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Abstract—The ubiquitous use of third-party libraries in
software development has enabled developers to quickly add
new functionality to their client software. Unfortunately, library
usage also carries a cost in terms of software maintenance:
library upgrades may include breaking changes, in which client
expectations about library behaviour are no longer met in new
library versions. Behavioural breaking changes can be particularly
insidious, and in their full generality, could require sophisticated
program analysis techniques to (approximately) detect.

In this work, we present our UnCheckGuard tool, which
detects a class of behavioural breaking changes—those related to
exceptions thrown by Java libraries. UnCheckGuard analyzes both
sides of the library/client duet. On the library side, UnCheckGuard
creates a list of new exceptions that may be thrown by methods
in a library’s public API, including by its transitive callees. On
the client side, UnCheckGuard identifies client methods that call
library methods with new exceptions. To reduce false positives,
UnCheckGuard additionally filters out new exceptions that cannot
be triggered by particular clients, using taint analysis. It therefore
can be used by client developers as a tool to screen library updates
for relevant incompatibilities.

We have evaluated UnCheckGuard on 302 libraries and 352
library-client pairs drawn from the DUETS collection and found
120 libraries with newly-added exceptions, as well as 1708 callsites
to library methods which, when upgraded to the latest version,
may introduce a behavioural breaking change in the client due to
a newly added unchecked exception. These findings highlight the
practical value of UnCheckGuard in identifying exception-related
incompatibilities introduced by library upgrades.

Index Terms—client/library interactions, behavioural breaking
changes, exceptions, static analysis

I. INTRODUCTION

The use of libraries developed by others is ubiquitous
in modern software development [1, 2]. Libraries enable
developers to include functionality in their own client software
without having to implement it themselves. However, libraries
developed by others are also updated by others, on schedules
that are not controlled by the client developers.

Especially when one is developing software that is exposed
to the Internet, one has a responsibility to incorporate security
updates for the libraries that one is using as a client [3], or else
risk vulnerabilities being exposed in one’s software [4, 5, 6].
The obligation to update libraries is a form of technical debt
that accrues automatically with the passage of time.

However, upgrading libraries is not painless [7, 8, 9]: new
versions of libraries may include breaking Application Pro-
gramming Interface (API) changes [10], requiring developers
to verify that their own client code continues working with
the new library versions. This is inconvenient at best and can

require nontrivial amounts of software development at worst,
often without the reward of useful new features for the client
software—reacting to upgrades just allows the client software
to continue working, in a hopefully less-vulnerable state.

Compilers and simple static checkers (including japicmp1

and Revapi2 for Java as well as [11, 12]) can verify the absence
of syntactic breaking changes in libraries, e.g. changes to
signatures of public methods, retractions of formerly-existing
methods, or even syntactic changes to library method imple-
mentations. The situation is worse for semantic/behavioural
breaking changes: there do not exist techniques for reliably
detecting such changes. Of course, in its full generality, the
problem is undecidable, though breaking change detection
could be estimated using static and dynamic program analysis
techniques.

In this work, we contribute a novel way to detect one type
of behavioural breaking change in a library. Our work enables
client developers to inspect relevant changes to the set of
exceptions that may be thrown by a Java library, particularly
by the APIs that are actually used by specific client code.
A new exception thrown by a library constitutes a breaking
change; uncaught exceptions can cause the client to crash or
to exhibit unexpected behaviour.

Although developers tend to ignore even checked excep-
tions [13], we contend that incrementally informing developers
only about relevant newly-added exceptions is more likely to
result in developer action, consistent with the design principles
of Google’s Tricorder tool [14]. Thus, we leverage taint analysis
to reduce the number of irrelevant reports that we report to
client developers. We aim to show only changed library APIs
that may realistically throw new exceptions in updated versions
of client code, minimizing the number of false positives [15, 16].
We hope that our reports enable client developers to better
understand how new exceptions affect their own code.

We explore the following research questions:
RQ1. Do library clients call methods with new added ex-
ceptions, and is it possible for the clients to trigger these
exceptions? Furthermore, is it possible to write client-focussed
test cases that trigger the exceptions?
RQ2. For library changes that introduce triggerable new
unchecked exceptions, under what circumstances do such
exceptions occur (i.e. major/minor/patch versions)?

1https://github.com/siom79/japicmp
2https://revapi.org/revapi-site/main/index.html
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In our corpus of 302 distinct libraries, we found 120
libraries with newly-added exceptions, including exceptions
that are added in non-major releases. We then investigated
352 client-library pairs to explore the prevalence of potentially
breaking behavioural changes. We found that new potentially
client-relevant unchecked exceptions occured in 120 of the
302 libraries, and that clients called methods reaching these
exceptions at 1708 client callsites. This shows that client
applications do in fact call library methods that throw these new
exceptions. Furthermore, we demonstrated that it is possible to
trigger these exceptions by writing test cases using methods
from the client.

The contributions of this work are as follows:
• We implement the UnCheckGuard static analysis tool,

which traverses bytecode to find newly-added exceptions
and filters them using taint analysis, to report relevant
newly added unchecked exceptions.

• We conduct an empirical study of libraries to detect
potential behavioural breaking changes in libraries caused
by newly added unchecked exceptions.

• We evaluate 352 client-library pairs from the DUETS
dataset [17] using UnCheckGuard, identifying 1708 call
sites where libraries’ newly added unchecked exceptions
could cause behavioural breaking changes in clients,
and write test cases showing that the exceptions can be
triggered from client code.

Data Availability Statement.
We have made our tool and dataset available at https://doi.

org/10.5281/zenodo.16788650

II. BACKGROUND

We define some concepts that underpin our approach to
detecting behavioural breaking changes caused by newly added
exceptions.

Taint Analysis. Taint analysis is a program analysis tech-
nique which can be implemented statically [18] or dynami-
cally [19]. It relies on declarations of sources (for example,
client input) and sinks (for example, critical operations or
exceptions). Given these inputs, the analysis tracks whether
the sources can reach the sinks.

The following example demonstrates how taint flows from
a source to a sink:

public class FlowDroidExampleCode {
public static int source() { return 1337; }

public void exampleTaintAnalysis() {
int temp = source(); int[] arr = new int[2];
arr[0] = temp; arr[1] = 19;
if (arr[0] == 1337) {

throw new RuntimeException("hello"); }
}

}

In this example, the method source() acts
as the taint source. The statement throw new
RuntimeException("hello") is the sink. The
tainted value flows into the array arr, and later influences the
conditional that triggers the exception. Although the exception

is hardcoded, the fact that its execution depends on a tainted
value makes this a valid taint flow from the source to the sink.

We apply taint analysis to detect whether newly added
exceptions in a library are reachable from client-supplied
values. This helps us detect behavioural breaking changes
where a newly added unchecked exception is only triggered
under specific conditions influenced by the client.

SootUp. SootUp [20] is a respin of the Soot [21] framework
that supports static analysis of Java bytecode.

SootUp transforms JVM bytecode into the intermediate
representation Jimple, which simplifies analysis by converting
low-level bytecode instructions into a higher-level format
that makes method bodies, variable assignments, exception
handling blocks, and method invocations accesible. SootUp
also provides call graph generation with various algorithms
and precision levels. When a library method throws a new
unchecked exception, we use SootUp to determine whether
client methods transitively call that library method by traversing
the (Class Hierarchy Analysis) call graph. We also use the
Jimple intermediate representation to inspect methods that may
throw an exception, by examining throw statements and method
calls within their bodies.

FlowDroid. FlowDroid [22] is a static taint analysis frame-
work. It tracks data flow from declared sources to sinks within
the application’s code. It is built on top of the Soot [21]
static analysis framework. FlowDroid models the complete
Android lifecycle and callback structure—irrelevant for our
purposes—but, relevant to us, enables flow-sensitive, field-
sensitive, context-sensitive, and object-sensitive analysis of
both Android and normal Java Virtual Machine programs.

It checks whether data from a source will taint a sink by
computing possible paths along which the data can flow. In our
tool, we use taint analysis to check the approximate reachability
of newly added unchecked exceptions from client code.

III. MOTIVATING EXAMPLE

We continue with a motivating example drawn from the
DUETS collection [17] of client/library pairs.

We start with our client, HttpAsyncClientUtils,
which is one of the clients in DUETS. This client declares a
dependency on version 4.4.6 of the httpcore library3. Since
the release of the version of HttpAsyncClientUtils that
we are using, the httpcore developers have released a
number of new versions, and at the time of writing, the latest
version of httpcore is 4.4.164.

A revision of the httpcore library between 4.4.6 and
4.4.16 adds a check for an error condition. If the con-
dition evaluates to true, the library method will explic-
itly throw an IllegalArgumentException. The client,
HttpAsyncClientUtils5, calls the relevant part of the
library, and thus may be affected by the new exception. We

3https://hc.apache.org/index.html
4While httpcore 5.2.4 is in fact the latest version of this library, the

library developers have released httpcore5 as a distinct Maven component
from httpcore4, and labelled httpcore(4) as end-of-life.

5https://github.com/iiweniiang/HttpAsyncClientUtils
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explain how UnCheckGuard finds this exception (and how it
avoids some false positives).

a) Library: All constructors for the
org.apache.http.HttpHost class transitively
call the static method Args.containsNoBlanks().
Between version 4.4.6 and version 4.4.16, the httpcore
developers added the following lines of code to
containsNoBlanks():

if (argument.length() == 0) {
throw new IllegalArgumentException

(name + " may not be empty");
}

Specifically, all HttpHost constructors take a hostname
parameter and call containsNoBlanks() with that param-
eter (to check that it contains no blanks). It is therefore possible
to trigger this newly-thrown exception in a client by attempting
to instantiate a new HttpHost object and passing it an empty
hostname.

Our UnCheckGuard tool analyzes the change in httpcore
and finds that, in version 4.4.16, all of the HttpHost construc-
tors may now throw an IllegalArgumentException via
the containsNoBlanks() method. This exception was not
thrown in 4.4.6.

To detect this change, UnCheckGuard processes JAR files for
both httpcore-4.4.6 and httpcore-4.4.16. It uses
SootUp [20] to construct a call graph using Class Hierarchy
Analysis (CHA) starting from the public <init>(String,
int)6 constructor on HttpHost and identifies the set of all
methods transitively reachable by the client (which we will
discuss below). UnCheckGuard then collects all unchecked
exceptions thrown within this set of reachable methods, for
both library versions.

b) Client: A newly-added exception is only relevant to
a particular client if that client may potentially trigger that
exception. We found that, often, a client will call a library, and
the library code really does contain a newly-added exception,
but there is no way for the client to cause the library to
reach that exception. But, in this case, it turns out that our
HttpAsyncClientUtils client has reachable code from
its public createAsyncClient(boolean)7 method that
creates an HttpHost with an empty host. This method takes
a proxy parameter and contains the following code:

if (proxy) {
return HttpAsyncClients.custom()
.setConnectionManager(conMgr)
.setDefaultCredentialsProvider(credentialsProvider)
.setDefaultAuthSchemeRegistry(authSchemeRegistry)

.setProxy(new HttpHost(host, port))

.setDefaultCookieStore(new BasicCookieStore())

.setDefaultRequestConfig(requestConfig).build();
} else {

// ...
}

6Specifically, constructor <init>(String, int) returning a void on
class org.apache.http.HttpHost

7Fully-qualified: method createAsyncClient(boolean)
returning a CloseableHttpAsyncClient on class
Util.HttpClientUtil.HttpAsyncClient.

The HttpAsyncClientUtils client declares the two
variables (host and port) required for HttpHost in the
following way:

private String host = "";
private int port = 0;
// ...

where host is a private field initialized to the empty string.
Thus, calling createAsyncClient(true) triggers an
exception when executed with httpcore version 4.4.16
but not with 4.4.6. Conversely, one can imagine a library
design where HttpHost objects are always initialized with
a hostname of "localhost", such that the newly-added
exception would not be triggerable.

To detect that our HttpAsyncClientUtils client calls
a method from httpcore-4.4.6 which, upon upgrading to
httpcore-4.4.16, may throw a new unchecked exception,
UnCheckGuard begins by identifying all external library
methods invoked anywhere in the client. It then analyzes
both the current and the latest versions of the library to
determine whether any newly introduced unchecked exceptions
are reachable from the client’s code. Here, reachability means
that the client can trigger the exception in the library on some
execution of the program, using values it passes to the library
as parameters.

To check if the client-supplied values can reach the exception-
throwing site, we use FlowDroid [22]’s taint analysis. Taint
analysis is essential in this scenario because the existence of
a control-flow path from the client callsite to an exception-
throwing statement is not sufficient to conclude that the
exception is actually triggerable by the client. As alluded to
above, we found that many such paths may exist in a library,
but the path conditions leading to the exception might depend
entirely on internal library values, rather than on client-supplied
inputs; it is impossible for our client to cause the execution of
any path that triggers the exception. In our experience, taint
analysis helps distinguish actual behavioural breaking changes
from false positives.

Specifically, we use taint analysis to track whether any
client-supplied method parameters to library calls (source) can
propagate to the exception object’s constructor (sink). If taint
analysis determines that no client-supplied input flows into
the exception-triggering logic, then we can conclude that the
newly added exception will not cause a behavioural breaking
change, and we do not report that exception.

In version 4.4.6, UnCheckGuard finds two sites throwing
IllegalArgumentException, while in 4.4.16, it detects
three—each of which the client can potentially trigger using
the values it chooses to pass to the library as parameters.

Based on FlowDroid’s confirmation of the reachability of the
new exception’s constructor, we report that the library-client
pair HttpAsyncClientUtils and httpcore exhibits a
behavioural breaking change.

Given this report, it is straightforward to write a test case
that calls the client’s createAsyncClient() method and
triggers the exception after an upgrade:
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@Test
void testCreateAsyncClientThrowsExceptionForEmptyProxyHost() {
HttpAsyncClient client = new HttpAsyncClient();

IllegalArgumentException exception =
assertThrows(IllegalArgumentException.class, () -> {

client.createAsyncClient(true);
});

assertTrue(exception.getMessage()
.contains("may not be empty"),
"Expected exception due to empty hostname "+
"after upgrading to httpcore-4.4.16");

}

IV. DATA COLLECTION

This section describes the systematic approach we used to
construct the dataset for our study on behavioural incompatibil-
ities caused by newly added unchecked exceptions in upgraded
Java libraries.

To begin our analysis, we first collected suitable client
projects. We used the DUETS dataset [17], which provides a
curated list of Java-based clients hosted on GitHub, each with
at least five stars. DUETS also pairs libraries with the clients,
but we ignore the DUETS library declarations and instead
consider all libraries declared as dependencies by each client.

The DUETS dataset contains a total of 147,991 Java projects
with more than 5 stars on GitHub. DUETS further filters these
projects to retain only single-module Maven projects, executes
the test suite within each project, and ultimately leaves 34,280
projects. We then filter this dataset further by increasing the
minimum number of GitHub stars for a Java project to 10 or
more. Due to the newly added rate limiting by Maven Central8,
running all 19,290 Java projects collected after the filtering
based on 10 or more GitHub stars has become difficult. We
sample from DUETS by systematically selecting clients at an
interval of 19 from the list. This approach yields a dataset
of 1,011 clients, small enough to avoid the rate limiting, that
represents real-world Java usage.

We attempted to download each client repository and
discarded any client that failed to download. Next, we checked
whether the project included a pom.xml file, which indicates
that it is a Maven-based project. This step was essential, as our
analysis depends on running Maven commands. We compiled
each client to produce a JAR file and kept only those clients
that compiled successfully for further analysis.

V. METHODOLOGY

The previous section, Section IV, described how we collected
the clients. In this section, we describe our methodology for
detecting and verifying newly added unchecked exceptions in
a library when it is updated from an older version to a newer
one. Our focus is on identifying the impact of such changes on
client code. Specifically, we analyze client programs to detect
usage of library methods that were updated to throw previously
non-existent unchecked exceptions. Java distinguishes between
checked exceptions, which appear as part of method signatures,
and unchecked exceptions, which do not. Unchecked exceptions

8https://www.sonatype.com/blog/maven-central-and-the- tragedy-of- the-commons

may therefore introduce a class of breaking changes that method
signature-based syntactic approaches for Java cannot detect.

After carrying out the data collection steps in Section IV
and collecting all the clients that have to be analyzed, we next
analyze all the external method calls made by the client, in
both the current (pre-upgrade) version and the latest version.
This allows us to compare their behaviour across versions. If
we find, through our analysis, that a method now throws a
newly added unchecked exception in the latest version, and
that the exception can be triggered from the client code, we
flag a potential behavioural breaking change. To verify whether
this change is in fact breaking, we currently manually write
test cases to verify that the client may be affected by the newly
introduced exception. We found that this was easy to do given
the information that UnCheckGuard reports.

A. Analysis Setup
We divide analysis setup into two steps: 1) library version

resolution; and 2) mapping external method invocations to
library methods. Figure 1 shows the full pipeline.

1) Library Version Resolution: Our tool relies on an-
alyzing both the version of the library currently used
by the client and the latest available version (as
stored in the Maven Central Repository). To collect
the current version, we run the Maven command mvn
dependency:copy-dependencies, which downloads
all the dependencies declared in the client’s build configuration.

To obtain the latest versions of these dependencies, we run
the following Maven command:
mvn org.codehaus.mojo:versions-maven-plugin

:2.18.0:use-latest-versions

This command updates the pom.xml file with the most
recent versions of all declared dependencies. We then re-run
mvn dependency:copy-dependencies to download
the updated set of libraries.

After acquiring relevant versions of the libraries on which
the client depends, we extract all external method invocations
made by the client.

2) Mapping External Method Invocations to Library Meth-
ods: We use SootUp [20] to analyze the client JAR and
identify all external method invocations. By external methods,
we mean methods that are not defined within the client’s
own codebase—methods whose definitions reside in third-party
libraries. UnCheckGuard performs this analysis by traversing
the Jimple intermediate representation of each client method
and checking whether any statement contains an InvokeExpr,
which represents a method invocation. For each invocation, we
retrieve the declaring class type of the target method. We then
check whether this class type is part of the client’s SootUp
view—essentially, whether it was declared in the client JAR
file or the Java standard library. If the class type is not found
in the view, we mark the method as external. This process
allows us to filter out internal method calls and consider only
invocations to external library methods.

In parallel, we analyze the current version of each library
used by the client. We extract all method signatures defined
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Fig. 1: Pipeline of UnCheckGuard for detecting behavioural breaking changes due to newly added unchecked exceptions.

in the library JAR. We then match each external method call
made by the client to the corresponding method in the library,
by comparing their fully qualified method signatures. For the
matching process, for simplicity, we perform an exact match
between the declaring type of the method invoked by the client
and that in the library to create a client/library mapping. This
approach may miss some valid matches in the presence of
dynamic dispatch—the declared receiver object type may differ
from actual receiver object type that the client uses at the call
site—so the current version of UnCheckGuard may underreport
some breaking changes.

Our client/library mapping identifies library methods and
links them to where they can be invoked by the client. This
mapping serves as a foundation for later stages in our analysis,
where we detect behavioural changes in the latest versions of
libraries and traces their potential impact on client call sites.

B. Finding Newly Added Unchecked Exceptions

Our primary goal is to detect whether upgrading a library
introduces new unchecked exceptions that could affect client
behaviour. To achieve this, we divide the process into two
stages: first, identifying newly added unchecked exceptions
using a call graph; and second, verifying their reachability
from client input using a taint analysis.

1) Exception Discovery: To detect newly added unchecked
exceptions in the latest library versions, we first construct a call
graph using SootUp’s Class Hierarchy Analysis implementation.
CHA includes all methods with the correct signature defined
in subclasses and interface implementations.

By definition, CHA reports the most conservative
soundy [23] answer possible, absent reflection and other

dynamic features. Thus, it tends to over-approximate and report
unreachable method calls. For example, in one case, CHA
identified a path from the public getString(String)9

method, reporting an exception thrown in the JSONObject
constructor as reachable. However, manual inspection revealed
that this path was spurious—the method getString never
reaches the constructor in question because, in the specific
program under analysis, no code instantiates a JSONObject.
Our next step, taint analysis, filters out some such unreachable
methods.

We traverse our callgraph and collect all
instantiated exceptions that are subclasses of
either java.lang.RuntimeException or
java.lang.Error. Per the definition of the Java
programming language, such exceptions represent the
complete set of unchecked exceptions that the client might be
newly exposed to due to the library upgrade.

2) Exception Filtering with Taint Analysis: Once we collect
the list of unchecked exceptions, we need to determine which
of them can actually be triggered by client inputs. This is
necessary because many exceptions that show up during call
graph analysis are not reachable in practice—they rely on
internal values rather than any parameters the client supplies
(see below for an example). To filter out such cases, we use
FlowDroid [22], a static taint analysis framework.

Consider the following case from our corpus. The
client 4ntoine/ServiceDiscovery-java10 uses
the method copyFromUtf8(String) from the library

9Fully-qualified name: method getString(String) returning a
String on class com.alibaba.fastjson.JSONObject

10https://github.com/4ntoine/ServiceDiscovery-java
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protobuf-java-2.6.1. This method, in turn, reaches
the internal method newInstance in its call graph. When
the library is upgraded to protobuf-java-4.30.1,
the implementation of newInstance introduces a new
unchecked exception—an IllegalArgumentException.
Our tool initially flags this as a behavioural breaking
change because the exception is newly introduced, and an
interprocedural control-flow path exists from the client code
to the exception site.

However, a closer inspection shows that this exception cannot
be triggered by any value passed from the client. The internal
method that throws the exception looks like this:
static CodedInputStream newInstance(

final byte[] buf, final int off, final int len, final
boolean bufferIsImmutable) {

ArrayDecoder result = new ArrayDecoder(buf, off, len,
bufferIsImmutable);

try {
result.pushLimit(len);

} catch (InvalidProtocolBufferException ex) {
// The only reason pushLimit() might throw an exception
// here is if len is negative. Normally pushLimit()’s
// parameter comes directly off the wire, so it’s
// important to catch exceptions in case of corrupt or
// malicious data. However, in this case, we expect
// that len is not a user-supplied value, so we can
// assume that it being negative indicates a
// programming error. Therefore, throwing an unchecked
// exception is appropriate.
throw new IllegalArgumentException(ex);

}
return result;

}

The library developer’s comment states that this exception
will never be thrown by this non-public method, essentially
because len cannot be directly supplied by a client. Clients
can only reach this newInstance method through methods
that are part of protobuf’s public API. Our taint analysis
confirms that no client-supplied value (source) flows into
the IllegalArgumentException constructor (sink). We
choose exception constructors as sinks because taintedness of
the exception constructor means that the client-controlled value
can affect the reachability of the exception, i.e. whether the
exception might be thrown or not. Hence, taint analysis helps
reason about whether the newly-added exception can actually
cause a behavioural breaking change in the client.

We mark an exception site as reachable if either the client-
supplied value is used as an argument for the exception
constructor (explicit) or the client-supplied value influences
the control flow reaching the throw statement (implicit). This
approach ensures that we correctly identify both explicit data
dependence and implicit control-flow dependence on the client-
supplied value. Figure 2 illustrates these two ways that client-
supplied values can reach an exception site.

For technical reasons related to FlowDroid, we automatically
generate a driver stub for each value that the client supplies
to the library. FlowDroid does not allow method parameters
to be marked directly as taint sources. To work around this,
we wrap each parameter in a synthetic method and mark its
return value as a source.

In our analysis, we mark the parameters of library methods
that are invoked by the client as taint sources (in the example

in Section III, the HttpHost constructor parameters), since
these are the only values under the client’s control. We also
mark each exception identified in the Analysis Setup step as
a potential taint sink. We use the taint analysis to estimate
whether the client-supplied parameter values can trigger newly
introduced exceptions. If they cannot, then the exception is
effectively unreachable from the client, and thus does not
constitute a behavioural breaking change.

Consider the following method from the
beam-sdks-java-core library:
public static void applicableTo(PCollection<?> input) {
WindowingStrategy<?, ?> ws = input.getWindowingStrategy();
if (ws.getWindowFn() instanceof GlobalWindows

&& ws.getTrigger() instanceof DefaultTrigger
&& input.isBounded() != IsBounded.BOUNDED) {

throw new IllegalStateException("...");
}
}

In this example, the parameter input is the taint source,
and the new IllegalStateException() is the sink
(to be precise, the exception’s constructor). The public
applicableTo(PCollection)11 method is used by the
0xdecaf/beam-enrichment-patterns12 client.

In terms of our methodology, for methods that appear in both
the current and latest versions of the library, we compare the
sets of unchecked exceptions that they throw that are deemed
reachable by taint analysis, and identify new exceptions. (If a
method exists in the current library version but is missing from
the latest version, we exclude it from our analysis. Its removal
may indicate a method signature-based breaking change, but
those are handled by existing tools and lie outside the scope
of our detection. Our work only detects changes to the set of
exceptions that are thrown.)

We compare exceptions using both the exception type
(e.g., java.lang.IllegalArgumentException) and
the fully-qualified signature of the method in which the
exception occurs. If, after removing all exceptions common to
both versions, the method in the latest version still contains
additional unchecked exceptions, we classify it as a method
with a newly-added unchecked exception. Otherwise, we
discard it from consideration; our technique sees no new
exception-related behavioural breaking changes for this method.

C. Filtering Untriggerable Unchecked Exceptions

Based on the information collected about newly added
unchecked exceptions, we use the previously generated client-
to-library method mapping to determine which client methods
invoke a library method that now throws a new unchecked
exception. This step allows us to identify specific call sites
in the client that may be affected by behavioural breaking
changes introduced in the upgraded library version.

To validate the practical impact of these changes, we
manually write test cases to assess whether the client can
actually trigger the exception. Our goal is to write a test case
that uses client code to trigger the exception.

11Fully-qualified name: method applicableTo(PCollection) return-
ing a void on class org.apache.beam.sdk.transforms.GroupByKe

12https://github.com/0xdecaf/beam-enrichment-patterns
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Client
caller(a)

Source

Call site
lib.m(a)

Library
m(x){...}

Branch
if (g(x)) throw E(...)

Exception constructor
new E(...)

Sink
throw e;

taint x:=a
msg := f(x)

Legend:
data dep.
control dep.

Fig. 2: Taint propagation from a client parameter (source) to an exception site (sink) occurs via either data dependence (solid
lines, e.g., a value passed into the exception constructor arguments) or control-flow dependence (dashed lines, e.g., a value
influencing a branch that leads to the throw statement).

We construct client-focussed test cases as follows. To
understand the exception, we start from the client call site
identified in the mapping and examine the library method
that UnCheckGuard had flagged as containing a newly added
unchecked exception. This information is available in the JSON
output produced by our tool, which includes the exception
type and the method signature in which it occurs. Given the
exception type and method signature, we can easily find the
exact exception-throwing line in the library. This enables a
detailed inspection of how the exception is triggered.

To craft a test case, we start on the library side by first
triggering the exception by directly calling the relevant library
method, in the library context, with crafted parameters. If
this call triggers the exception (as we would expect), we then
proceed to construct a full test case that invokes the client
method, propagating the same parameter values.

In some scenarios, we are unable to trigger the exception
through the client due to certain code structures:

• The client may pass a hardcoded constant value to the
library which does not trigger the exception.

• The client may apply explicit guards or checks before
calling the affected library method.

There are thus at least two ways to fail in creating a test
suite: (1) the client that we have will not trigger the exception
because of how it uses the library; (2) no client can trigger the
exception through the library’s public API. Case (2) would be
less common than case (1), since the library developers usually
add an exception for a reason.

The potential failure to write a test case is similar in spirit to,
for instance, security tools which report a number of potential
vulnerabilities; the onus remains on the tool user to go from a
potential vulnerability to proof-of-concept code.

In cases where no current client-based test case could
possibly trigger the exception, this is still a situation where
future library code changes (e.g., modifying a hardcoded value
or removing a check) could make the call site vulnerable to
the newly introduced exception. Ideally, the library developer
ought to have added a description of this exception, and the
circumstances under which it could be thrown, to the library
method’s documentation, as we have seen in the unreachable
InvalidProtocolBufferException above.

We present an example of an untriggerable case
which still passes the taint analysis. The client project
github.com/4ntoine/ServiceDiscovery-java
contains the following code:

if (serviceInfo.getPayload() != null)
builder.setPayload(
ByteString.copyFrom(serviceInfo.getPayload()));

In this case, the library method with the newly added
unchecked exception is:

com.google.protobuf.ByteString.copyFrom(byte[])

The client uses version 2.6.1 of protobuf-java, while
the latest version is 4.31.0. The newly added exception,
java.lang.NullPointerException, is thrown in the
latest library if a null value is passed to copyFrom. The
relevant transitively-called code from the library is:

LiteralByteString(byte[] bytes) {
if (bytes == null) {

throw new NullPointerException();
}
this.bytes = bytes;

}

Although the latest version introduces a new unchecked
exception, the client had already placed a guard condition,
which was the first line above:

if (serviceInfo.getPayload() != null)

The guard condition does prevent the exception from being
triggered by calling client methods. Therefore, we cannot
generate a client-centric test case for this call site. However,
we still report it, and we claim that it is potentially relevant.
The reason that we report it is that we actually only analyze
the clients to extract calls to the library, so that the client-side
guard is not interesting to our analysis. Our taint analysis starts
on the library side of the client/library interface.

In contrast, for cases where the client does not enforce such
conditions and passes input parameters that can trigger the
new exception, our experience has shown that we can generate
a test case to demonstrate the behavioural breaking change.
In these situations, the change is not merely hypothetical—it
represents an actual, runtime-breaking behaviour that occurs
when the latest library is used. These tests offer actionable
insights to developers by highlighting call sites could possibly
trigger newly added exceptions in new library versions.
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VI. RESULTS

As discussed in Section IV, we evaluated UnCheckGuard
on 1011 Java-based clients from the DUETS dataset [17].

The goal of our tool is to detect whether a client calls a
library method that, upon upgrading the library to a newer
version, introduces a previously non-existent unchecked excep-
tion—potentially resulting in a behavioural breaking change.

We explore the following research questions:
RQ1: Do library clients call methods with new added exceptions,

and is it possible for the clients to trigger these exceptions?
Furthermore, is it possible to write client-focussed test
cases that trigger the exceptions?

RQ2: For library changes that introduce triggerable new
unchecked exceptions, under what circumstances do such
exceptions occur (i.e. major/minor/patch versions)?

Table I summarizes our empirical findings about the preva-
lence of newly-added exceptions in our corpus and how their
number changes as we perform more analysis stages.

TABLE I: Exception Analysis Funnel

Stage Count

Client invocations of external methods 15678
Exceptions passing taint analysis 1708

A. Client Calls to Newly-added Exceptions

Our evaluation includes 1011 client applications, which
depend on 302 distinct libraries. Across these, we formed
352 client-library pairs in which the library had an available
upgrade, each corresponding to a combination of a specific
client and one of the libraries that it depends on. Table III
presents the top 15 client-library pairs, ordered in descending
number of callsites that pass the taint analysis reachability filter;
for each pair, it also presents the number of client callsites
invoking library methods with newly-added exceptions.

UnCheckGuard detected 15678 callsites across these 352
pairs where the upgraded version of the library could throw a
new unchecked exception. We initially tried to write test cases
for these callsites but found ourself all-too-often unable to
write a test case that could trigger the newly added unchecked
exception. In most of these cases, we observed that the
parameters responsible for triggering the exceptions were not
the ones passed by the client to the library method. Hence, it
was not possible to trigger all of these exceptions using the
client’s methods, even with a free choice of parameters to pass
to the client code.

We therefore applied a taint-based reachability analysis to
filter out cases that definitely could not result in actual runtime
failures. After this filtering step, we identified 1708 callsites
in total—spanning 120 distinct libraries—that appeared to
potentially be affected by a newly added unchecked exception.
As with the protobuf case in Section V, which added a new-
but-untriggerable unchecked exception, taint analysis played a
crucial role in reducing the number of false positives.

To assess the real-world consequences of these remaining
1708 callsites, we manually constructed test cases. For 3 of the
clients (out of 21 attempts), we were able to provide inputs
that trigger the newly added exceptions, confirming that they
represent real behavioural breaking changes.

In other cases, the exception was still untriggerable because
the client passed hardcoded values or had safeguards like null
checks. In these cases, it is possible that modifying the client
might trigger the exception, but we considered that out of
scope: we wanted it to be possible for client code, as written,
to trigger the exception.

Answer RQ1: Yes, client applications do call meth-
ods with newly added unchecked exceptions. Out of
352 client-library pairs in our corpus, we identified
1708 callsites that reached newly-added exceptions,
distributed across 136 of our 1011 clients. We were
able to construct test cases that trigger the exception
in 3 cases.

TABLE II: Distribution of reachable newly-added exceptions
across version types

Version Type Libraries

Major Version Change 50
Minor Version Change 57
Patch Version Change 14

B. Newly-added Unchecked Exceptions in Java Libraries

Semantic versioning [24] proposes that version numbers have
three parts, x.y.z. According to semantic versioning, library
developers are to change the major version x when an upgrade
is breaking—that is, a client may have to modify their code to
use the new versioning. Minor version upgrades (indicated by
changes to y) may include new features, while patch upgrades
(changes to z) fix bugs. We sought to investigate how often
behavioural breaking changes (at least, the ones we can detect)
occur in each of these types of changes.

Table II shows the distribution of newly-added exceptions
reachable from clients, across upgrade types. Notably, 50 out
of these 120 libraries introduced new unchecked exceptions as
part of a major version bump. However, we also observed 14
cases in a patch version upgrade. While we are not making
any broader claims about how often behavioural breaking
changes occur in general, our results indicate that minor and
patch upgrades do introduce behavioural breaking changes via
unchecked exceptions which may affect clients—something
that developers may not anticipate.
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TABLE III: Selected clients, libraries, versions, and counts of callsites reaching newly-added exceptions

Client Current Version Latest Version Number of
Callsites

Reachable
Callsites

codes.brewing.flinkexamples-
1.0-SNAPSHOT

commons-logging-1.1.1 commons-logging-1.1.3 3479 436

api-2.0.2 gson-2.3 gson-2.13.1 453 209

cosyan-0.0.1-SNAPSHOT json-20180130 json-20250517 365 112

TopicModelingTool junit-4.11 junit-4.13.2 308 78

android-facebook-1.6 android-1.6_r2 android-4.1.1.4 154 77

indextank-engine-1.0.0 commons-cli-1.2 commons-cli-1.10.0 328 51

commons-pipeline-1.0-
SNAPSHOT

commons-digester-1.7 commons-digester-2.1 76 48

codes.brewing.flinkexamples-
1.0-SNAPSHOT

commons-codec-1.3 commons-codec-1.4 47 38

mrdpatterns-1.0-SNAPSHOT hadoop-core-1.1.1 hadoop-core-1.2.1 466 36

rehttp xembly-0.31.1 xembly-0.32.2 61 36

indextank-engine-1.0.0 log4j-1.2.16 log4j-1.2.17 33 33

Timeline-2.0.0 tablestore-4.11.2 tablestore-5.17.6 479 32

HospitalAction-1.0 poi-5.2.2 poi-5.4.1 42 28

MavenProject-0.0.1-
SNAPSHOT

selenium-api-3.141.59 selenium-api-4.35.0 120 24

amazon-kinesis-aggregators-
.9.2.9

commons-logging-1.1.1 commons-logging-1.3.5 105 23

Answer RQ2: Java libraries introduce newly added
unchecked client-relevant exceptions across versions
frequently enough to be relevant to clients. We found
newly added unchecked exceptions in 120 out of 302
distinct libraries (39.7%). These changes in major
version upgrades (50 times), minor version upgrades
(57 times), and patch (14 times) version upgrades (e.g.,
httpcore-4.4.6 → httpcore-4.4.16).

C. Discussion: Developer-Facing Implications

Behavioural breaking changes caused by unchecked excep-
tions during API evolution are particularly dangerous. Such
changes do not show up at compile time, and they do not affect
method signatures, which means that the existing tools that we
are aware of cannot detect them. For instance, both japicmp
and Revapi, widely used tools for detecting breaking changes,
focus on syntactic differences in method signatures. While they
can both flag checked exceptions—since they appear in method
declarations—they do not analyze the method implementations,
and thus have no way of identifying newly added unchecked
exceptions. As a result, developers who rely solely on either
japicmp or revapi could remain unaware of serious runtime-
breaking issues.

Some tools have tried to tackle the challenge of behavioural
breaking changes. CompCheck [25], for example, works by
identifying test cases in some clients and reusing them for
others with similar API usage. But this approach depends

heavily on the presence of thorough test suites. Most clients that
we have looked at do not have such comprehensive coverage,
especially not for edge cases involving unchecked exceptions.

This is where UnCheckGuard steps in. Unlike existing work,
it does not rely on existing test cases. Instead, it compares
the old and new versions of a library using static analysis to
detect newly added unchecked exceptions, and then runs taint
analysis to filter out changes that do not affect the client. By
avoiding the need for a test suite, it can reveal behavioural
breaking changes that other tools overlook.

In doing so, UnCheckGuard addresses an important gap. It
gives developers visibility into a class of breaking changes that
are easy to miss but costly in practice—helping them catch
potential failures early, before they reach production.

VII. RELATED WORK

While much program analysis research considers a single
version of a software artifact, some related work treats changes
between versions, and we discuss some related work in that
area. We also discuss empirical efforts to detect and empirically
survey the prevalence of and reasons for breaking changes.

Logozzo et al [26] proposed the concept of verification
modulo versions. Like us, verification modulo versions observes
that program verification needs to recognize that software
evolves over time and that verification tools must take this into
account—in particular, a developer often wants to know about
potential verification issues unique to new code, rather than re-
triaging issues previously reported. A fundamental difference
between their work and ours is that we put the interface between
the client and the library at the centre of our approach, and
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ensure that changes in the library must be visible to the client
before we report them, while the verification modulo versions
approach aims to detect behavioural differences between two
versions of some software.

Møller et al [27] propose a domain-specific language for
JavaScript library developers to use to indicate to client
developers what has changed in a new version of their library.
Our work addresses a specific subset of the breaking changes
problem but automatically deduces changes in the library
that are relevant to a particular client. It does not require
additional work on the part of the library developer. More
generally, and at the same time, Lam et al [28] proposed the
development of semantic version calculators, including the
usage of both traditional and lightweight contracts for libraries,
to allow library developers to declare, and client developers
to understand, the impact of potential breaking changes in
libraries.

Jayasuriya et al [29, 30] investigate the prevalence of
breaking changes in the wild. In principle, under semantic
versioning [24], library developers ought to indicate breaking
changes by incrementing the major version number (i.e. the
first number in the version triplet); however, Jayasuriya et
al found that 41.58% of (syntactic) breaking changes were
not identified as such (our comparable number is 57/120, or
47.5%), and that 11.58% of changes were breaking.

We have proposed a static approach to detecting breaking
changes. Mujahid et al [31] proposed a dynamic approach to
this problem. Their goal is to answer the question of whether
a new version includes breaking changes or not, and they
combine tests from “the crowd” (a collection of other projects)
to decide the question, finding that such tests found breaking
changes 60% of the time. Our approach is much more specific
to a particular library/client pair, and aims to detect if library
X’s upgrade may break client Y . More like us, Jayasuriya et
al [32] also use a dynamic approach (compared to our static
approach) on a client/library pair to detect behavioural breaking
changes in the client using its tests, finding that 2.30% of library
updates broke the client, as witnessed by a particular test.

In terms of better understanding why breaking changes exist,
Kong et al [33] analyzed the reasons that library develop-
ers introduced breaking changes (reducing code redundancy,
improving identifier names, and improving API design) and
proposed a taxonomy of types of changes.

VIII. CONCLUSION

In this work, we demonstrated the impact of behavioural
breaking changes caused by newly added unchecked exceptions
in client applications. These changes are particularly difficult
to detect, as they evade Java’s compile-time checks and are
not reflected in API signatures.

We introduced UnCheckGuard, a static analysis tool designed
to detect such exceptions and help client developers avoid
behavioural breaking changes. By combining extracted informa-
tion with taint analysis, UnCheckGuard filters out unreachable
exceptions, focusing only on those that are actually triggerable
by client inputs.

In our evaluation of 352 library–client pairs from the
DUETS dataset, we identified 1708 callsites affected by newly
introduced unchecked exceptions. Notably, these issues arose
not only in major library updates but also in a patch version
update—highlighting the risk that developers may unknowingly
introduce runtime failures even during seemingly safe updates.

UnCheckGuard addresses a concerning gap in existing tools
by targeting behavioural breaking changes due to unchecked
exceptions. By statically analyzing both the library and client,
it provides an effective way to catch runtime issues early and
improve software robustness.
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