to the rescue

PAGE 5

Software Composition Analysis (SCA) to the rescue

Dependency Tree CVE Database

PAGE 6

Software Composition Analysis (SCA) to the rescue

PAGE 7

Software Composition Analysis (SCA) to the rescue

Too many
false positives

Rely on
reported CVEs

Call graph
analysis is

expensive

PAGE 8

pkg:mvn/org.json/json used by >1k other libraries

PAGE 9

CVE-2022-45688: vulnerability in the XML transformer

PAGE 10

But I don’t need the XML stuff!

PAGE 11

What if clients could reference only what they need?

PAGE 12

What if clients could reference only what they need?

= What if libraries were more modularized?

PAGE 13

Actually most clients do not need the whole library!

Only 6% of clients use
functionalities from

all modules

PAGE 15

If libraries were
more modularized

Fewer false
alarms from

SCA tools

Smaller attack
surface due to
dependencies

Less worry about
dormant/undiscovered

vulnerabilities

We need study subjects

PAGE 16

We need study subjects, but …

Hard to find a large number
of libraries transitioned

from monolith to modular

Hard to control the
confounding factors

PAGE 17

Would adding a lane help?

PAGE 18

We opted for a simulation-based counterfactual analysis

We simulate library
modularization

Measure security metrics
before and after

modularization

PAGE 19

Modularization can substantially increase the effectiveness of
metadata-based SCA tools

PAGE 20

SCA precision reached
71% after modularization

(before: 35%)

94.5% of safe* clients
would not receive false

security alerts

More than half of the
modules (51%) become

safe* after modularization

Modularization can substantially increase the effectiveness of
metadata-based SCA tools

PAGE 21

94.5% of safe* clients
would not receive false

security alerts

More than half of the
modules (51%) become

safe* after modularization

* Refers to transitive constant pool reference to any vulnerability in the class-level dependency graph

SCA precision reached
71% after modularization

(before: 35%)

Modularization has great potential to isolate the vulnerabilities

PAGE 22

More than half of the
modules (51%) become

safe* after modularization

94.5% of safe* clients
would not receive false

security alerts

* Refers to transitive constant pool reference to any vulnerability in the class-level dependency graph

SCA precision reached
71% after modularization

(before: 35%)

Modularization can greatly enhance security of client deployments

78.26% of statically safe
clients are no longer

susceptible to attacks
targeting inactive

vulnerabilities

Public attack surface
shrinks by 64% after

modularization

PAGE 23

Gadget Chains:
Attacks Targeting

Inactive Vulnerabilities

PAGE 24

Modularization can greatly enhance security of client deployments

78.26% of statically safe
clients are no longer

susceptible to attacks
targeting inactive

vulnerabilities

Public attack surface
shrinks by 64% after

modularization

PAGE 25

Public API surface shrinks
by 64% after modularizationPAGE 26

Our modularization can save org.json’s clients from the XML
vulnerability

PAGE 27

What is the source of our numbers?

What modularization technique do we use?

We need a notion of
dependency graph

We need a graph
partitioning algorithm

PAGE 29

We use constant pool references to construct dependency graphs

PAGE 30

We use constant pool references to construct dependency graphs

Includes all*
sorts of

dependencies

Preserve
compilability

Super
fast!

PAGE 31
* Excluding dynamic dependencies

We need a proper modularization technique for reliable results

We use constant pool
references to construct the

dependency graphs

We need a graph
partitioning algorithm

PAGE 32

The resulting modules should not have dependency cycles

PAGE 33

Convert the dependency graph
to a DAG,

and partition that

PAGE 34

We need a proper modularization technique for reliable results

We use constant pool
references to construct the

dependency DAGs
We need a DAG

partitioning algorithm

PAGE 35

We use constant pool
references to construct the

dependency DAGs

We use dagP*
to partition dependency

graphs without
introducing cycles

* J. Herrmann, J. Kho, B. Uçar, K. Kaya and Ü. V. Çatalyürek, "Acyclic Partitioning of
Large Directed Acyclic Graphs," 2017

We need a proper modularization technique for reliable results

PAGE 36

Minimizes
the edge cut!

PAGE 37

Are the created modules
balanced?

Yes: module sizes resulting from dagP
are reasonably balanced

PAGE 38

Do the created modules
align with existing
hierarchies?

PAGE 39

Yes: modules are well-aligned with the current library hierarchies.

PAGE 40

How did we collect our data?

PAGE 41

PAGE 42

+ data from
previous
research

PAGE 43

+ data from
previous
research

PAGE 44

We collected
7k <CVE, Library>

83k <CVE, Lib, Client>
records

95% of classes are public

Only one class is causing
the vulnerability (median)

Exploiting vulnerabilities is often more challenging
than it initially appears

PAGE 45

Have to go through two
classes to hit a vulnerability

(median)

Are you a library developer?

PAGE 46

Try to release smaller
coherent artifacts and let

people decide what they need

You can use our
modularization approach

as a starting point

Do you use large third-party libraries?

PAGE 47

Use smaller artifacts
(sometimes from the same

project!) when possible

You also can use our
technique to break large

artifacts

PAGE 48

Clipart attributions: all CC-BY 3.0 from Noun Project

- Vector Points
- Sam Designs
- Cosmin Petriser
- Solikin
- Amethyst Studio
- Gofficon
- choirun niswah
- ramacae

- tulpan
- Meko
- SeeMoo
- Suharsono
- Imam Kurniadi
- canvas dazzle
- Ifanicon
- Olena Panasovska

Photos from Patrick Lam collection

Hot Takes

1. Many libraries out there are too big.
2. Humans shouldn’t have to do grunt work to

modularize libraries.
3. dotnet is better than Java (in terms of clients not

including extra libraries).

PAGE 49

