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Sound static data race freedom verification has been a long-standing challenge in the field of programming
languages. While actively researched a decade ago, most practical data race detection tools have since
abandoned soundness. Is sound static race freedom verification for real-world C programs a lost cause? In this
work, we investigate the obstacles to making significant progress in automated race freedom verification. We
selected a benchmark suite of real-world programs and, as our primary contribution, extracted a set of coding
idioms that represent fundamental barriers to verification. We expressed these idioms as micro-benchmarks
and contributed them as evaluation tasks for the International Competition on Software Verification, SV-
COMP. To understand the current state, we measure how sound automated verification tools competing in
SV-COMP perform on these idioms and also when used out of the box on the real-world programs. For 8 of
the 20 coding idioms, there does exist an automated race freedom verifier that can verify it; however, we also
found significant unsoundness in leading verifiers, including Goblint and Deagle. Five of the 7 tools failed to
return any result on any real-world benchmarks under our chosen resource limitations, with the remaining 2
tools verifying race freedom for 2 of the 18 programs and crashing or returning inconclusive results on the
others. We thus show that state-of-the-art verifiers have both superficial and fundamental barriers to correctly
analyzing real-world programs. These barriers constitute the open problems that must be solved to make
progress on automated static data race freedom verification.
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1 Introduction
It is important to ensure the reliability of C programs, as C is widely used in the development of
critical infrastructural software. Vast amounts of legacy C code implementing these critical systems
exist in the world. Concurrent C applications are vulnerable to data races, causing unpredictable
behaviors, performance issues, and system failures. While dynamic and heuristic data race detectors
are helpful, race-related vulnerabilities still continuously surface and are routinely patched in
released software, showing the limits of unsound approaches. The ideal solution would be to verify
the absence of data races at compile-time, using sound static data race analysis, throughout a
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program’s evolution. Given the potential impact of sound static race detection for C programs, one
may wonder what are the remaining problems that prevent its application in practice.

We have worked on sound static analysis of concurrent C programs for almost two decades, and
implemented many of our ideas in the Goblint analyzer [88]. As an actively maintained open-source
tool, it has found some practical use [86], but we have so far had limited success in verifying
race freedom in real-world programs. We do not believe sound static race freedom verification
is a lost cause, but we have reached a point where we are looking to re-calibrate and to explore
some fresh ideas. We strongly believe that it is useful to know up-front what kind of concurrency
schemes—specifically, schemes that are used in practice—pose problems for current tools.
More generally, we believe far more effort is needed to improve the state of benchmarking.

Alglave et al. [3] identify the lack of standardized benchmarks as among the problems that prevent
the development of robust and scalable tools and lament that the over-emphasis on novelty in
research makes it difficult to develop tools beyond minimal prototypes. Rizzi et al. [68] substantiate
their concern with some empirical evidence. They showed that making rudimentary improvements
to an existing tool, KLEE [16], would have been more beneficial than many of the published new
methods that compared to the original version of KLEE. They conclude that unguided innovation
“may lead to wasted effort, missed opportunities for progress, an accretion of artifact complexity,
and questionable research conclusions.”
In response to such critiques and to incentivize the continuous improvement of tools, the com-

munity has established and participates in verification contests. Effectively organized verification
contests can play a crucial role in developing a validated benchmark suite and ensuring repro-
ducible evaluations. The Competition on Software Verification (SV-COMP) [9] is the pre-eminent
verification contest for static analyzers. It incorporates community-based benchmarking processes
that contribute to fairness and internal validity: tool developers may submit benchmarks, which
are accepted as long as they are written in valid C. However, the tension between internal and
external validity is a consideration for these contests, as outlined by Siegmund et al. [80]. To make
comparisons meaningful, but at the cost of external validity, SV-COMP requires that benchmarks
contain at most one property violation and that the ground truth be known; real programs are
not subject to these constraints. While competition problems have helped drive the design and
implementation of novel race detection techniques, one of our main goals is to further direct
focus toward the automated verification of real-world programs. We are especially interested in
understanding the gap between what is covered in today’s competition problems and what is
required to handle real-world programs.
In this paper, we identify obstacles to making significant progress on automated race

freedom verification, in the context of software found “in the wild” today. We do so using
the following three research questions.

(1) What are some concrete multithreaded implementation idioms preventing existing verifiers
from verifying data race freedom in real-world programs?

(2) How well do existing verifiers handle each of these idioms when extracted into isolated
micro-kernels?

(3) How prevalent are these challenging implementation idioms in real-world programs?

To identify the obstacles, we begin by evaluating how today’s state-of-the-art automated data
race verifiers perform on real-world programs out of the box. Having confirmed that automated
verifiers cannot determine race freedom without manual intervention, we aim to understand the
underlying causes of these failures. We extract unsolved data race verification challenges from the
programs as idioms (RQ 1), formalize their underlying properties, and create micro-benchmarks of
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the idioms to validate that they are yet unsolved (RQ 2) and prevalent in our selection of real-world
programs (RQ 3).

Novelty. The main value of this paper is that we share, as co-developers of the top-performing
data race verifier at SV-COMP, our insights into the limitations of these tools. Our study provides
the following novel contributions:

• Clear empirical evidence that sound static analysis of data races is far from a solved problem.
• An in-depth analysis, using expert knowledge, of the fundamental causes of verification
failures on real-world benchmarks.

• A set of idioms, collected from real-world benchmarks, that current state-of-the-art static
race freedom verifiers have difficulty with; including

(1) a new set of micro-benchmarks that embody these idioms, and
(2) an evaluation of state-of-the-art verifiers on these micro-benchmarks.

Significance and Potential Impact. We have contributed our suite of micro-benchmarks to SV-
COMP, and this paper explains our data-driven approach to deriving these micro-benchmarks. This
kind of calibration research is important: by improving the quality of our benchmarking, we can,
as a community, focus on problems that take us closer to the dream of static data race freedom
verification of real-world programs. Our overarching vision is for there to exist techniques, and
implementations thereof, that can successfully verify data race freedom for arbitrary real-world C
programs.

Scope and Limitations. Our empirical study of real-world programs is limited to whole programs
containing less than 500 KB of POSIX-threaded C code; specifically, these programs rely on the
pthreads locking API for synchronization. Thus, we do not consider operating system components,
such as device drivers, or other embedded code that rely on more fine-grained concurrency with
interrupts and signal handling. Based on our previous experience with the analysis of device
drivers [88], we note that many of the idioms identified in this study are also present in device
drivers. However, the fine-grained and asynchronous nature of device driver code introduces
additional challenges that are worth investigating separately.

2 Background
In this section, we recall definitions from automated software verification and clarify its role in
the context of race detection. We also review existing efforts in benchmarking data race freedom
verification methods, underlining current limitations and drawing attention to challenges that may
hinder progress in the field.

2.1 Automated Software Verification for Data Races
In this paper, we focus on automated software verification, where the goal is to either prove that
a program satisfies a property or produce evidence that the property is violated. Given a race
verification task, an automated data race freedom verifier can respond with one of the following
verdicts: True, meaning the program is free from data races; False, meaning the program definitely
contains a data race; and Unknown, meaning the verifier can neither confirm nor deny the existence
of a data race. A verifier is sound if it never responds True for any program containing a data
race (or, equivalently, it has no false negatives). An unsound race detection tool may produce false
negatives—it declares some programs that have data races to be race-free.
When considering larger programs, a static analyzer can provide more granular information

than a single True/False/Unknown verdict, and produce a list of potentially racy accesses across the
program (since programs may contain more than one race). It is, in principle, possible to manually
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verify these as false positives and conclude that a program is guaranteed to be free of data races
(i.e., that version of the program is verified); however, the necessity of repeating this manual step
throughout a program’s evolution limits the usability of a tool, especially so if the number of
false positives is excessive. Expert users can fine-tune tools and annotate programs to prove the
desired property, as described by Delmas and Souyris [22]; however, even in safety-critical settings,
Nyberg et al. [57] identify automated verification as a key enabler and lack of tool expertise as a
key obstacle to the adoption of formal verification.
Our goal is to assess the progress toward achieving automated verifiers capable of proving the

absence of race conditions in real-world programs, and to point the way toward attaining this
goal. We focus on understanding whether Unknown verdicts stem from trivial reasons, and if not,
identifying some unsolved verification challenges causing the analyzer’s automated reasoning to
fail.

2.2 Benchmarks
One of the critical aspects influencing the progress of static data race analysis approaches lies in the
available benchmarks. For many research problems, standardized benchmarks are readily available,
such as DataRaceBench [50] for OpenMP. However, there are no standardized benchmark suites
tailored for evaluating verifiers that address data races or other concurrency safety properties of C
programs. Most of the recent benchmarking of concurrency analyses for C has been conducted
using various editions of the SV-COMP benchmark set [10, 18, 27, 30, 36]. This set originates from
the Competition on Software Verification, where fully automatic software verifiers for C and Java
programs are evaluated. In the SV-COMP benchmark set, each verification task comprises a program
and a specified property to assess, such as reachability, memory safety, overflows, termination, etc.

The SV-COMP data race category, introduced in SV-COMP 2022 [7], holds a variety of tasks for
verifying the data race freedom property. The NoDataRace category, a subset of ConcurrencySafety,
includes 783 verification tasks. According to SV-COMP 2023 results [8], 705 tasks have a True
verdict (no data race), and 78 have a False verdict (a data race exists). Out of the 705 tasks with
a True verdict, the tools in the competition altogether successfully verified data race freedom
for 678 tasks, leaving only 27 tasks where the tools either generated false positives, encountered
errors, or timed out. These results show that, over the SV-COMP NoDataRace benchmark set,
solved verification tasks significantly outweigh unsolved ones. Even though the competing tools
have solved many verification tasks, these tools have not yet been adopted for practical analysis
of real-world programs. Thus, the competition results cannot be used to imply that almost all
verification problems are solved—either in principle (on micro-benchmarks; as we show, important
idioms are still missing) or in practice (on real-world programs, on which most tools do not run
successfully). They do, however, demonstrate the range of problems that are within the reach of
existing tools.
Although some verification tasks in the SV-COMP benchmark set remain unsolved, there is

no basis to believe that the unsolved SV-COMP tasks fully capture the range of challenges faced
when analyzing real-world programs. Conversely, we also cannot be sure about how often the
idioms in these unsolved tasks occur in practice. Our claim is thus that existing benchmark sets
do not provide a sufficient foundation for advancing data race detection. Our main goal in this
work is to identify the obstacles hindering significant progress in automated data race verification
and to distill these obstacles into new tasks that we contribute to benchmarks. Our work thus
does the important work of enhancing the current benchmark sets to better reflect today’s critical
challenges, informed by a suite of real-world programs.
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2.3 Defining Data Races in C: An Automated Verifier’s Perspective
The C standard [44] gives an operational semantics for C programs and specifies the concurrent
behavior in terms of a happens-before relation between memory accesses. When formalizing C/C++
memory models [5], the program’s semantics (the set of possible executions) is defined by first
considering the set of pre-executions admitted by the operational semantics of the language. If
there is a pre-execution with a data race, the program’s behavior is undefined; otherwise, the
pre-executions are the executions of the program.

A pre-execution has a data race if it contains two accesses 𝑎 and 𝑏 to the same memory location
by different threads, at least one of the accesses is a write, at least one of the accesses is non-atomic,
and there is no happens-before relationship between them:

data_race(𝑎, 𝑏) ≡ mem(𝑎) =mem(𝑏) ∧ thread (𝑎) ≠ thread (𝑏)
∧ (is_write(𝑎) ∨ is_write(𝑏))
∧ (¬𝑖𝑠_𝑎𝑡𝑜𝑚𝑖𝑐 (𝑎) ∨ ¬𝑖𝑠_𝑎𝑡𝑜𝑚𝑖𝑐 (𝑏))
∧ ¬(𝑎 →hb 𝑏 ∨ 𝑏 →hb 𝑎).

As races constitute undefined behavior, the automated verifier’s aim is to prove their complete
absence; in particular, so-called “benign races” should still be reported. The Data-Race Freedom
(DRF) guarantee [14] states that if a program is data-race free under sequential consistency, then it
exhibits only sequentially consistent behavior even if executed on weaker memory models.
A pair of accesses do not race if they are separated either in space (i.e., the memory locations

are different: mem(𝑎) ≠ mem(𝑏)) or in time (i.e., the accesses are ordered: 𝑎 →hb 𝑏 ∨ 𝑏 →hb 𝑎).
Data race analysis is particularly challenging due to the interplay between the two dimensions of
separation—in space and time—and reasoning about the two dimensions at once adds even more
complexity to the analysis task. Thus, to devise scalable verification methods, it helps to focus on a
subset of access pairs that can be shown safe through simpler reasoning.
This is how lock-based synchronization has been dealt with: instead of tracking the happens-

before relations between the unlocks and locks of the same mutex, it suffices to track the set of
locks 𝑙𝑜𝑐𝑘𝑠 (𝑎) held during an access 𝑎. When verifying code using lock-based synchronization, one
can thus narrow the focus to accesses satisfying the condition

mem(𝑎) =mem(𝑏) =⇒ 𝑙𝑜𝑐𝑘𝑠 (𝑎) ∩ 𝑙𝑜𝑐𝑘𝑠 (𝑏) ≠ ∅,

meaning that if two accesses target the same memory location, they must share at least one common
lock. An insightful observation by Naik and Aiken [56] is that such conditional formulations can
simplify reasoning about heap-based locking idioms.

void foo(struct *s) {
pthread_mutex_lock(&s->lock);
s->data++;
pthread_mutex_unlock(&s->lock);

}

As a concrete example, consider the case of per-element lock-
ing [56, 62, 87], where a mutex within a struct protects a data field
in the same struct. The code snippet on the right shows how the
struct is accessed. For accesses 𝑎 and 𝑏 in an execution where two
different threads call function foo, let 𝑠𝑎 and 𝑠𝑏 denote the addresses of the structs passed to the
function. The above implication can then be proven as follows:

&(𝑠𝑎→data) = &(𝑠𝑏→data) =⇒ 𝑠𝑎 = 𝑠𝑏 =⇒ 𝑠𝑎→lock = 𝑠𝑏→lock.

To verify that no access within foo races with any other access of foo, we can show that each
access 𝑎 individually satisfies condition ∀𝑠 : mem(𝑎) = &(𝑠→data) =⇒ 𝑠→lock ∈ 𝑙𝑜𝑐𝑘𝑠 (𝑎), i.e.,
every access to the data field of a given 𝑠 is protected by the corresponding lock of 𝑠 . This enables
more scalable local reasoning that rules out races for a subset of access pairs. We next identify
non-lock-based idioms that can analogously serve as targets for novel verification approaches.
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3 Challenging Idioms for Sound Static Data Race Analysis
We first present our most interesting results—the coding idioms themselves. Thus, this section will
answer our first research question:

RQ 1. What are some concrete multithreaded implementation idioms preventing existing
verifiers from verifying data race freedom in real-world programs?

In Section 4, we explain the methodology we used to derive these idioms, and in Section 5, we
validate their relevance and significance.

As highlighted in the previous section, we can achieve more scalable verification by targeting a
subset of access pairs satisfying a simpler property that is sufficient but not necessary for showing
that the data race property is not true. With this, we aim to capture the essential reason for certain
accesses being safe. We thus call these the essential properties of access pairs. Often, the essential
property can be proven for a set of access pairs by reasoning about the individual accesses involved,
as in the example above where all accesses shared a common locking pattern.

We now present idioms that may appear to race but can be ruled out by a sufficiently sophisticated
analysis. We classify these idioms based on whether the accesses are separated in space or time,
characterize the essential properties they depend on, and suggest how these properties may be
established. More complex idioms require joint reasoning about space and time to exclude races,
and thus may rely on multiple essential properties. Where possible, we have factored such idioms
into sub-idioms that can be considered independently. One challenge for sound static data race
detection is that there are many ways to combine these idioms. We include some combinations in
our benchmark suite, and our distillation of the idioms makes it possible for researchers to combine
them in novel ways.
It is common for real-world applications to use an unbounded number of threads, as we show

in Section 5.2. Therefore, all examples below spawn a non-deterministic number n copies of the
thread foo. For space reasons, we omit all boilerplate and irrelevant details in the following figures.
However, the artifact supplementing this paper (Data-Availability Statement) provides the idioms
as micro-benchmarks and includes combinations of these idioms, as well as additional compositions
not directly observed in the real-world programs we studied. We have checked our suite manually
and with ThreadSanitizer [78, 79] to exclude potential undesired races. Our suite was peer-reviewed
and accepted into the SV-COMP benchmark suite by the community.1

3.1 Space-Separated Accesses
In the category of space-separated accesses, we distinguish two particularly prominent subcate-
gories: per-thread data and thread-local storage. Before conducting this analysis, we conjectured
that the main obstacles were related to heap-allocated data, such as manipulating linked lists.
However, we discovered that the major subcategory of not-yet-verifiable space-separated accesses
turns out to be per-thread data—threads split work on a shared data structure, but each thread only
accesses its own portion of the structure. Thus, for this family of idioms, the essential property is
that accesses to the same memory location are only performed by the same thread:

mem(𝑎) =mem(𝑏) =⇒ thread (𝑎) = thread (𝑏).
This in turn can be proven by establishing a one-to-one relationship between the access locations
and the identifiers of the accessing threads. In Section 6.2, we propose paths that future tools may
use to establish such one-to-one relationships. In any case, there are variations on how the relation
between threads and their data are maintained in practice, as we discuss below.
1https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1461

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1461


Sound Static Data Race Verification for C: Is the Race Lost? 7

1 int main() { // ...
2 for (int i = 0; i < n; i++) {
3 struct bar *b = malloc(sizeof(struct bar));
4 pthread_create(&tids[i], NULL, &foo, b);
5 }
6 // ...
7 }

(a) per-thread-struct.

1 int main() { // ...
2 int *bs = malloc(n * sizeof(int));
3 for (int i = 0; i < n; i++)
4 pthread_create(&tids[i], NULL, &foo, &bs[i]);
5 // ...
6 }

(b) per-thread-array-ptr.

1 int *bs;
2
3 int main() { // ...
4 bs = malloc(n * sizeof(int));
5 for (int i = 0; i < n; i++)
6 pthread_create(&tids[i], NULL, &foo, (void*)i);
7 // ...
8 }

(c) per-thread-array-index.

1 int main() { // ...
2 int *bs = malloc(n * sizeof(int));
3 for (int i = 0; i < n; i++) {
4 bs[i] = rand();
5 pthread_create(&tids[i], NULL, &foo, &bs[i]);
6 }
7 // ...
8 }

(d) per-thread-array-init.

1 int *bs;
2 int next_j = 0;
3 pthread_mutex_t next_j_mutex;
4
5 void *foo(void *arg) {
6 pthread_mutex_lock(&next_j_mutex);
7 int j = next_j++;
8 pthread_mutex_unlock(&next_j_mutex);
9 // use bs[j] ...
10 }

12 int main() { // ...
13 bs = malloc(n * sizeof(int));
14 for (int i = 0; i < n; i++)
15 pthread_create(&tids[i], NULL, &foo, NULL);
16 // ...
17 }

(e) per-thread-index-inc.

Fig. 1. Paradigmatic examples of per-thread data idioms involving space-separation.

Per-thread data. Figure 1a illustrates a struct-based idiom where each spawned thread is provided
a freshly allocated struct instance b via its thread argument. As long as these structs are not shared
between threads, each thread can safely access its own instance. In Figure 1b, the main thread
allocates an array of integers and passes distinct element pointers to all created threads. Figure 1c
shows a variation where the array is global, and each thread is given an index into the array. Each
thread is supposed to only access the array at its own index, though nothing (apart from developers
wielding verification tools) prevents it from accessing other indices and thus causing races.

Often, the struct-based and array-based idioms are used together via an array of structs. Such
idioms are regularly combined with thread joining: after all the child threads have completed
their work, the parent thread can safely read results from the array. Combining with separation in
time, the idiom shown in Figure 1d involves the main thread initializing the array at index i, then
spawning the corresponding thread and passing ownership to that thread.
In more complex cases, the correspondence between threads and array indices is not fixed.

Figure 1e shows each thread picking a unique index j for accessing the global array. Due to non-
deterministic scheduling, the thread created in the 𝑖-th iteration of the loop may pick an index 𝑗 ≠ 𝑖 .
A variation of this idiom (not shown) uses a bitmask to record which indices have already been
picked. Such idioms must ensure that different threads cannot pick the same index at the same
time. In the bitmask version, threads may also unpick their index once they are done, allowing
another thread to pick the same index but at a different time.

We now more rigorously characterize the idioms shown in Figure 1 by describing their syntactic
and semantic properties, which highlight their defining features and similarities. In the specifications
that follow, the parenthesized numbers (e.g. (1)) refer to the relevant syntactic properties, which
are later used to assess how frequently the idioms occur in the benchmark set. The emphasized text
highlights the syntactic differences among the idioms within the group.
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Per-thread-struct
(1a)

Syntactic: Threads are created within a looping construct (1), and a freshly
allocated struct is given to created threads (2).
Semantic: The essential property holds as mem(𝑎) is freshly allocated for
thread (𝑎).

Per-thread-array-
ptr (1b)

Syntactic: Parent thread allocates a local array of data (bs), creates threads
within a looping construct (1), and gives an indexed address from the array to
each created thread (3).
Semantic: The essential property holds due to thread 𝑡𝑖 = thread (𝑎), created
in the 𝑖-th iteration of the loop, having exclusive access to mem(𝑎) = &bs[𝑖].

Per-thread-array-
index (1c)

Syntactic: Parent thread performs the following steps: it allocates a global
array of data (bs), creates threads in a loop (1), and assigns each thread a
unique index to access the array bs (3).
Semantic: As with 1b: thread 𝑡𝑖 has exclusive access to mem(𝑎) = &bs[𝑖].
However, the way thread (𝑎) is mapped to mem(𝑎) differs in this case.

Per-thread-array-
init (1d)

Syntactic: The parent thread allocates an array of data bs, and, within a
looping construct (1), initializes the array at index 𝑖 with datum bs[𝑖] before
giving the indexed address from the array to the thread created at the 𝑖-th
iteration (3).
Semantic: Here, there are two essential properties. The first essential prop-
erty is that accesses by the spawned threads are separated in space: similar
to both 1b and 1c, the thread 𝑡𝑖 has exclusive access to mem(𝑎) = &bs[𝑖].
However, before transferring ownership of bs[𝑖] to thread 𝑡𝑖 , the main thread
performs a write 𝑏 to bs[𝑖]. Thus, secondly, accesses are separated in time:
the main thread’s write 𝑏 to bs[𝑖] occurs before thread 𝑡𝑖 reads bs[𝑖] (access
𝑎), i.e., the second essential property is 𝑏 →hb 𝑎 due to the synchronizing
effect of thread creation.

Per-thread-index-
inc (1e)

Syntactic: Threads are created within a looping construct (1). There is a glob-
ally accessible array of data (bs). Global thread counter next_j is maintained
by each spawned thread 𝑖 to obtain its unique ID 𝑗 indicating its owned index
of bs. Thus, a relationship is established between threads and array indices,
ensuring disjoint accesses.
Semantic: The essential property is ensured by each thread (𝑎) owning a
unique mem(𝑎) = &bs[ 𝑗] determined by the lock-protected counter next_j.

1 __thread int b = 0;
2
3 void *foo(void *arg) {
4 assert(b == 0);
5 b = 1;
6 assert(b == 1);
7 // ...
8 }

(a) thread-local-value.

1 pthread_key_t key; // initialized in main
2
3 void *foo(void *arg) {
4 int x, y;
5 pthread_setspecific(key, &x);
6 assert(pthread_getspecific(key) == &x);
7 pthread_setspecific(key, &y);
8 assert(pthread_getspecific(key) == &y);
9 // ...
10 }

(b) thread-local-pthread-value.

Fig. 2. Paradigmatic examples of thread-locality idioms involving space-separation.
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Thread-local. Various forms of thread-local storage (TLS) exist that ensure space separation
by construction. Figure 2a shows variable b declared in the global scope but using the __thread
specifier provided by GCC. This specifier makes the variable thread-local instead of global, allowing
each thread to access its own copy safely. For this reason, analyzers should not report races on b.
C11 standardizes a similar specifier _Thread_local [45]. Although declared in the global scope,
it may be necessary to analyze the values of b in a thread-local manner to verify the assertions.
Moreover, pointers (either to local variables or dynamically allocated memory) assigned to such
pointer-typed thread-local variables should not be considered to have escaped the thread.

Thread-local-value
(2a)

Syntactic: A global variable is declared with the __thread specifier (4).
Semantic: Ensured by construction.

TLS is also possible via the pthread library, as shown in Figure 2b, but only with pointer values.
This idiom involves additional indirection whereby the thread-local variable is identified using
an opaque pthread key. In one case, we observed such TLS being used to store a setjmp/longjmp
buffer for thread-local exception handling.

Thread-local-
pthread-value (2b)

Syntactic: A global variable is declared with the pthread_key_t type (5).
Semantic: Ensured by construction.

3.2 Time-Separated Accesses
Because much work on static race detection has traditionally focused on lock-based synchronization
(see Section 7), most race detectors handle locking fairly well—Section G (indirectly) shows that
existing race detectors do not fail on straightforward locking. However, time separation does not
require the use of locking—in principle, it only requires that accesses may not happen in parallel.
We observed in our benchmarks that it is important to establish time separation for accesses that are
not protected by locks but are otherwise separated by time (e.g., access 𝑎 does not race with access
𝑏 because 𝑎 →hb 𝑏). The most common obstacle here is proving that threads have terminated.

1 int main() { // ...
2 for (int i = 0; i < n; i++)
3 pthread_create(&tids[i], NULL, &foo, NULL);
4 for (int i = 0; i < n; i++)
5 pthread_join(tids[i], NULL);
6 // ...
7 }

(a) thread-join-array-dynamic.

1 int alive = 0;
2 pthread_mutex_t alive_mutex;
3
4 void *foo(void *arg) { // ...
5 pthread_mutex_lock(&alive_mutex);
6 alive--;
7 pthread_mutex_unlock(&alive_mutex);
8 return NULL;
9 }

11 int main() { // ...
12 for (int i = 0; i < n; i++) {
13 pthread_mutex_lock(&alive_mutex);
14 alive++;
15 pthread_mutex_unlock(&alive_mutex);
16 pthread_t tid;
17 pthread_create(&tid, NULL, &foo, NULL);
18 }
19 // wait for all threads to stop
20 pthread_mutex_lock(&alive_mutex);
21 while (alive)
22 // unlock and relock alive_mutex
23 pthread_mutex_unlock(&alive_mutex);
24 // ...
25 }

(b) thread-join-counter-outer.

Fig. 3. Paradigmatic examples of thread joining idioms involving time-separation.
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Thread joining. As mentioned above, array-based per-thread data is used to return results from
threads. For the main thread to safely access the results, it must ensure that all the involved threads
have been joined. The most common idiom is to linearly join all created threads by their IDs, as
shown in Figure 3a. However, the correctness of this obvious technique relies on many factors, e.g.,
the tids array must not be modified between the creating and joining loops, and the joining loop
must exhaustively iterate over all the elements in the tids array.

Thread-join-array-
dynamic (3a)

Syntactic: Threads are created within a looping construct (1). Themain thread
joins threads with array indexing (6).
Semantic: The essential property for each access 𝑎 by threads created in the 𝑖-
th iteration of the loop and accesses𝑏 by themain thread is the happens-before
relation 𝑎 →hb 𝑏 induced by thread joins.

A different idiom does not explicitly join threads but maintains a count of threads alive, as shown
in Figure 3b. Once the count becomes 0, the main thread can safely access the results of the threads.
This idiom heavily relies on the counting implementation being correct. A variation of this idiom
(not shown) increases alive at the beginning of foo instead of the main thread. However, this
requires an additional safeguard to prevent the main thread from continuing before any of the
created threads have been scheduled to even increment the counter.

Thread-join-
counter-outer (3b)

Syntactic: Threads are created within a looping construct (1). The thread
creator has control dependency on a shared integer (7).
Semantic: The essential property is the same as for 3a, but the happens-before
relation is enforced by the shared integer.

In one case (also not shown), we observed a hierarchical thread-joining scheme in the spirit
of binomial heaps. Thread 0 joins threads 1, 2, 4, 8, 16, . . . ; thread 2 joins thread 3; thread 4 joins
threads 5 and 6; thread 6 joins thread 7; etc. Because the scheme was implemented using bitwise
operations, it is particularly challenging to ensure no thread is forgotten. Such hierarchical schemes
are common in parallel computation frameworks.

1 int b;
2
3 void *foo(void *arg) { // ...
4 __sync_fetch_and_add(&b, 1);
5 // ...
6 }

(a) atomic-gcc.

1 int b = 0;
2 sem_t b_sem; // initialized with value 1
3
4 void *foo(void *arg) { // ...
5 sem_wait(&b_sem);
6 b = rand();
7 sem_post(&b_sem);
8 // ...
9 }

(b) semaphore-posix.

1 int b = 0;
2 bool ready = false;
3 pthread_mutex_t ready_mutex;
4
5 void *foo(void *arg) {
6 pthread_mutex_lock(&ready_mutex);
7 while (!ready)
8 // unlock and relock ready_mutex
9 pthread_mutex_unlock(&ready_mutex);
10 int x = b;
11 // ...
12 }

14 int main() { // ...
15 for (int i = 0; i < n; i++)
16 pthread_create(&tids[i], NULL, &foo, NULL);
17
18 b = rand();
19 pthread_mutex_lock(&ready_mutex);
20 ready = true;
21 pthread_mutex_unlock(&ready_mutex);
22 // ...
23 }

(c) value-barrier.

Fig. 4. Paradigmatic examples of other idioms involving time-separation.
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Other. A lock-free way to avoid data races is to use atomic variables/operations. Figure 4a shows
the atomic increment of b using a GCC-provided function. Analyzers must handle such functions
to avoid reporting the races that the functions prevent. The C11 standard provides similar atomic
variables and functions [45], but its versions also allow weaker memory semantics. While dynamic
tools have progressed to detecting races in programs with weak atomics [51], static verifiers still
predominantly assume sequential consistency, relying on the DRF property which guarantees that
(absent weak atomics) it suffices to search for races only in sequentially consistent executions [14].

Atomic-gcc (4a)
Syntactic: Use of the __sync or __atomic prefixed operations (8).
Semantic: The built-in atomics are sequentially consistent, but C11 atomics
may require supporting weak memory semantics.

Besides mutexes, mutual exclusion can also be ensured using semaphores. In Figure 4b, a POSIX
semaphore with an initial value of 1 is used as a mutex. In principle, semaphores with values greater
than 1 could be used for more complex behavior. However, we did not observe any in our study.

Semaphore-posix
(4b)

Syntactic: Use of POSIX semaphores (9).
Semantic: When the semaphore is binary, we can define the set of held
semaphores 𝑙𝑜𝑐𝑘𝑠 (𝑎) and reduce this to lock-based methods to ensure
mem(𝑎) =mem(𝑏) =⇒ 𝑙𝑜𝑐𝑘𝑠 (𝑎) ∩ 𝑙𝑜𝑐𝑘𝑠 (𝑏) ≠ ∅.

Figure 4c illustrates a program using value-based synchronization to avoid data races. Writes
to b in the main thread precede it setting the ready flag to true (under sequential consistency, at
least). The created threads wait for ready to become true before reading from b. This protocol
establishes a happens-before relation between the write to b and its reads. Instead of busy waiting,
real-world programs would use condition variables [83] to broadcast the readiness signal. However,
due to spurious wakeups, programs cannot merely rely on the condition variable but must also
evaluate a value-based condition. More involved synchronization protocols may encode some state
machine using multiple flags.

Value-barrier (4c)

Syntactic: Thread creator has control dependency on a shared int (7), use of
signaling to conditional variables (10).
Semantic: The essential property is symmetric to 3b; here, we need 𝑏 →hb 𝑎

between accesses 𝑏 of the main thread and the accesses 𝑎 by threads created
in the 𝑖-th iteration. This is enforced by the shared integer ready.

Although the idioms we captured represent a foundational subset of synchronization scenarios,
they do not fully represent challenges from all real-world multithreaded C programs, particularly
those that use fine-grained concurrency or specialized synchronization patterns for signaling. In our
selected benchmarks, we did not observe such patterns, which are likely more prevalent in specific
domains such as operating system kernels and certain high-performance POSIX applications. With
a sufficiently large set of general-purpose POSIX programs, we would eventually expect to find
instances where synchronization techniques from these specialized domains have migrated to
general-purpose POSIX programs. This would contribute new idioms under the Other category.
We claim that the idioms that we have already identified, on our significant C corpus, form a good
starting point for research today, but acknowledge that the set is not necessarily exhaustive.

4 Methodology
One of our goals was to identify multithreaded implementation idioms that prevent existing
verifiers from confirming data race freedom in real-world programs. In the previous section (3), we
outlined these challenges. In this section, we detail our experimental approach to achieving this
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(Section 4.3)
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Fig. 5. Overview of our research design. We extract idioms from a Subset of the Concrat suite, then validate
that the extracted idioms represent open problems by evaluating all tools on our micro-benchmarks, and we
validate the relevance of the problems by counting the occurrences of the idioms in the entire Concrat suite.

goal, including the selection of automated race freedom verifiers, the choice of real-world programs,
and the process of evaluating the results of the selected tools on these programs. Figure 5 illustrates
how the data objects described in this section are used throughout the study, and which processes
contribute to each part of the study, altogether providing an overview of our research design.

4.1 Tools Under Evaluation
Recall that in this study we are interested in sound static data race freedom verification. Thus, the
automated verification tools must incorporate methods for verifying data race freedom, and be based
on static analysis techniques which are conceptually sound, while recognizing that implementation
flaws may introduce unsoundness.

First, we take under evaluation the tools from SV-COMP that participated in verifying tasks from
the NoDataRace category in SV-COMP 2023 and achieved a positive score. A positive score in the
scoring system of SV-COMP [8] indicates that the tool indeed successfully verified programs and, at
the same time, did not make false claims about faulty programs being correct (i.e. they were sound),
with few exceptions. The selected tools from SV-COMP are listed in the upper portion of Table 1,
along with their results in the NoDataRace category of SV-COMP 2023. Most of these tools are
actively being developed, and their detailed engineering statistics can be found in Section A. From
the Ultimate tool family (Automizer, Taipan, GemCutter) we only take the best one (UAutomizer) as
the results across the entire family are similar. We also assessed the tools from SV-COMP 2024 [9],
with the results detailed in Section 6.1. The findings and conclusions of our present study are
unchanged from SV-COMP 2023 to SV-COMP 2024.

We also experimented with automated verification tools from the literature that do not participate
in SV-COMP (bottom part of Table 1). We excluded the Relay analyzer because we could not build
a binary that would run reliably—the latest edits to the code date back to 2010. Even though we
did manage to run Relay (unreliably), our experience did not give us confidence that its results
will be independently reproducible across different machines. We excluded Coverity Scan due to
license restrictions that prevent publishing its evaluation results. Nonetheless, our experiments
indicated that including it would not have changed our conclusions: it does not show better results
on our micro-benchmarks than the tools that we report on. Coverity Scan combines classical data
flow analysis techniques with heuristics and statistical methods [26], and does not claim to be
sound. Thus, we believe it is safe to reveal that, in our internal testing on the micro-benchmarks, it
reported false negatives.
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Table 1. List of automated verification tools that support data race freedom verification. Tools selected from
SV-COMP 2023 are presented with their results in the NoDataRace category of SV-COMP 2023. Correctly
and incorrectly solved verification task counts are given by expected verdict (True or False).

Correct IncorrectVerification
tool Ref. Approach True False1 True False Score License2

Goblint [69, 88] Abstract interpretation 652 0 (0) 0 0 1,304 ✓

Deagle [36, 37] Satisfiability modulo theory (SMT) 588 51 (60) 0 1 1,211 ✓

Dartagnan [32, 60] Bounded model checking (BMC) 464 0 (62) 2 6 768 ✓

UAutomizer [38, 39] 378 0 (59) 0 0 756 ✓

UGemCutter [28, 48] 366 0 (67) 0 0 732 ✓

UTaipan [24, 34]
Automata based model checking

314 0 (62) 0 1 612 ✓

CPAchecker [11, 21] SMT-based model checking 200 0 (29) 0 0 400 ✓

Locksmith [62] Constraint-based data-flow analysis 129 0 (0) 1 0 226 ✓

Theta [1, 84] Abstraction-based model checking 98 9 (9) 0 0 205 ✓

Relay [90] Symbolic interprocedural data-flow analysis Does not participate in SV-COMP ✓

Coverity Scan [25, 26] Data-flow analysis and statistical deviance ✗

1 In parentheses: number of unconfirmed (no witness provided) results. SV-COMP 2023 erroneously demanded witnesses
for data races even though no witness format had been adopted by the community for data races: https://gitlab.com/
sosy-lab/sv-comp/bench-defs/-/merge_requests/398.

2 Whether licence permits publishing evaluation results (✓ — permits, ✗ — does not permit).

4.2 Benchmark Selection
To find out why tools struggle with verifying real-world programs, we must identify a sufficiently
large and interesting set of benchmarks. Note that a benchmark set can yield valuable results even
without being representative. One large and interesting benchmark set found in recent literature
is the Concrat benchmark set. Hong and Ryu [43] assembled the original suite to evaluate their
Concrat tool, which aids in automated C to Rust translation of multithreaded programs (thus
aligning well with our study of data race freedom verification tools). This suite consists of 46 C
projects with public GitHub repositories satisfying the following criteria [43]:

• more than 1,000 stars,
• not study material,
• using the pthread lock API at least once,

• C code less than 500,000 bytes, and
• translatable with C2Rust.

The last condition resulted in the exclusion of two projects due to the use of C11 atomics because
C2Rust supports only C99-compliant code. Based on early experiments with various tools, we
observed and fixed syntactic issues in 15 of the benchmarks, presenting further details in Section B.
We make our set of the fixed Concrat benchmarks available in the artifact (see Section 8).

A key difference between the SV-COMP suite and the Concrat suite is that SV-COMP programs
must be complete, while Concrat programs can be incomplete. Tools targeting SV-COMP relied on
the completeness assumption. To evaluate the tools on the Concrat suite, we were therefore forced
to additionally exclude 28 programs from the fixed Concrat suite for the following reasons:

• 5 programs are incomplete because they contain no main function.
• 5 programs are single-threaded because they never call pthread_create.
• 1 program is incomplete because it uses significant external assembly code.
• 17 programs are incomplete because they have dependencies on libraries, such as OpenSSL,
curl, and Lua, which are not part of the Concrat benchmark suite.
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The excluded programs, along with the reasons for their exclusion, are listed in Section C, and
the descriptions of the included programs in Section D. We use the remaining 18 programs for
evaluation and call them the Subset. This subset is skewed towards programs that are not dependent
on large external libraries. However, if our subset is a biased sample of the larger suite, the bias
is in favor of simpler programs. We point out that if a state-of-the-art race freedom verifier can
handle arbitrary real-world programs, it should also be able to handle these programs, or at the
very least the concurrency idioms from them.

4.3 Mapping the Current State: Tools on Real-World Programs
It is reasonable to assume that state-of-the-art automated verification tools for concurrent C
programs cannot yet verify real-world programs, as these tools compete on verifying the small,
clean examples from SV-COMP; success on larger, messier programs would be unexpected. To
validate the assumption, we run the selected seven verification tools on the Concrat benchmark
Subset and evaluate how they perform on real-world programs out of the box. This approach aligns
with our goal of assessing the tools’ ability to operate automatically and identifying where they
encounter difficulties without manual intervention. It is important to note that our overall objective
was not to assess the performance of these tools on real-world programs but to investigate the
obstacles to fully automated data race verification.

There are scenarios where users take a more active role by adding annotations, creating mocks
or manually tuning tool configurations to better suit the program being analyzed to ensure the
analysis succeeds. However, as our primary focus is on automation, we refrained from assisting the
tools with practices that rely on manual intervention. The SV-COMP rules require tool developers
to provide configurations optimized for general applicability with respect to the property being
analyzed.

Thus, we use the tools with their SV-COMP 2023 configurations under increased resource limits
compared to the competition’s resource limits. Each run is limited to 2 hours of CPU time, 24 GB of
RAM, and 8 CPU cores instead of 15 minutes of CPU time, 15 GB of RAM, and 8 CPU cores as in
SV-COMP. To provide a comparison point, the Concrat benchmark Subset contains 18 programs
with a mean size of 6,664 LoC, while the SV-COMP NoDataRace set contains 783 programs with a
mean size of 180 LoC.

Table 2 presents the results of evaluating the selected SV-COMP tools on the Concrat benchmark
Subset. Five tools only produce errors or exhaust resources on the suite of real-world programs:

(1) Deagle exhausts given resources without completing the analysis for half of the programs.
On the other half, it mainly lacks support for some standard library functions.

(2) Dartagnan primarily fails due to missing standard library function support, e.g., fprintf
and time2. In other cases, it does not support calling pthread_create in a loop.

(3) UAutomizer fails for various reasons, most often due to missing function support, e.g., sin
and pthread_rwlock_init. In many instances, its front-end fails, either due to parsing or
unsupported type casts.

(4) CPAchecker does not support various thread creation and thread joining patterns, as well as
condition variables. Notably, it lacks the support for the memset function from the C standard
library.

(5) Theta fails to parse all of our real-world programs, always due to __attribute__ from
standard library headers.

2Section F presents complete details on which functions are unsupported for Dartagnan, UAtomizer, and CPAchecker.
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Table 2. Experimental results of the selected tools with SV-COMP 2023 settings on the included Subset of
the Concrat benchmark set with 2 hours of CPU time, 24 GB of RAM, and 8 CPU cores. The second column
indicates program size in lines of code (LoC).

Benchmark LoC Goblint Deagle Dartagnan UAutomizer CPAchecker Locksmith Theta

axel* 5,848 Timeout LibFun LibFun Parsing LibFun Crash Parsing
C-Thread-Pool* 710 Unknown LibFun LibFun Unsupp Unsupp Unknown Parsing
dnspod-sr 9,259 Timeout LibFun Unsupp Unsupp LibFun Unknown Parsing
EasyLogger* 2,011 Unknown LibFun LibFun LibFun Unsupp Timeout Parsing
fzy 2,621 Unknown Timeout LibFun Timeout Unsupp Unknown Parsing
klib* 716 Unknown Timeout LibFun Unsupp Unsupp Unknown Parsing
level-ip 5,414 Timeout LibFun Unsupp LibFun LibFun Crash Parsing
libfaketime 521 True LibFun LibFun Crash Unsupp True Parsing
lmdb 10,827 Crash LibFun LibFun LibFun LibFun Timeout Parsing
Mirai-Source-Code 1,839 Crash Timeout LibFun Timeout Unsupp Unknown Parsing
nnn 12,091 Unknown OOM LibFun LibFun Timeout Unknown Parsing
phpspy 19,390 Unknown LibFun Unsupp Parsing Unsupp Timeout Parsing
pigz 9,118 OOM LibFun Unsupp LibFun Timeout Timeout Parsing
ProcDump-for-Linux* 4,152 Unknown Timeout LibFun Parsing Unsupp Unknown Parsing
Remotery* 7,212 Crash Timeout LibFun LibFun Unsupp Timeout Parsing
streem* 20,169 Crash Timeout Timeout LibFun LibFun Timeout Parsing
the_silver_searcher* 7,242 Timeout Parsing Crash Unsupp LibFun Unknown Parsing
uthash 817 True Timeout LibFun LibFun Unsupp Unknown Parsing

True — Tool claims data race freedom LibFun — Unsupported library function
Unknown — Neither claimed verified nor refuted Unsupp — Unsupported syntax
OOM — Out of memory Parsing — Parsing failed

Timeout — Not finished within time limit Crash — Tool crashed
* ThreadSanitizer found a data race.

The remaining two tools give some results besides just errors:

(1) Locksmith finishes its analysis for ten programs, including verifying one to be race-free
and producing data race warnings (i.e., results in Unknown) for the others. It crashes twice,
reporting a “typing bug”, and runs out of time in six cases.

(2) Goblint verifies two programs and finishes with data race warnings for seven. It crashes
while analyzing four programs and runs out of time or resources on another five.

Notably, none of the static tools, including those employing under-approximating methods,
reported a counter-example—specifically, a concrete race condition—in these real-world programs.
We also ran ThreadSanitizer, further detailed in Section E, to dynamically assess whether the
programs exhibit observable data races. ThreadSanitizer reported data races for 7 of the programs.
Summarizing the tool results on real-world programs, one barrier that we found for 6 of the 7

tools was scalability. While this could be overcome to some extent by adjusting precision through
configurations, such changes can only stave off resource exhaustion and resolve a subset of Un-
known verdicts. Other cases require fixes and improvements to the tools themselves, as described
above. Given that we have observed that these tools struggle with programs that are already close
but not entirely compliant with the tools’ requirements, we conclude that they are not yet capable of
analyzing real-world programs. While the non-core issues that we have outlined here (e.g., missing
function support) may be fixed by the tool developers by applying more polish and elbow grease,
our primary research interest is in the conceptual limitations of their verification approaches.
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4.4 Identifying and extracting the challenging idioms
The main contribution of this paper is the identification and crystallization of idioms (Section 3)
that are yet unhandled by existing automated data race verifiers. This section presents our approach
to extracting the idioms, and details some additional checks that we performed for completeness.

Unsolved Data Race Verification Challenges from SV-COMP. We first analyzed (for completeness)
the failures of the verifiers on the SV-COMP suite to gain a comprehensive understanding of the
currently known idioms that the tools struggle to verify. The details of this analysis can be found
in Section G. We considered the 11 tasks with a True verdict that all of the automated race freedom
verifiers from Section 4.1 failed to prove correct at SV-COMP. However, these 11 unsolved tasks
can be seen to be somewhat arbitrary (since SV-COMP comes from community contributions), and
insufficient as a guide for advancing data race freedom verification. We thus systematically look
for more unsolved race detection tasks in real-world programs. In doing so, we used the idioms
from SV-COMP’s existing unsolved tasks as a reference to ensure that the idioms we identified
from real-world programs were new and previously undocumented.

Unsolved Data Race Verification Challenges in the Concrat Suite. To collect unsolved data race
verification challenges from the Concrat Suite, we first used a verification tool on the Concrat
Subset programs to generate warnings. These warnings served as a guide to identifying the coding
idioms causing the verification to fail. This process involved inspecting the analysis warnings and
reasoning backwards to their origins, where the most difficult part is understanding the analyzed
programs themselves. To identify the idioms, we relied on our expert knowledge, concentrating on
those idioms that pose the greatest barriers to verification. For instance, if thread joining idioms
are not properly handled, many of the reported races on accesses following the join will be false
alarms. Once the idiomwas identified, we extracted a kernel that captured the verification challenge,
validated that it is indeed unsolved by running the verification tools, and finally, created variations
of these kernels to test the soundness of the verifiers.

For our manual analysis, we chose to use Goblint’s warnings for several reasons. Among the tools
evaluated, only Goblint and Locksmith were capable of processing some Concrat programs right
out of the box. In contrast, other tools encountered only timeouts, unsupported features, or crashes,
making them unfit for supporting the process of extracting new idioms. Unlike most verification
tools at SV-COMP, Goblint performs thread-modular abstract interpretation [54, 73, 74], producing
an exhaustive list of warnings with all races it failed to disprove. This makes it well-suited for
aiding in identifying challenging idioms—even in programs with unknown ground truth—because
it provides a comprehensive view of how automated reasoning fails. Our investigation is not
dependent on the ground truth—whether a given access pair actually is a race—rather, we focus on
features in the underlying program that causes such loss of precision to produce bad abstract states
(and thus Unknown verdicts) for a significant portion of access pairs. Additionally, as Goblint is a
tool we develop, it allowed us to use our expertise during analysis.
To begin with analyzing the warnings, two Concrat programs were verified by Goblint, so

no further work was required. Of the remaining 16 that were not verified, the warnings from
the 7 programs where Goblint returned an Unknown verdict were directly used as a guide to
identify idioms. For further investigation of the 8 benchmarks on which Goblint did not result in
warnings (i.e., reached resource limits or crashed), we used its provided configuration for analyzing
larger programs instead of its SV-COMP configuration. The goal of using this configuration was
not to improve verification chances but to avoid timeouts in favor of obtaining more warnings:
it deactivates many resource-intensive analyses, trading precision for efficiency. This efficiency
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Table 3. Coding idioms that resulted in false positive warnings by Goblint on the Concrat suite.

Benchmark Identified causes for failure to verify

axel — (not inspected, Goblint crashed)
C-Thread-Pool Thread joining with counter incremented within the thread, per-thread struct
dnspod-sr Thread joining (array), per-thread struct (in array), atomics
EasyLogger Semaphore
fzy Thread joining with binomial heap, per-thread struct (in array), thread-local heap memory
klib Thread joining (array), per-thread struct (in array), atomics
level-ip Thread joining (array), per-thread struct, thread-local heap memory
libfaketime — (verified)
lmdb Per-thread struct, thread-local storage (pthread)
Mirai-Source-Code — (none identified)
nnn Thread joining with counter incremented outside the thread, per-thread index (bitmask)
phpspy Thread joining (array), per-thread array (by index), atomics (GCC)
pigz Per-thread struct, thread-local variable (pthread)
ProcDump-for-Linux Per-thread index (simple), per-thread struct (in array), semaphore
Remotery Per-thread struct, thread-local storage (pthread), atomics (GCC)
streem — (not inspected, Goblint timed out)
the_silver_searcher Per-thread array pointers, thread-local variable (GCC)
uthash — (verified)

allowed Goblint to generate warnings for all benchmarks save one, where it still timed out. To
summarize Goblint results with the larger programs configuration on the 18 programs:

2 True, 13 Unknown (causes identified), 1 Unknown (unclear cause), 2 Crash/Timeout.
Table 3 summarizes the idioms identified to cause false positives in the 13 programs.

5 Validation
We validate the extracted idioms in two ways to confirm their significance and relevance. First, we
evaluate all of our selected tools on the extracted micro-benchmarks—code snippets that directly
correspond to the extracted idioms—to confirm that these idioms represent open problems in
automated data race verification. Second, we examine the prevalence of these idioms by quantifying
their occurrences across the entire Concrat benchmark suite.

5.1 Evaluation of the Race Freedom Verifiers on the Extracted Examples
After identifying the coding idioms that contributed to the false alarms in the real-world benchmarks,
we wanted to ensure that the verification of the found idioms is indeed not solved by the tools.
Thus, we extracted the idioms into micro-benchmarks to evaluate the selected tools on these idioms
in isolation. Where possible, we also created racy variations of the race-free examples, which we
use to determine the soundness of verification. We did not create such variations for thread-local
variables, because making them non-thread-local would simply turn them into global variables,
which would not pose a challenge for the tools.

RQ 2. How well do existing verifiers handle each of these idioms when extracted into isolated
micro-kernels?

Table 4 shows the results of running the SV-COMP analyzers on the extracted micro-benchmarks.
If a tool verifies a race-free benchmark while accurately distinguishing between correct and
incorrect versions, it has soundly verified the example, and “Correct” will be indicated in the table.
“Inconclusive” indicates that the tool cannot differentiate between the race-free and racy examples,
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Table 4. Experimental combined results of the selected tools on race-free examples and their racy variations.

Extracted example Fig. Goblint Deagle Dartagnan UAutomizer CPAchecker Locksmith Theta

per-thread-struct 1a Inconcl Unsound Unsupp Timeout Unsupp Inconcl Parsing
per-thread-array-ptr 1b Inconcl Unsound Unsupp Timeout Unsupp Inconcl Parsing
per-thread-array-index 1c Inconcl Inconcl Unsupp Timeout Unsupp Inconcl Parsing
per-thread-array-init 1d Unsound Inconcl Unsupp Timeout Unsupp Inconcl Parsing
per-thread-struct-in-array - Inconcl Unsound Unsupp Timeout Unsupp Inconcl Parsing
per-thread-index-inc 1e Inconcl Inconcl Unsupp Timeout Unsupp Inconcl Parsing
per-thread-index-bitmask - Inconcl Timeout Unsupp Timeout Unsupp Inconcl Parsing
thread-local-value 2a Inconcl Correct Unsupp Inconcl Unsupp Inconcl Parsing
thread-local-value-cond* - Inconcl Correct Unsupp Inconcl Unsupp Inconcl Parsing
thread-local-value-dynamic* - Inconcl Correct Unsupp Inconcl Unsupp Inconcl Parsing
thread-local-pthread-value* 2b Correct LibFun Unsupp LibFun Unsupp Correct Parsing
thread-local-pthread-value-cond* - Inconcl LibFun Unsupp LibFun Unsupp Inconcl Parsing
thread-join-array-dynamic 3a Inconcl Unsound Unsupp Timeout Unsupp Inconcl Parsing
thread-join-array-const - Unsound Unsound Unsupp Correct Unsupp Inconcl Parsing
thread-join-binomial - Inconcl Unsound Unsupp OOM Unsupp Inconcl Parsing
thread-join-counter-outer 3b Inconcl Correct Unsupp OOM Unsupp Inconcl Parsing
thread-join-counter-inner - Inconcl Timeout Unsupp Timeout Unsupp Inconcl Parsing
atomic-gcc* 4a Inconcl Correct Unsupp OOM Unsupp Correct Parsing
semaphore-posix 4b Inconcl Inconcl Unsupp Inconcl Unsupp Unsound Parsing
value-barrier 4c Inconcl Correct Unsupp OOM Unsupp Inconcl Parsing

Correct — Soundly verified Unsound — Unsoundly verified
Inconcl — Inconclusive LibFun — Unsupported library function
OOM — Out of memory Unsupp — Unsupported syntax

Timeout — Not finished within time limit Parsing — Parsing failed
* Extracted example does not have racy variations.

yet it maintains soundness (i.e., it yields no false negatives). However, if a tool verifies a race-free
example but incorrectly labels the racy variation as race-free, we indicate “Unsound,” as it has not
truly verified the idiom.

The winning tool at SV-COMP, Goblint, verifies a simple case with thread-local storage, but is un-
sound in two other cases, despite having no incorrect results at SV-COMP 2023. The second-ranking
tool, Deagle, correctly handles 3 examples with thread-local storage and atomics. Furthermore,
it soundly verifies one challenging example involving a threads counter, in addition to a simpler
value-based barrier. Unfortunately, Deagle falsely claims data race freedom in six cases. UAutomizer
can only verify an example where a constant number of threads are joined, while exhausting
given resources on many other examples involving an unbounded number of threads. Locksmith
soundly verifies some examples with thread-local storage from the pthread library and atomics,
but treats the semaphores incorrectly. Other tools encounter similar failures on the examples as on
the real-world programs. Dartagnan fails on all benchmarks due to its inability to handle thread
creation within a loop, which is a common feature in each example. CPAchecker struggles because
it does not support arrays of threads. Theta encounters parsing issues as it lacks support for struct
and union definitions in the included stdlib.h and pthread.h headers.

Finding 2. Leading SV-COMP automated data race freedom verifiers are unable to
reason about most thread-joining and per-thread data distribution implementation
idioms that we have extracted from real-world programs, even when such idioms are
isolated and simplified. At least one tool succeeds for 8 of the 20 idioms.
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5.2 Prevalence of the Identified Idioms in the complete Concrat Suite
As the idioms were extracted by manually inspecting the results of the Goblint tool on a subset of
the Concrat suite, we wanted to ensure that the identified idioms are not isolated cases. Thus, the
quantitative question of how frequently these idioms occur in real-world programs is an orthogonal
one. By construction, the idioms occur at least once on the Concrat suite. But do they occur
significantly more than once? To substantiate the claim that these are prevalent issues, we consider
the entire Concrat benchmark suite, and conduct a query-based analysis to systematically count
the occurrence of these difficult idioms, thus obtaining more representative numbers summarizing
their prevalence. We can then compare these numbers with the existing tasks in SV-COMP to
confirm that our added benchmarks complement the existing benchmarks.

RQ 3. How prevalent are these challenging implementation idioms in real-world programs?

To search for and count the occurrences of these challenging implementation idioms in our
benchmarks, we used Joern [91], relying on its control flow analysis. To characterize benchmarks’
approach to per-thread data, we ran a query with the Joern analyzer to find all functions that can
result in the creation of threads, including pthread_create itself and any functions that eventually
invoke it. We counted any such functions that are called in a looping construct (1). Next, we
computed whether there exists data flow between a memory allocation site and a thread creation
site (2). For the array-based idioms, we considered whether an integer variable used in a loop or an
address expression with indexing (or pointer addition) is given to a spawned thread (3). For the join
idioms, we considered if there is array indexing involved (6). The syntactic feature relevant to both
thread counters and value-barriers is the control-flow dependence of a thread creator on a shared
variable (7); thus, we searched for the use of shared variables in conditions of control statements in
a function spawning a thread. The rest of the features only require a keyword search in the source
code; a comprehensive list is given in Section H.

The analysis outputs log files in human-readable Markdown format with the relevant information,
including convenient links to the source code, which we inspected manually to validate that queries
work as expected. Table 5 presents the results of the syntactic analysis for the prevalence of

Table 5. Syntactic properties indicative of the use of the identified patterns. Numbers (in # column) serve to
identify specific idioms. Counts (in the three right-most columns) indicate how many benchmarks in each
suite satisfy a given property. Concrat refers to the complete Concrat suite, while Subset is Concrat minus
incomplete, single-threaded, and library-dependent programs.

Idioms # Relevant Property SV-COMP’23 Concrat Subset

Per-Thread
(Figure 1)

1 Thread creation within a looping construct 87 (11.1%) 29 (64.4%) 13 (72.2%)
2 Flow from memory allocation to thread creation 6 (0.8%) 22 (48.9%) 9 (50.0%)
3 Giving an integer or indexed address to created thread 4 (0.5%) 13 (28.9%) 9 (50.0%)

Thread-Loc.
(Figure 2)

4 Use of thread-local storage (__thread) 0 (0.0%) 2 (4.4%) 1 (5.6%)
5 Use of Posix API for thread-local data (pthread_key) 2 (0.3%) 4 (8.9%) 3 (16.7%)

Thread Join
(Figure 3)

6 Joining threads with array indexing 54 (6.9%) 15 (33.3%) 8 (44.4%)
7 Thread creator has control dependency on shared int 13 (1.7%) 10 (22.2%) 4 (22.2%)

Other Sync.
(Figure 4)

8 Atomics (__sync or __atomic) 0 (0.0%) 8 (17.8%) 5 (27.8%)
9 Semaphores (sem_wait) 0 (0.0%) 3 (6.7%) 2 (11.1%)
10 Use of pthread_cond 7 (0.9%) 20 (44.4%) 9 (50.0%)

Total 783 (100.0%) 45 (100.0%) 18 (100.0%)
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the unsolved verification tasks in SV-COMP as well as Concrat (both the complete set and the
Subset described in Section 4.2). The results correspond fairly well to the more detailed root cause
analysis of Section 3 on the subset of Concrat benchmarks where the verifiers could produce
meaningful output (e.g., atomics are a root cause for 4 of the benchmarks in Section 4.2 and occur
in 5 benchmarks in Table 5). The characteristics of the entire Concrat suite are similar to those of
the Subset, with the largest difference for property 3 of 21%. Moreover, each idiom is also present
in at least one of the excluded benchmarks, validating that these idioms are prevalent across the
entire Concrat benchmark suite.

Finding 3. We find that per-thread-data idioms and thread-joining schemes occur
frequently in real-world programs. Features indicating the use of constructs that cause
verifiers to fail are under-represented in SV-COMP tasks.

6 Discussion
Our study was conducted using data from SV-COMP 2023, with the extracted examples submitted
as new benchmarks for the SV-COMP 2024 benchmark set. For fairness, we separately report both
results from SV-COMP 2023, before our study, as well as for SV-COMP 2024. Since SV-COMP 2024
has now concluded, we can report its results, showing that the challenges that we found remain yet
unsolved. Additionally, we elaborate on how the submission of these new benchmarks has already
positively influenced the direction of the research community.

6.1 Progress since SV-COMP 2023
Tools. Compared to SV-COMP 2023, there were an additional two automated verifiers in the

NoDataRace category in SV-COMP 2024. The results of the tools in SV-COMP 2024 are in Table 6.
ESBMC is an SMT-based context-bounded model checker that we have included in the evaluation of
2024 results. However, PeSCo is based on CPAchecker with the addition of using machine learning
for selecting algorithms. Thus, similarly to the Ultimate family of analyzers, we only evaluate the
best-performing tool from the CPAchecker family.

Table 6. Positively scoring tools from SV-COMP 2024 and their results in the NoDataRace category. Correctly
and incorrectly solved verification task counts are given by expected verdict (True or False).

Correct Incorrect

Verification tool Ref. Approach True False True False Score

Goblint [69, 88] Abstract interpretation 669 0 0 0 1,338
Dartagnan [32, 60] Bounded model checking (BMC) 495 154 1 0 1,112
UAutomizer [38, 39] 557 106 0 0 1,220
UGemCutter [28, 48] 536 144 0 1 1,200
UTaipan [24, 34]

Automata based model checking
301 98 0 0 700

Theta [1, 84] Abstraction-based model checking 310 44 0 0 664
CPAchecker [11, 21] SMT-based model checking 249 56 0 0 554
PeSCo Based on CPAchecker and machine learning 248 56 0 0 552
Locksmith [62] Constraint-based data-flow analysis 129 0 3 0 162
ESBMC [29] SMT-based Context-Bounded Model Checker 488 437 23 3 141
Deagle [36, 37] Satisfiability modulo theory (SMT) Disqualified
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Table 7. Experimental results of the selected tools’ SV-COMP 2024 versions on the extracted examples.

Extracted example Fig. Goblint Deagle Dartagnan UAutomizer CPAchecker Locksmith Theta ESBMC

per-thread-struct 1a Inconcl Unsound Unsupp Timeout Unsupp Inconcl Parsing Timeout
per-thread-array-ptr 1b Inconcl Unsound Unsupp Timeout Unsupp Inconcl Parsing Timeout
per-thread-array-index 1c Inconcl Inconcl Unsupp Timeout Unsupp Inconcl Parsing Timeout
per-thread-array-init 1d Inconcl Correct Unsupp Timeout Unsupp Inconcl Parsing Timeout
per-thread-struct-in-array - Inconcl Unsound Unsupp Timeout Unsupp Inconcl Parsing Timeout
per-thread-index-inc 1e Inconcl Correct Unsupp Timeout Unsupp Inconcl Parsing Timeout
per-thread-index-bitmask - Inconcl Inconcl LibFun OOM Unsupp Inconcl Parsing Timeout
thread-local-value 2a Correct Correct Unsupp Unsupp Unsupp Inconcl Parsing Timeout
thread-local-value-cond* - Inconcl Correct Unsupp Unsupp Unsupp Inconcl Parsing Timeout
thread-local-value-dynamic* - Inconcl Correct Unsupp Unsupp Unsupp Inconcl Parsing Timeout
thread-local-pthread-value* 2b Inconcl Correct Crash LibFun Unsupp Correct Parsing Crash
thread-local-pthread-value-cond* - Inconcl Correct Crash LibFun Unsupp Inconcl Parsing Crash
thread-join-array-dynamic 3a Inconcl Unsound Unsupp Timeout Unsupp Inconcl Parsing Timeout
thread-join-array-const - Inconcl Unsound Correct Correct Unsupp Inconcl Parsing Unsound
thread-join-binomial - Inconcl Unsound Unsupp OOM Unsupp Inconcl Parsing Timeout
thread-join-counter-outer 3b Inconcl Unsound LibFun OOM Unsupp Inconcl Parsing Timeout
thread-join-counter-inner - Inconcl Unsound LibFun Timeout Unsupp Inconcl Parsing Timeout
atomic-gcc* 4a Inconcl Correct Unsupp Timeout Unsupp Correct Parsing Timeout
semaphore-posix 4b Inconcl Unsound LibFun LibFun Unsupp Unsound Parsing Timeout
value-barrier 4c Inconcl Correct Unsupp OOM Unsupp Inconcl Parsing Timeout

Correct — Soundly verified OOM — Out of memory Unsupp — Unsupported syntax
Inconcl — Inconclusive Timeout — Not finished within time limit Parsing — Parsing failed
Unsound — Unsoundly verified LibFun — Unsupported library function Crash — Tool crashed
* Extracted example does not have racy variations.

Results on the Micro-Benchmarks. As mentioned before, our extracted micro-benchmarks were
accepted for SV-COMP 2024. The SV-COMP process is divided into three stages: the benchmark
submission phase, the training phase, and the evaluation phase [8]. The benchmark set is finalized
approximately 2 weeks before the competition (November 13th, 2023 for SV-COMP 2024). Following
this, the tools undergo preliminary test runs, the training phase, to identify any major configuration
flaws or implementation bugs prior to the main evaluation (November 23rd, 2023 for SV-COMP
2024). Authors of the tools thus have around 2 weeks to test their tools on the finalized benchmark
set and address any identified issues. While authors may address these issues, the development
of novel methods targeting the new benchmarks is not to be expected during such a limited time
frame.

There has been no significant progress regarding our micro-benchmarks in the tools competing
at SV-COMP 2024 [9], a fact evident from Table 7. Considering the results and the procedure
outlined above, there has been no significant development aimed at addressing these challenges
yet. Nonetheless, some progress has been made in enhancing the competing tools:

• Goblint is now sound on all of the micro-benchmarks.
• Deagle can verify more of the challenges than last year but is unfortunately also more
unsound due to that.

• Dartagnan can now verify the thread-join-array-const benchmark.
• UAutomizer does not handle thread local values, and thus mistakenly marked some thread-
local benchmarks with True verdicts as False in 2023. They resolved this issue by indicating
that they do not yet support thread-local variables, providing an Unknown verdict instead.
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Table 8. Experimental results of the selected tools with SV-COMP 2024 settings on the included Subset of
the Concrat benchmark set with 2 hours of CPU time, 24 GB of RAM, and 8 CPU cores. The second column
indicates program size in lines of code (LoC).

Benchmark LoC Goblint Deagle Dartagnan UAutomizer CPAchecker Locksmith Theta ESBMC

axel* 5,848 Timeout True Unsupp Unsupp Unsupp Crash Parsing Crash
C-Thread-Pool* 710 Unknown True Unsupp Unsupp Unsupp Unknown Parsing Timeout
dnspod-sr 9,259 Timeout Unknown LibFun Unsupp Unsupp Unknown Parsing True
EasyLogger* 2,011 Unknown OOM LibFun LibFun Unsupp Timeout Parsing OOM
fzy 2,621 Unknown Timeout Unsupp Parsing Unsupp Unknown Parsing Crash
klib* 716 Unknown Timeout LibFun Unsupp Unsupp Unknown Parsing False
level-ip 5,414 Unknown OOM Unsupp LibFun Unsupp Crash Parsing Crash
libfaketime 521 True True LibFun Crash Unsupp True Parsing True
lmdb 10,827 Crash True LibFun LibFun Unsupp Timeout Parsing Crash
Mirai-Source-Code 1,839 Crash LibFun Unsupp Parsing Unsupp Unknown Parsing Unsupp
nnn 12,091 Unknown OOM LibFun LibFun Timeout Unknown Parsing Crash
phpspy 19,390 Crash Crash Unsupp Parsing Unsupp Timeout Parsing Crash
pigz 9,118 OOM Unknown Parsing Unsupp Timeout Timeout Parsing Crash
ProcDump-for-Linux* 4,152 Unknown Timeout Parsing LibFun Unsupp Unknown Parsing OOM
Remotery* 7,212 Crash Timeout Unsupp LibFun Unsupp Timeout Parsing Crash
streem* 20,169 Crash Timeout Crash LibFun Unsupp Timeout Parsing Crash
the_silver_searcher* 7,242 Crash Crash Parsing Parsing Unsupp Unknown Parsing Crash
uthash 817 True Unknown LibFun LibFun Unsupp Unknown Parsing OOM

True — Tool claims data race freedom LibFun — Unsupported library function
False — Tool claims existence of data race Unsupp — Unsupported syntax

Unknown — Neither claimed verified nor refuted Parsing — Parsing failed
OOM — Out of memory Crash — Tool crashed

Timeout — Not finished within time limit
* ThreadSanitizer found a data race.

Deagle was disqualified from SV-COMP 2024 due to the forbidden use of identifiers contained
within the verification tasks for identifying groups of tasks for setting the parameters of the
verification engine.

Results on Concrat. We also evaluated the tools with SV-COMP 2024 settings on the Concrat
benchmark set, resulting in Table 8. In comparison to the evaluation of tools from SV-COMP 2023
(as shown in Table 2), Deagle now claims data race freedom in 4 programs, whereas previously it
claimed it in none. However, caution is warranted as Deagle exhibits significant unsoundness on the
extracted micro-benchmarks, indicating a potential for falsely asserting data race freedom in larger
programs. The new tool, ESBMC, claimed data race freedom in two of the Concrat benchmarks.
Furthermore, unlike any other tools under evaluation, ESBMC also claims the existence of a data
race in one program. However, the error trace it prints is invalid: the data race occurs at the
beginning of the program before any threads are created.

6.2 Towards a World Free from Data Races: What is the Path Forward?
To realize the vision of a world free from data races, we need to develop abstractions and algorithms
that can handle idioms derived from real-world programs, including those identified in this work.
We raise the question of how to evaluate progress towards the analysis of real-world programs, em-
phasizing the need for both micro- and macro-benchmarks. Finally, we acknowledge the possibility
that we may ultimately need to move to safer languages, or at least borrow some of their features.
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Developing Abstractions and Algorithms for Relevant Idioms. We have identified the core semantic
properties of our extracted idioms to clarify the verification conditions that need solving to handle
them. In many cases, the theoretical underpinnings already exist—for example, concurrent separa-
tion logic [15]. However, challenges arise when the separation depends on dynamic parameters
passed to pthread_create. Still, relating addresses with integer arguments is solvable [35, 75, 77].
Similarly, existing array-segment analyses [20] can handle the simpler patterns involved in thread
joining. It is not trivial to combine these techniques and apply them to race freedom verification,
but our hope is that the challenge is manageable if the community knows what to focus on.
The SV-COMP benchmark suite includes many regression suites from tool developers, which

reflects the idioms that these tools are designed to handle. Our findings reveal that certain features
of real-world programs are significantly underrepresented in the SV-COMP benchmark suite. In
particular, nearly half of the real-world programs rely on per-thread heap separation; however, we
found only six tasks in the SV-COMP that involve data flow from dynamically allocated structures
to created threads. We consider this the most significant gap in current tool capabilities.

Evaluation on Micro- and Macro-Benchmarks. To move beyond verifying only the challenging
idioms, we must also ensure that the new techniques scale to real-world programs. Thus, it is im-
portant to evaluate tools on both micro- and macro-benchmarks. A rich suite of micro-benchmarks,
such as that of SV-COMP, is particularly important for detecting unsoundness in the tools. On the
other hand, the real-world benchmarks require scalable and composable solutions. Composability is
particularly important because we have expressed some idioms in terms of their core components,
but as we point out, the idioms are often intertwined in real-world programs. For example, a thread
pool implementation in our micro-benchmark contains a single array of thread-local data, but in
the real-world program, there may be multiple thread pools, each with a dynamically allocated
struct containing multiple arrays per thread pool. Thus, it is essential to integrate novel algorithms
and abstractions in a way that handles such compositions.

There is a trade-off between the two types of benchmarks, and it is important to evaluate tools
on both types of benchmarks to ensure that they are soundly handling the core idioms and that the
methods scale to real-world programs. While verification contests, such as SV-COMP, are important
for evaluating tools on micro-benchmarks, the community currently lacks a process to similarly
evaluate progress on macro-benchmarks.

Language-Support for Verification. One potential conclusion of our work is that fully automated
race freedom verification for C programs is indeed a lost cause, and we should advocate for the use
of safer languages. Rust’s “fearless concurrency” [47] addresses disjointness for freshly allocated
structs by enforcing memory ownership rules. Short of translating all C programs to Rust, one may
consider adopting ownership types for verifying C programs [71]. For thread joining, Java-style
foreach loops are easier to analyze for completeness of iteration. C’s new counted_by attribute,
or an analyzer-specific annotation, could be used to indicate live thread counters. Yet, our idioms
include some that even Rust does not guarantee—ownership in Rust operates at the level of the
entire array, and does not ensure essential properties where threads own disjoint parts of an array.

6.3 Threats to Validity
The conclusions of this particular work are about state-of-the-art static automated race freedom
verification tools. Our principal claim is that our twelve challenging idioms encapsulate fundamental
patterns that these verifiers cannot verify. The smaller, easily benchmarkable instances of constructs
that we propose can inspire research that contributes to needed advances in knowledge by allowing
researchers to develop analyses tailored to them. We have shown that current state-of-the-art tools
do struggle with these instances and that they do occur in real-world programs.
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Internal Validity. The execution of the tools and interpretation of their verdicts was handled by
BenchExec [12]. We used the artifact packages from the official SV-COMP archive. The identification
of the idioms relies on expert knowledge and is difficult to replicate. We provided a quantitative
evaluation in Section 5.2 to mitigate this risk.

The state-of-the-art verifiers that participate in SV-COMP need to adhere to the C99 standard [44],
which lacks a formal memory model. Current SV-COMP tasks can, however, be verified using
sequential consistency, because these tasks do not have C11 atomics, so the DRF guarantee can
be assumed. Even though tools like Dartagnan and Deagle are capable of handling weak memory
models [32, 36], these capabilities are thus currently not evaluated by SV-COMP [59]. While
addressing weak memory is an important challenge, its existence does not invalidate our results
for the existing large collection of programs in the world that do not rely on relaxed semantics.

External Validity. In Section 4.2 we selected a benchmark set from the literature that has been
constructed by searching GitHub repositories under certain criteria. While these criteria aim to
cover a wide range of programs found in the wild, it is possible that the benchmark set is not
fully representative of all real-world programs. One might consider this to be a threat to external
validity—our results might not generalize to every domain or type of software. However, this threat
does not invalidate the fact that we have identified idioms that indeed occur in some real-world
programs. Importantly, our selected benchmark set falls into one specific class of software: primarily
general-purpose, open-source programs, which represent a significant and widely used domain in
the software ecosystem. Similar studies could be conducted in other domains, such as embedded
operating systems or specialized libraries, to uncover idioms and synchronization patterns unique
to those contexts. Despite this focus, our set of idioms provides a solid foundation and a reasonable
starting point for the development of novel techniques.

Wewere also compelled to eliminate some benchmarks from the set because theywere incomplete
or single-threaded. The quantitative evaluation indicates that the relevant features are present
in the eliminated benchmarks as well. However, to further mitigate the risk of external validity,
we have made our benchmark set open, with an opportunity and encouragement for others to
contribute more real-world programs to the benchmark set in the future.
Our choice of tool to aid the extraction process was Goblint. One may question if choosing a

different tool would have led to different results. For the sake of argument, we fix the benchmark
set—the representativeness of the chosen benchmarks among the entire class of programs of interest
is an orthogonal issue. There is a universe of underlying idioms distributed across the benchmark
set. The main result of this work is the idioms from the benchmarks that we have identified.

Let us turn our attention to idioms in the universe that are somewhere in the benchmark set but
which we do not flag in our Goblint-centered idiom extraction process. There are two possibilities:
Goblint already handles them, or Goblint does not handle them. In the first case, such idioms may
indeed be important, but, by definition, are not beyond the state-of-the-art. (Most of Goblint’s
capabilities are reflected in its comprehensive regression suite, which we have previously integrated
into SV-COMP.) The second case is admittedly possible, but only for benchmarks where we have,
in the present work, extracted idioms that Goblint cannot handle. If we assume that Goblint is
sound, then using a different tool than Goblint for idiom extraction could, at worst, extract a
different set of idioms from benchmarks where we have identified at least one idiom using Goblint.
(An unsoundness in Goblint could result in our work overlooking idioms from one of the two
benchmarks on which Goblint has returned True).
Thus, after handling the idioms we have identified, it is necessary to revisit the original bench-

marks when these idioms have been solved, to identify idioms that may have been obscured by
ours.
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7 Related Work
In this section, we expand on related work. In particular, we present additional data race detection
tools and benchmark suites.

Evaluating Data Race Detection Tools. Yu et al. [92] conducted a comparative evaluation of ten
data race detection tools on small to medium-sized C programs. While both our work and theirs
evaluated tools on real-world programs, their evaluation considered dynamic data race detectors,
while ours considers static data race freedom verifiers. Another work that also considers real
applications is by Schimmel et al. [72], using 25 repositories that include data races to evaluate
their selected tools. However, they consider Java repositories and dynamic race detectors for Java.
(Interestingly, even using dynamic tools, they reported many false positives.)

The SAMATE group investigated the effectiveness of static analysis bug-finding tools on real-
world software, presenting the results at a series of workshops [70] from 2008 through 2019. We
also statically analyze real-world software but aim to prove freedom from data races. There have
been a number of empirical investigations on why and how static analysis tools are applied in
practice [6, 19, 46]. These studies highlight many usability challenges to integrating these tools into
the development process, but they also confirm that lack of precision is a major issue preventing
wider application of static analysis tools.

Analyzing False Positives for C. Recall that our goal is to understand conceptual barriers to static
verification of real-world programs. The authors of the Locksmith static race detector for C [61]
reported that false positives occurred mainly due to two categories of coding idioms. The first
category concerns idioms like thread joining or signaling, where a parent thread accesses previously
shared data after its child threads have terminated. The second involves idioms where thread-local
data is held in a global data structure that is indexed by thread identifiers. In follow-up work [62],
they also identify semaphores and inline atomic assembly instructions as causes of false positives.
They state that LP-Race [82], a static analysis tool that reduces the problem of race detection to
linear programming, does not report some of these false positives. LP-Race can handle semaphores
and thread joining. However, due to the reduction to linear programming, it still reports false
positives for loops that create an unbounded number of threads. In addition, it also reports false
positives on thread-local data. Finally, LP-Race cannot verify the initialization of thread-local data
that is later shared.
Voung et al. [90] thoroughly analyze a randomly selected subset of warnings from the Relay

race detector, uncovering that most of these warnings were, in fact, false positives. Additionally,
they categorize these false positives based on the coding idioms used to prevent race conditions.
The six reported categories were initialization, unlikely aliasing, unsharing, re-entrant locks, non-
parallel threads and conditional locking. They emphasize the need for advanced analyses that
are concurrency-, path- and shape-sensitive, as well as the significance of jointly considering
multiple aspects when verifying a coding idiom. The Goblint analyzer targeted some of these
limitations [87], such as conditional locking [89] and spurious aliasing [76], but their evaluation
reports false positives due to unsupported protection mechanisms, environmental assumptions,
and lack of precision [88]. Although the causes of false positives are identified in these evaluations,
we aim to collect specific patterns of thread joining and task decomposition that are often used.

More generally, the process of identifying the cause of false positives and extracting regression
tests is a common process, though it is often manual and ad-hoc. There have been efforts to
automate and provide tool support for this process [41, 55, 67]. To produce concise regression cases,
automated program minimization tools can be helpful [66, 81], though manual effort is needed
to obtain human-readable examples. Finally, to generate variations of a given kernel, mutation
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tools [93] can be applied, but we are mainly interested in mutations that expose unsound reasoning,
which requires manual intervention. More research in these areas, with a focus on extracting
human-readable test cases, would be beneficial to support the development of static analysis tools.

Concurrency Bugs in Real-World Programs. Others have investigated concurrency bugs in real-
world programs. In the Go context, Tu et al. [85] conducted a systematic study on concurrency
bugs, while Chabbi and Ramanathan [17] focused on data race bugs and their patterns. Qin et al.
[63] studied concurrency issues for real-world Rust programs. However, both Go and Rust are
opinionated about concurrency patterns—Go encourages communication via channels instead of
shared memory, while Rust’s type system statically ensures race freedom in safe code. Our research
instead focuses on the C language, specifically exploring the data-race-free constructs of the
language as found in real-world programs. C has completely different affordances for concurrency;
it was not designed to help programmers avoid races.

Benchmarking Concurrency Bugs. The awareness of the importance of benchmarking and repli-
cation in programming language research is increasing, so there have been many other efforts
to address these challenges. The JaConTeBe suite, by Lin et al. [52], collects concurrency bugs
from open-source Java projects while following the five guidelines by Lu et al. [53] for preparing
benchmark suites for bug detection tools. Gao et al. [31] point out that although JaConTeBe contains
47 concurrency bugs, only 19 are data race bugs. They propose a new benchmark set, JBench,
tailored for evaluating Java data race detection tools. Similar to our approach, JBench combines
Java programs with data race bugs from the literature as well as real-world applications. However,
we started from the SV-COMP competition suite as well as the Concrat real-world suite; both of
these suites were curated by others. SV-COMP collects community submissions while Concrat
aims to exhaustively include all sufficiently-starred programs up to a certain size. Also, our key
contribution of a set of challenging problems—informed by the design of race detection tools—is
absent from their work.
A key difference between our work and these studies is that we do not propose a benchmark

set for evaluating tools that detect data race bugs, but instead for evaluating tools that verify data
race freedom. Our proposed benchmark set consists of real-world C programs, as well as kernel
programs with examples of unsolved verification problems derived from real-world C programs.
The programs are not proposed as a static benchmark set but collected into a living continuous
benchmarking process, a practical analog to a living systematic review.

Pointer Analyses for (Lock-Based) Race Freedom Verification. What makes race verification in C par-
ticularly challenging is the use of pointers. Determining whether two expressions in a program may
access the same memory location requires alias analysis, a well-known and longstanding challenge
in static analysis [40]. Similarly, for time-separated accesses, establishing whether synchronization
exists between two accesses is also a well-studied problem [2, 23, 94]. Both alias analysis and
synchronization analysis are undecidable in general [64, 65], and the interplay between the two
dimensions of separation—in space and time—is particularly challenging, as we observed in this
paper.

We presented mainly idioms that did not rely on locking because a great amount of research has
focused on handling various locking idioms. However, even establishing that a pair of accesses is safe
due to the correct use of locking, while allowing both access expressions and locking expressions
to involve pointers, is already a considerable challenge. An analysis needs to show that whenever
two access expressions may alias, the addresses of the acquired locks must be equal. While there
are many excellent techniques for scalable may-alias analysis, and similarly so for must-equality
analysis of addresses, the combination of interprocedural may-alias and must-equality analyses is
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still a challenge for scalable static data race analysis. Bodden et al. [13] outline an intraprocedural
approach, but combining these analyses in the interprocedural context is particularly important—in
some programs, locks are acquired by one function and released by another. Specific solutions
for the context-sensitive computation of joint may-alias and must-equality information have
been proposed, such as the relative lockset analysis of Relay [90], the polymorphic type system
of Locksmith [61], the side-effecting constraint system of Goblint [4], or even the conditional
must-not-alias analysis of the Chord analyzer for Java [56]. The last paper provided a conditional
perspective that could generalize well to the time-based idioms.

Dynamic and unsound tools. Dynamic race detection tools like ThreadSanitizer [78, 79] are
generally unsound but can provide concrete evidence of a data race. Practical static analyzers,
including Coverity Scan and the Java-based tool RacerDX, abandon soundness in favor of producing
high-signal data race reports that developers can act upon [33]. As the tools in our experiment failed
to pinpoint any actual races in the real-world programs, developing rigorous formal approaches to
bug detection is also a welcome development [49, 58]. The frequent appearance and subsequent
patching of race-related vulnerabilities in released software highlight the limitations of current
approaches, both static and dynamic. This suggests that while unsoundmethods have their strengths,
they may not yet be sufficient on their own, in practice, to prevent data race bugs post-release. Our
work focuses on sound static data race verification methods, aiming to complement dynamic and
unsound approaches for better prevention of data races in real-world programs.

8 Conclusion
To identify fundamental challenges for today’s static data race freedom verifiers, we considered a
set of 18 real-world programs drawn from the Concrat benchmark suite. We present a principled
set of 20 coding idioms, extracted from these programs, and evaluated them on 7 state-of-the-art
verifiers from SV-COMP 2023. The verifiers are specialized for competition problems and generally
could not handle real-world programs—2 verifiers successfully verified race freedom in a total of 3
programs, with resource exhaustion and superficial issues causing failures. The verifiers did better
on the extracted idioms than on the complete programs, with some verifier able to handle 8 of the
20 idioms; the remaining 12 idioms are beyond today’s state-of-the-art.

Takeaway message. Our learning from this work is that, while lock-based idioms for
avoiding data races are well-supported by existing data race verification tools, real-
world multithreaded C applications extensively use other idioms as well. Specifically,
idioms involving per-thread structs and arrays, where each thread has exclusive access
to a segment of the array, are commonly used in practice and are not well-supported
by current tools. It is necessary (though admittedly perhaps not sufficient) to support
these idioms if one is to verify race freedom of C programs.

This work takes an important first step—that of problem identification—towards the vision of
static data race verification for all real-world C programs. We call on the community to design
and implement techniques to handle the idioms identified in this work, which are a necessary
prerequisite for achieving this vision.
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A Tools selected from SV-COMP 2023 and their engineering statistics

Verification tool Start
year1

Nr. of
contributors2

Nr. of
releases

Total
commits3

Commits
in 2023

Latest
commit3

Goblint 2007 66 17 16,342 3,182 Aug 2024
Deagle 2021 2 4 5 1 Apr 2024
Dartagnan 2017 9 9 4,647 181 Aug 2024
UAutomizer
UGemCutter 2013 78 30 28,656 1,705 Aug 2024
UTaipan
CPAchecker 2009 126 22 34,844 1,658 Aug 2024
Locksmith 2006 4 27 0 Nov 2021
Theta 2016 25 107 5,617 183 Aug 2024
1 Minimum year of first git commit and first paper.
2 Maximum contributors of git repository and explicit authors list.
3 As of Aug 14 2024.

B Fixes done in the Concrat benchmarks
We fixed syntactic issues in the Concrat benchmarks as follows:

(1) 14 programs contained large 64-bit unsigned integer constants without the ULL suffix, as
required by C99 and beyond [45]. These caused parsing errors for standards-compliant C
parsers. Therefore, we added the suffix where required.

(2) 3 programs contained re-declarations of compiler builtins, which are forbidden by LLVM and
caused parsing errors for LLVM-based tools. These C declarations are non-defining, so we
removed them without affecting the behavior of the programs.

(3) 2 programs contained multiple definitions of an inline function. These were identical
duplicates. Therefore, we removed all but one definition.

We only fixed the syntactic issues and chose not to create mocks, as modeling of the environment
can be a significant source of false positives, which would be a confounding factor in our study.
Table 9 details the benchmarks to which these syntactic fixes were applied.

Table 9. List of benchmarks where the described syntactic fixes were applied.

Fix Affected benchmarks

(1) Cello, Chipmunk2D, Remotery, brubeck, kona, lmdb, minimap2, pg_repack,
phpspy, pigz, streem, sysbench, wrk, zmap

(2) Mirai-Source-Code, kona, streem,
(3) sysbench, zmap
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C Excluded Concrat benchmarks (28)

Benchmark Reason for exclusion

AirConnect Incomplete: missing ixml* functions
brubeck Incomplete: missing rd_kafka_* and json_* functions
cava Incomplete: missing iniparser_*, fftw_*, pa_* and snd_* functions
Cello Incomplete: no main function
ChipMunk2D Incomplete: no main function
clib Incomplete: missing curl_* functions
dump1090 Incomplete: missing rtlsdr_* functions
kona Single-threaded: no pthread_create call
libaco Incomplete: uses external assembly code
libfreenect Incomplete: missing freenect_*, gl* and glut* functions
libqrencode Single-threaded: no pthread_create call
minimap2 Incomplete: missing ksw_* functions
neural-redis Incomplete: no main function
pg_repack Single-threaded: no pthread_create call
pianobar Incomplete: missing curl, json_*, ao_*, gcry_* and av_* functions
pingfs Incomplete: missing fuse_* and gai_* functions
proxychains Incomplete: no main function
proxychains-ng Incomplete: no main function
sc Single-threaded: no pthread_create call
shairport Incomplete: missing snd_*, pa_*, ao_*, MD5_* and BIO_* functions
siege Incomplete: missing OpenSSL functions
snoopy Incomplete: missing snoopy_* functions
sshfs Incomplete: missing fuse_* and g_* functions
stud Single-threaded: no pthread_create call
sysbench Incomplete: missing lua_* functions
vanitygen Incomplete: missing curl and OpenSSL functions
wrk Incomplete: missing OpenSSL and lua functions
zmap Incomplete: missing log_*, pcap_* and json_* functions
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D Concrat benchmarks’ descriptions
Axel A command-line program that accelerates HTTP/FTP downloads by using multiple connec-

tions for one file. It uses concurrency to download different parts of the file simultaneously
through multiple threads.

C-Thread-Pool A library providing a thread pool implementation to execute tasks in parallel. It
manages a finite number of threads that run tasks concurrently, improving performance for
multithreaded applications.

Dnspod-sr A lightweight and fast DNS relay server. It handles multiple DNS queries concurrently
to improve resolution speed and reduce response time.

EasyLogger A simple, efficient, and modular logging utility for C projects that ensures thread-safe
logging operations across different threads in an application.

Fzy A fast, simple fuzzy text selector for the terminal with an advanced scoring algorithm. It
performs multiple matching operations in parallel, increasing the search efficiency.

Klib A standalone and lightweight implementation of several generic data structures. The struc-
tures provided can be used in concurrent programming to manage shared data.

Level-ip A userspace level 3 network stack that processes multiple network packets simultaneously
in a concurrent manner.

Libfaketime A tool for intercepting system calls to retrieve the current time, handling simultane-
ous time modification requests in multithreaded applications.

LMDB An ultra-fast, ultra-compact key-value embedded data store that supports multithreaded
environments by allowing concurrent read access and serialized write access.

Mirai-Source-Code The source code for the Mirai botnet, is designed to manage communications
and attacks across a large number of bots concurrently.

Nnn A fast and resource-sensitive file manager that uses asynchronous notifications and multi-
threaded file operations to enhance performance.

Phpspy A low-overhead sampling profiler for PHP that samples multiple threads of a PHP appli-
cation concurrently.

Pigz A parallel implementation of gzip that divides the compression task into multiple threads to
utilize multiple processors and cores.

ProcDump-for-Linux A tool for creating core dumps of applications based on performance
triggers, monitoring multiple triggers, and managing dumps concurrently.

Remotery A real-time CPU/GPU profiler that collects performance data from different threads in
real-time.

Streem A stream-based concurrent scripting language that processes data streams in parallel and
constructs data pipelines easily.

The Silver Searcher A code-searching tool that uses multiple threads to search through large
codebases quickly.

Uthash A hash table for C structures, often used in concurrent applications where synchronization
mechanisms are applied externally.
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Table 10. Descriptions of ThreadSanitizer results for each program in the Concrat Subset benchmark.

Benchmark ThreadSanitizer result description Verdict

axel Two previously reported races: #354: output/progress bar; not fixed. #294: fixed
in the latest version.

Race found

C-Thread-Pool Races on volatile variables. Race found
dnspod-sr Hard to test (DNS server). Not tested
EasyLogger One race: the unlock should be after writing to elog on line 488. Race found
fzy None detected (only single query; enough to expose bugs if locks are removed). No races
klib One non-atomic read/atomic write violation: the read on line 218 races with

the atomic write on line 241; seems harmless.
Race found

level-ip Hard to test (TCP/IP stack, requires network setup). Not tested
libfaketime None detected (the only spawned thread is joined immediately). No races
lmdb None detected (low coverage, hard-coded test case). Low coverage
Mirai-Source-Code Hard to test (malware). Not tested
nnn None detected (low coverage, interactive terminal). Low coverage
phpspy Hard to test (monitoring). Not tested
pigz None detected (decent coverage). No races
ProcDump-for-Linux One mutex destroy/timed wait race: mutex destroyed on line 670 is used in

timed wait on line 2093.
Race found

Remotery Races on volatile variables. Race found
streem One non-atomic read/atomic write violation: similar to klib, the read on line

8569 races with the atomic write on line 8695.
Race found

the_silver_searcher One (pedantic) race: multiple threads may write 1 on line 3886. Race found
uthash None detected (uses very non-granular locking). No races

E Concrat benchmarks’ ground truths
The ground truths for the programs in the Concrat are not known. The original paper [43] evaluated
a method for translating these programs to Rust’s safe locking API, which should reveal races at
worst during execution. Their testing did not reveal any races.

We ran ThreadSanitizer (TSan) on all programs in our Concrat Subset using gcc 13.3.0. The
results are detailed in Table 10. ThreadSanitizer identified data races in eight of the programs. There
are two interesting cases worth mentioning. Axel has both a benign race and a data race fixed in
subsequent versions. The latter involves the struct-in-array idiom, except the struct is erroneously
accessed with the lock of another struct, showing the importance of tracking equalities between
integer indices. The other interesting case is the race in EasyLogger because it can be fixed by
moving a statement up by a single line; thus, it serves as an excellent use case for incremental
verification tools. The other races are likely benign but ideally should be replaced with C11 atomics.

For the programs where we could not elicit a race, there are four programs where we are
confident—based on manual inspection and mutating locking operations—that TSan is meaningfully
analyzing the programs. The rest of the programs are either networked, interactive, malware, or
monitoring, and we encountered the following issues: four could not be tested and two had low
coverage.

Our artifact (see Data-Availability Statement) includes the TSan logs and the scripts used to elicit
the races.
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Table 11. Names of the unsupported library functions for the tools that had “LibFuns” marked in the cells
of Tables 2 and 8.

Benchmark Dartagnan-23 Dartagnan-24 UAutomizer-23 UAutomizer-24 CPAchecker-23

axel setlocale - - memset
C-Thread-Pool puts - - -
dnspod-sr - - - memset
EasyLogger setbuf pthread_attr_init sem_post -
fzy fp - - -
klib fprintf - - -
level-ip - pthread_rwlock_init pthread_rwlock_init memset
libfaketime sigemptyset - - -
lmdb time pthread_getspecific pthread_getspecific memset
Mirai-Source-Code fprintf - - -
nnn rawmemchr mbstowcs mbstowcs -
phpspy - - - -
pigz - pthread_getspecific - -
ProcDump-for-Linux openlog - sem_init -
Remotery signal sin pthread_key_create -
streem - log10 pow memset
the_silver_searcher - - - memset
uthash pthread_rwlock_init

__errno_location,
__isoc99_sscanf,
accept, atoi, bind,
close, connect,

daemon,
epoll_create,
epoll_ctl,

epoll_wait, fclose,
fcntl, fflush, fgets,
fopen, fprintf,

getopt, getpagesize,
getpid,

gettimeofday,
htonl, htons,
inet_pton, kill,

listen, llvm.va_end,
llvm.va_start,
mkdir, . . . pthread_rwlock_init pthread_rwlock_init -

F Details about unsupported library functions
Table 11 details the names of the unsupported library functions of the tools for the Concrat
benchmarks. Details for Deagle have been omitted, as its output only indicates “Unsupported
library function!” without specifying which functions are unsupported. For CPAchecker, only the
details from the 2023 tool are reported, as the 2024 version had no failures related to unsupported
library functions. The 2024 version of Dartagnan did not limit itself to specifying one unsupported
library function per program; instead, it provided a full list of unsupported functions present in the
analyzed program. The Dartagnan-24 column shows the first part of this list for dnspod-sr as an
example.

G Analysis of Unsolved Data Race Verification Challenges from SV-COMP
The investigation into the SV-COMP tasks from the NoDataRace category aimed to identify common
characteristics in the verification challenges that current tools could not overcome. The competing
verifiers implement different technologies, have different strengths and weaknesses, and have
different potential for scalability to real-world programs. One would expect different verifiers to
succeed at verifying different coding idioms. We thus also investigate the verification results on a
more granular basis, studying which tasks were solved (or not) by which verifiers. We considered
the 27 tasks with True verdicts (“no races”) that none of the tools from Section 4.1 were able to
prove correct at SV-COMP, and Table 12 shows our findings. During the manual investigation, it
came to light that 16 of these tasks were mislabeled and should actually have a False expected
verdict because they contain a data race.3 This leaves only 11 tasks with True verdicts unsolved by
any of the tools.

3Our fixes to the verdicts were accepted by the SV-COMP community: https://gitlab.com/sosy-lab/benchmarking/sv-
benchmarks/-/merge_requests/1450, https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1451 and
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1473.
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Table 12. SV-COMP 2023 NoDataRace tasks with a True verdict that are unverified by all of the selected
tools, along with the causes.

Task Most prominent cause of failure to verify Affected tools

01b_inc, 03_incdec, Simulated locking with boolean variables Goblint, Locksmith
48_ticket_lock_low_contention_vs SV-COMP atomics Deagle

Unbounded number of threads CPAchecker, Dartagnan, UAutomizer

bounded_buffer Array initialization completeness Goblint
Bounded thread joining Locksmith
Unsupported syntax CPAchecker, Dartagnan
Unidentified timeout UAutomizer

safestack_relacy Per-thread index from lock-free algorithm Goblint
SV-COMP atomics Locksmith
Unsupported syntax CPAchecker, Dartagnan
Unidentified timeout Deagle, UAutomizer

workstealqueue_mutex-2 Per-thread index from lock-free algorithm Goblint
SV-COMP atomics Locksmith
Unsupported library function Deagle
Unsupported syntax CPAchecker, Dartagnan
Unidentified timeout UAutomizer

linux-3.13--drivers--* (5 tasks) Unidentified due to program size

(16 tasks) Mislabeled: answer should be False, but had a True expected verdict by mistake

Total: 27 tasks

Five unverified tasks were not looked into due to being more than 7,000 LoC each, thus making
it difficult to find each tool’s most prominent cause of failure. On three other tasks, we conjecture
that the tools based on model checking exhaust their resources due to the unbounded number of
threads, an idiom that they do not handle [10, 27]. On the same three tasks, however, Goblint and
Locksmith failed due to locking being simulated using boolean variables. On the remaining three
tasks, multiple tools did not support the syntax or the used library functions. Despite using a small
fixed number of threads, there were still timeouts whose causes could not be determined from
the tools’ output. In bounded_buffer, Locksmith fails to handle the joining of threads [62], while
Goblint cannot verify that an array is sufficiently initialized by the time of use. Two tasks implement
lock-free data structures via SV-COMP-specific atomic operations. Goblint cannot perform the
delicate value analysis required to verify them.

The leading tool, Goblint, could not verify an additional 26 tasks. Goblint primarily struggles with
verifying tasks involving value-based locking schemes that require tracking precise interleavings
between a finite number of threads. These are generally handled well by tools using model checking.
The second-best tool, Deagle, uses Goblint internally and thus should fail on fewer tasks than

Goblint. However, it received a lower score than Goblint due to superficial implementation issues.
For example, it first attempts to unroll loops for its bounded model checker, and if this process fails,
it does not run Goblint. Alternately, it may run Goblint, which returns zero potential races, but
then Deagle gives an Unknown verdict due to unsupported library functions.
The third-ranking tool, Dartagnan, produces 181 errors, which rarely refer to the offending

constructs in the analyzed program; 21 errors because it does not support threads created in a loop;
and 45 timeouts.
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Table 13. Descriptions of the Joern queries used in Section 5.2 to count occurrences of syntactic properties
that indicate the use of the identified challenging implementation idioms.

# Relevant Property Query description

1 Thread creation within a
looping construct

Find all transitive callers of pthread_create, including pthread_create itself.
Count benchmarks where a call to one of these functions is a node of a while or for
AST.

2 Flow from memory allo-
cation to thread creation

Count benchmarks with pthread_create calls where the 4th argument arg is reach-
able from a call to malloc, alloca or calloc.

3 Giving an integer or in-
dexed address to created
thread

Count benchmarks with pthread_create calls where the 4th argument arg contains:
• a (pointer) addition operation or an indexing operation,
• an integer variable that also occurs in the condition of a parent looping construct.

4 Use of thread-local stor-
age (__thread)

Count benchmarks that include the annotation __thread.

5 Use of Posix API
for thread-local data
(pthread_key)

Count benchmarks with a variable of the type pthread_key_t.

6 Joining threads with ar-
ray indexing

Count benchmarks where the first argument to pthread_join contains a (pointer)
addition operation or an indexing operation.

7 Thread creator has
control dependency on
shared int

Count the benchmarks in which a method that calls pthread_create, also uses a
global int variable within a condition of a control statement.

8 Atomics (__sync or
__atomic)

Count the benchmarks where __sync or __atomic(.*fetch|store|load|exchange)
functions are used.

9 Semaphores (sem_wait) Count the benchmarks where sem_wait is used.

10 Use of pthread_cond Count benchmarks that call pthread_cond.*.

Similarly, we found the fourth-ranking tool, Ultimate Automizer, difficult to judge because its
inability to prove correctness is due to timeouts or running out of memory. For some classes of tasks,
it verifies one variation slightly under the time limit but exhausts the limit on another variation.
While there are some obvious constructs, such as creating 10,000 threads, that cause the Ultimate
family of tools to run out of memory, there are also cases that only involve two threads where it
fails to reason about dynamically allocated locks.

H Descriptions of the Joern queries for prevalence analysis
The Joern queries used to collect data in Table 5 are detailed in Table 13. The code for these queries
is included in the accompanying artifact (see Section 8).

We validated the correctness of our queries by running them on the extracted micro-benchmark
set. The results, detailed in Table 14, confirm that the syntactic properties associated with each
idiom in Section 3 are accurately identified in the corresponding micro-benchmarks.
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Table 14. Syntactic properties identified in our extracted micro-benchmarks using the Joern queries.

Relevant Property Fig. 1 2 3 4 5 6 7 8 9 10

per-thread-struct 1a ✓ ✓ ✓

per-thread-array-ptr 1b ✓ ✓ ✓ ✓

per-thread-array-index 1c ✓ ✓ ✓

per-thread-array-init 1d ✓ ✓ ✓ ✓

per-thread-struct-in-array - ✓ ✓ ✓ ✓

per-thread-index-inc 1e ✓ ✓

per-thread-index-bitmask - ✓ ✓

thread-local-value 2a ✓ ✓ ✓

thread-local-value-cond - ✓ ✓ ✓

thread-local-value-dynamic - ✓ ✓ ✓

thread-local-pthread-value 2b ✓ ✓ ✓

thread-local-pthread-value-cond - ✓ ✓ ✓

thread-join-array-dynamic 3a ✓ ✓

thread-join-array-const - ✓ ✓

thread-join-binomial - ✓ ✓ ✓

thread-join-counter-outer 3b ✓ ✓ ✓

thread-join-counter-inner - ✓ ✓ ✓

atomic-gcc 4a ✓ ✓ ✓

semaphore-posix 4b ✓ ✓ ✓

value-barrier 4c ✓ ✓ ✓
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