
Hob: A Tool for Verifying Data Structure Consistency

Patrick Lam, Viktor Kuncak, and Martin Rinard
{plam, vkuncak, rinard }@csail.mit.edu

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Abstract. This tool demonstration presents Hob, a system for verifying data structure con-
sistency for programs written in a general-purpose programming language. Our tool enables
the focused application of multiple communicating static analyses to different modules in
the same program. Using our tool throughout the program development process, we have
successfully identified several bugs in both specifications and implementations of programs.

1 Introduction

Hob is a static analysis framework that verifies that program implementations satisfy
their specifications. Using Hob, developers can apply multiple pluggable analyses to
different parts of a program, applying each analysis to the modules for which it is most
appropriate. Each Hob analysis plugin verifies that program modules 1) properly imple-
ment their specifications; and 2) respect the preconditions of the procedures that they
call. Program modules often encapsulate data structures, and many data structures main-
tain a dynamically changing set of objects as their primary purpose; we have therefore
found that set specifications allow developers to express crucial data structure interface
properties, including in particular, the preconditions needed by typical data structure
operations to successfully execute. Hob’s common set specification language therefore
enables different analyses to effectively communicate with each other.

The Hob project addresses the program verification problem [1, 5]. Our tool sup-
ports assume/guarantee reasoning and data refinement. The techniques embodied in the
Hob tool are particularly suited for expressing and verifying data structure consistency
properties: Hob allows static analysis plugins to verify that data structure preconditions
hold upon entry to a data structure, that data structure operations preserve data structure
invariants, and that data structure operations conform to their specifications.

Our technique is designed to support programs that encapsulate the implementations
of complex data structures in instantiatable leaf modules, with these modules analyzed
once by very precise, potentially expensive analyses (such as shape analyses or even
analyses that generate verification conditions that must be manually discharged using a
theorem prover or proof checker). The rest of the program uses these modules but does
not directly manipulate the encapsulated data structures. These modules can then be
analyzed by more efficient analyses that operate primarily at the level of the common
set abstraction. Given the scalability issues associated with precise data structure veri-
fication techniques, this kind of approach is the only way to make these analyses viable
in practice.

We have implemented our analysis framework and populated this framework with
three analysis plugins: 1) the flags plugin, which is designed to analyze modules that use
a flag field to indicate the typestate of the objects that they manipulate [3]; 2) the PALE
plugin, which implements a shape analysis for linked data structures (we integrated
the Pointer Analysis Logic Engine analysis tool [4] into our system); and 3) the theo-
rem proving plugin, which generates verification conditions designed to be discharged
manually using the Isabelle interactive theorem prover [6]. We have used our analysis



framework to analyze several programs; our experience shows that it can effectively 1)
verify the consistency of data structures encapsulated within a single module and 2)
combine analysis results from different analysis plugins to verify properties involving
objects shared by multiple modules analyzed by different analyses. We have observed
that our approach reduces the program annotation effort, improves the performance of
the resulting analysis, and extends the range of programs to which each component
analysis is applicable in isolation.

2 The Hob Approach
We next describe how developers write implementations and specifications for Hob. A
program to be analyzed contains a number of modules. Each module is analyzed by
an analysis plugin; plugins ensure that the module’s implementation conforms to its
specification and that the module satisfies all preconditions for the calls that it makes.

2.1 How Analysis Plugins Work

The basic task of an analysis plugin is to certify that the implementation for a module
conforms to its specification and that the module meets all preconditions for calls that
it makes. Implementation sections for modules in our system are written in a standard
Java-like memory-safe imperative language supporting arrays and dynamic object allo-
cation. Module specification sections give preconditions and postconditions for proce-
dures in the boolean algebra of sets; these conditions are augmented with amodifies
clause, which states the frame condition for the procedure. Specification modules may
also name global boolean predicates to be tracked by the analysis. Finally, since mod-
ules may implement their specifications in a variety of ways, the abstraction section of
a module describes the relationship between the module’s implementation and its spec-
ification; each analysis plugin has a specialized syntax for abstraction settings, suitable
for the type of properties checked by that plugin. An abstraction section may addition-
ally state representation invariants applicable to the data structure implemented in that
module.

In general, the Hob system analyzes individual modules as follows. For each mod-
ule, Hob examines the implementation, specification, and abstraction sections of that
module, as well as the specifications of all procedures that the module invokes. Hob first
uses the abstraction function (from the abstraction section) to translate therequires
andensures clauses into the internal representation of the specialized analysis that
will analyze the module (as specified in the abstraction section). Hob then conjoins the
representation invariant to the translatedrequires andensures clauses. Finally,
Hob invokes the specified analysis plugin to verify that each procedure conforms to its
translatedrequires andensures clauses.

2.2 Verifying Cross-Module Properties and Simplifying Specifications

Modules may belong to analysis scopes [2]. A scope encloses a number of program
modules and designates a subset of these modules as exported modules; it also states
scope invariants that always hold outside the scope. Scopes serve two purposes: they
enable the specification and verification of cross-module invariants by identifying the
subset of a program in which an invariant is expected to hold, and they combat annota-
tion aggregation by hiding irrelevant sets from callers. Scopes are key to our system’s
verification of invariants containing sets from different modules: by designating the ex-
ported modules as external access points, and because scope invariants are preserved



outside a scope, it is sufficient to check the scope invariants upon exit from a scope,
therefore reducing the annotation and analysis burden which would otherwise be as-
sociated with scope invariants. Scopes also shield callers from irrelevant detail: only
sets from exported modules may occur as free variables in specifications for modules
in different scopes. This serves to bound the detail required in procedure specifications:
the specification of procedurep belonging to scopeC need only contain the effects of
procedures on sets inC and sets belonging to exported modules outsideC.

Hob specification sections may also use defaults to simplify procedure precondi-
tions and postconditions. A default is a clause that is automatically conjoined to pro-
cedure preconditions and postconditions across a specified program pointcut, unless
explicitly suspended. In our example applications, we use defaults for ensuring that
initialization predicates hold everywhere in a program except in the initial state; these
defaults free the developer from the burden of manually conjoining the initialization
predicate to a substantial portion of the program’s specifications.

3 Hob in Practice

We have coded up several benchmark programs, using our system during the develop-
ment of the programs. Our benchmarks include the water scientific computation bench-
mark, a minesweeper game, and programs with computational patterns from operating-
system schedulers, air-traffic control, and program transformation passes. These bench-
marks use a variety of data structures, and we have therefore implemented and verified
sets, set iterators, queues, stacks, and priority queues. Our implementations range from
singly-linked and doubly-linked lists and tree insertion (all verified using the PALE plu-
gin) through array data structures (verified using the theorem proving plugin with the
Isabelle theorem prover used to discharge verification conditions); our largest bench-
mark (water) contains approximately 2000 lines of implementation and 500 lines of
specification. The Hob project homepage is

http://cag.csail.mit.edu/˜plam/hob/
This homepage links to the O’Caml source tarball and publicly readable Subversion
repository, further explains our example applications, and includes past presentations
about Hob. Hob is distributed under the GNU General Public License.

The Hob infrastructure contains several general components that perform tasks re-
quired by all analyses. The implementation language component can parse and type-
check implementation sections. It produces an abstract syntax tree and methods that
allow analyses to conveniently access this representation. The specification component
can parse and type check specification sections and provides access to the resulting ab-
stract syntax tree. Large parts of abstraction sections are expressed in a language that
is specific to each analysis. The abstraction section component parses those parts of the
abstraction section syntax that are common to all analyses and uses uninterpreted strings
to pass along the analysis-specific parts. Using these components, it is fairly simple to
create new analysis plugins and apply them to analyze more types of data structures.
Our implementation consists of approximately 10,000 lines of O’Caml code, to which
the flag plugin contributes 2000 lines, the PALE plugin another 700 lines, and the the-
orem proving plugin 1000 lines; the rest of the code is shared analysis infrastructure.



We next present an example of a client code that Hob successfully verifies.
impl module UseList {

format Node {}
proc use() {

Node n1;
Node n2;
n1 = new Node();
n2 = new Node();
List.add(n1);
List.add(n2);
List.remove(n2);
List.remove(n1); } }

spec module UseList {
proc use1()

requires List.Content = {}
modifies List.Content
calls List
ensures List.Content’ = {}; }

abst module UseList {
use plugin "flags"; }

ThisUseList example is analyzed by the flags plugin; it uses aList module, which
is verified by the PALE plugin. Note that theUseList module does not define any sets
itself; it relies on theList module to store itsNode objects in a linked list. The flags
plugin verifies theuse procedure by propagating boolean formulas; upon procedure
entry, theContent set from list is assumed to be empty (this condition is verified in
all callers ofuse .) After the pair ofList.add operations completes, theContent
set is known to contain the elements{n1, n2 } (by incorporating the postcondition of
List.add ). Finally, the pair ofList.remove operations ensures thatContent is
empty at the end of the procedure, ensuring the stated procedure postcondition.

4 Conclusion
The program analysis community has produced many precise analyses that are capable
of extracting or verifying quite sophisticated data structure properties. Issues associated
with using these analyses include scalability limitations and the diversity of important
data structure properties, some of which will inevitably elude any single analysis.

The Hob tool can apply a full range of analyses to programs composed of multiple
modules. The key elements of the Hob approach include modules that encapsulate ob-
ject fields and data structure implementations, specifications based on membership in
abstract sets, and invariants that use these sets to express (and enable the verification of)
properties that involve multiple data structures in multiple modules analyzed by differ-
ent analyses. We anticipate that our techniques will enable the productive application
of a variety of precise analyses to verify important data structure consistency properties
and check important typestate properties in programs built out of multiple modules.

References
1. C. A. R. Hoare. The verifying compiler: still a Grand Challenge for computing research.

ETAPS Invited Lecture, April 2003.
2. P. Lam, V. Kuncak, and M. Rinard. Crosscutting techniques in program specification and

analysis. In P. Tarr, editor,Proceedings of the Fourth Conference on Aspect-Oriented Software
Development, 2005.

3. P. Lam, V. Kuncak, and M. Rinard. Generalized typestate checking for data structure consis-
tency. In6th International Conference on Verification, Model Checking and Abstract Inter-
pretation, 2005.

4. A. Møller and M. I. Schwartzbach. The Pointer Assertion Logic Engine. InProc. PLDI, 2001.
5. G. Nelson. Techniques for program verification. Technical report, XEROX Palo Alto Research

Center, 1981.
6. K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining theorem proving with static anal-

ysis for data structure consistency. InInternational Workshop on Software Verification and
Validation (SVV 2004), Seattle, November 2004.


