Introduction to ANTLR
(ANother Tool for Language Recognition)

Jon Eyolfson

University of Waterloo

September 27 - October 1, 2010

Outline

Introduction

Usage

°
°

e Example
@ Demonstration
°

Conclusion

Jon Eyolfson (UW)

ANTLR Tutorial

Introduction

© ANTLR accepts a language description in EBNF grammar and
creates a recognizer for that language

@ The recognizers handle three types of input: character streams
(lexer), token streams (parser) and node streams

@ This tool can generate recognizers in may languages, the most
popular being Java and C++

@ We will focus on the first two which you will need for your first lab

Jon Eyolfson (UW) ANTLR Tutorial Sept. 27 - Oct. 1, 2010 3/16

Input

ANTLR Grammar

[grammar_type] grammar NAME

options { variable = value; ... }

tokens { TOKEN = ’'string '; ... }

@header { /* Header of generated Java file x/ }
Q@lexer :: header { /+x Copied to NAMELexer.java */ }
Omembers { /+* Member section of generated Java file %/ }

rulename : ruledefinition

These are just ANTLR settings, we define our actions in the rules section

Jon Eyolfson (UW) ANTLR Tutorial Sept. 27 - Oct. 1, 2010 4/ 16

Rules

Convention

Lexer non-terminals (token names) contain only upper case letters
Parser non-terminals contain only lower case letters

ANTLR Grammar (Rules)

rulename [args] [returns T val]
firstchoice { /x Optional Java code x/ }
| secondchoice { /+ Optional Java code x/ }

There are 4 EBNF operators
e X|Y matches X or Y
@ X* matches X zero or more times
@ X+ matches X one or more times

o X7 optionally matches X

Jon Eyolfson (UW) ANTLR Tutorial Sept. 27 - Oct. 1, 2010

5/16

Using ANTLR

Download ANTLR from http://www.antlr.org

Include the JAR files in your classpath which may include antlr jar,
antlr3.jar, stringtemplate.jar

Run it using java org.antlr.Tool Grammar.g

Since our grammar is small, we can define our lexer and parser in the
same grammar file

In this case the tool generates GrammarLexer.java,
GrammarPaser.java and Grammar.tokens for us

Jon Eyolfson (UW) ANTLR Tutorial Sept. 27 - Oct. 1, 2010 6 /16

Example

Consider a subset of your lab, the Simple Datatype Language which only
handles the following:

@ Read, print and assignments
@ Atom integer values
@ Map operator with 4+ and -
How would we use ANTLR to help us?

Jon Eyolfson (UW) ANTLR Tutorial Sept. 27 - Oct. 1, 2010 7 /16

Example Header

SDL.g

grammar SDL;
options {
language = Java;
}
@header {package ca.uwaterloo.ece251;}
Q@lexer :: header {package ca.uwaterloo.ece251;}

@members {Interp interp = new Interp ();}

[Optional] You may also define keywords and symbols here to be used in
the parsing rules by using tokens

Jon Eyolfson (UW) ANTLR Tutorial Sept. 27 - Oct. 1, 2010 8 /16

Example Lexer

SDL.g

EXT: 'atom';

fragment LETTER: ('a’'..'z’' | 'A'"..'Z");
VAR: LETTER (LETTER | '0°..°9" | '_');

LITERAL: ('0'..'9")+;
NEWLINE: ('\r'? "\n')+ {skip();};
WHITESPACE: (' ' | "\t') {skip();};

[Optional] We could also use $channel = HIDDEN; instead of skip();

Jon Eyolfson (UW) ANTLR Tutorial Sept. 27 - Oct. 1, 2010

9/16

Example Parser

SDL.g

prog
stmtx EOF

stmt

(read | print | assign)
read

"read " VAR '.' EXT
print
"print ' VAR

assign
: VAR ':=" exp

exp
: VAR
| LITERAL
| 'map’ transformer exp

transformer
'+’ LITERAL
| '—' LITERAL

Jon Eyolfson (UW) ANTLR Tutorial

Sept. 27 - Oct. 1, 2010

10 / 16

Almost Done?

We can generate a lexer and parser for us and use them
SDL.java

package ca.uwaterloo.ece251;
import org.antlr.runtime.sx;

public class SDL {
public static void main(String[] args) throws Exception {
CharStream input = null;
if (args.length = 1) { input = new ANTLRFileStream(args[0]); }
else { System.err.println(”You must provide an input file”);
return; }
SDLLexer lexer = new SDLLexer(input);
TokenStream tokenStream = new CommonTokenStream(lexer);
SDLParser parser = new SDLParser(tokenStream);
parser.prog();

Now valid input files will parse without throwing an Exception, however
our program does not interpret and process our language

Jon Eyolfson (UW) ANTLR Tutorial Sept. 27 - Oct. 1, 2010 11 /16

Modifying the Parser
Remember we can insert our own Java code onto the end of each rule
using braces?

@ We also have an defined an Interp object in our Parser class, how
might we use it?

Print Rule

print
"print ' VAR {interp.print ($VAR. text);};

This will insert code after this rule matches which calls interp.print passing
it a String argument with the text of VAR

@ Tokens have a text field which is a String, but we can also access
fields of rules with return values

Jon Eyolfson (UW) ANTLR Tutorial Sept. 27 - Oct. 1, 2010 12 / 16

A More Complex Case

Consider the the map matching of the exp rule
Exp Rule
exp returns [Expr e]

| 'map’ transformer el=exp
{$e = new MapExpr($transformer.t, $el.e);}

@ We can set the return value by assigning the variable (e) to a new
object

@ We may also access return values of other rules, in this case the
transformer rule returns an Expr.Transformer

@ We must provide an alias for the last exp to be able to refer to that
specific rule, since we are already in the exp rule just having $exp.e is
ambiguous

Jon Eyolfson (UW) ANTLR Tutorial Sept. 27 - Oct. 1, 2010 13 / 16

Trees

@ There are ways to generate ASTs in ANTLR using their built in tree
structure

@ However the lab is not complex and this is not required, you can use
your own simple data structure in order to represent the tree (see the
example JavaDoc)

Jon Eyolfson (UW) ANTLR Tutorial Sept. 27 - Oct. 1, 2010 14 / 16

Demonstration

That's all there is to it! Observe...

Jon Eyolfson (UW)

ANTLR Tutorial

Conclusion

You should now be well prepared to begin your lab

@ Create your grammar file and insert code to interact with your
interpreter

@ Download ANTLR, set your classpath and run it
e 777

e Profit

Jon Eyolfson (UW) ANTLR Tutorial Sept. 27 - Oct. 1, 2010 16 / 16

